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Abstract—In this paper we describe an efficient 

implementation of an IEEE 754 single precision 

floating point multiplier targeted for Xilinx Virtex-5 

FPGA. VHDL is used to implement a technology-

independent pipelined design. The multiplier 

implementation handles the overflow and underflow 

cases. Rounding is not implemented to give more 

precision when using the multiplier in a Multiply and 

Accumulate (MAC) unit. With latency of three clock 

cycles the design achieves 301 MFLOPs. The multiplier 

was verified against Xilinx floating point 

multiplier core. 

Index terms-floating point; multiplication; FPGA; CAD 

design Flow 

1. INTRODUCTION 
Floating point numbers are one possible 

way of representing real numbers in binary format; 

the IEEE 754 [1] standard presents two different 

floating point formats, Binary interchange format 

and Decimal interchange format. Multiplying 

floating point numbers is a critical requirement for 

DSP applications involving large dynamic range. 

This pape focuses only on single precision 

normalized binary interchange format. Fig. 1 shows 

the IEEE 754 single precision binary format 

representation; it consists of a one bit sign (S), an  

eight bit exponent (E), and a twenty three bit 

fraction (M or Mantissa). An extra bit is added to 

the fraction to form what is called the significand1. 

If the exponent is greater than 0 and smaller than 

255, and there is 1 in the MSB of the significand 

then the number is said to be a normalized number; 

in this case the real number is representedby(1) 

 

Z = (-1S) * 2 (E - Bias) * (1.M)__ ____(1) 

Where M = m22 2-1 + m21 2-2 + m20 2-3+…+ m1 

2-22+ m0 2-23; Bias = 127. 

1 Significand is the mantissa with an extra MSB 

bit.This research has been supported by Mentor 

Graphics. 

Multiplying two numbers in floating point 

format is done by 1- adding the exponent of the two 

numbers then subtracting the bias from their result,  

2- multiplying the significand of the two numbers,  

and 3- calculating the sign by XORing the sign of the 

two numbers. In order to represent the 

multiplication result as a normalized number there 

should be 1 in the MSB of the result (leading one). 

Floating-point implementation on FPGAs 

has been the interest of many researchers. In [2], an  

IEEE 754 single precision pipelined floating point  

multiplier was implemented on multiple FPGAs (4  

Actel A1280). In [3], a custom 16/18 bit three stage 

pipelined floating point multiplier that doesn’t 

support rounding modes was implemented. In [4], a 
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single precision floating point multiplier that 

doesn’t support rounding modes was implemented 

using a digit-serial multiplier: using the Altera FLEX 

8000 it achieved 2.3 MFlops. In [5], a 

parameterizable floating point multiplier was 

implemented using the software-like language 

Handel-C, using the Xilinx XCV1000 FPGA; a five 

stages pipelined multiplier  achieved 28MFlops. In 

[6], a latency optimized floating point unit using the 

primitives of Xilinx Virtex II FPGA was 

implemented with a latency of 4 clock cycles. The 

multiplier reached a maximum clock frequency of 

100 MHz. 

2.FLOATINGPOINT MULTIPLICATION 

ALGORITHM 

As stated in the introduction, normalized 

floating point numbers have the form of Z= (-1S) * 2 

(E - Bias) * (1.M). To multiply two floating point 

numbers the following is done: 

 

1. Multiplying the significand; i.e. (1.M1*1.M2) 

2. Placing the decimal point in the result 

3. Adding the exponents; i.e. (E1 + E2 – Bias) 

4. Obtaining the sign; i.e. s1 xor s2 

5. Normalizing the result; i.e. obtaining 1 at the MSB 

of the results’ significand 

6. Rounding the result to fit in the available bits 

 

7. Checking for underflow/overflow occurrence

number of mantissa bits (only 4) while still 

retaining the hidden ‘1’ bit for normalized numbers: 

A = 0 10000100 0100 = 40, B = 1 10000001 1110 = 

-7.5 

To multiply A and B 

1. Multiply significand:  

 

2. Place the decimal point: 10.01011000 

3. Add exponents: 

 

The exponent representing the two numbers is 

already shifted/biased by the bias value (127) and 

is not the true exponent; 

 i.e. EA = EA-true + bias and EB = EB-true + bias 

And 

EA + EB = EA-true + EB-true + 2 bias 

So we should subtract the bias from the 

resultant exponent otherwise the bias will be added 

twice. 

 

 

4. Obtain the sign bit and put the result together: 

1 10000110 10.01011000 

5. Normalize the result so that there is a 1 just 

before the radix point (decimal point). Moving the 

radix point one place to the left increments the 
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exponent by 1; moving one place to the right 

decrements the 

exponent by 1. 

1 10000110 10.01011000 (before normalizing) 

1 10000111 1.001011000 (normalized) 

The result is (without the hidden bit): 

1 10000111 00101100 

6. The mantissa bits are more than 4 bits (mantissa 

available bits); rounding is needed. If we applied 

the truncation rounding mode then the stored value 

is: 

1 10000111 0010. 

In this paper we present a floating point 

multiplier in which rounding support isn’t 

implemented. Rounding support can be added as a 

separate unit that can be accessed by the multiplier 

or by a floating point adder, thus accommodating 

for more precision if the multiplier is connected 

directly to an adder in a MAC unit. Fig. 2 shows the 

multiplier structure; Exponents addition, 

Significand multiplication, and Result’s sign 

calculation are independent and are done in 

parallel. The significand multiplication is done on 

two 24 bit numbers and results in a 48 bit product, 

which we will call the intermediateproduct (IP). 

The IP is represented as (47 downto 0) and the 

decimal point is located between bits 46 and 45 in 

the IP. The following sections detail each block of 

the floating point multiplier. 

 

 

Figure 2.  Floating point multiplier block diagram 

3. HARDWARE OF FLOATING POINT 

MULTIPLIER 

A. Sign bit calculation 

Multiplying two numbers results in a 

negative sign number iff one of the multiplied 

numbers is of a negative value. By the aid of a truth 

table we find that this can be obtained by XORing 

the sign of two inputs. 

B. Unsigned Adder (for exponent addition) 

This unsigned adder is responsible for 

adding the exponent of the first input to the 

exponent of the second input and subtracting the 

Bias (127) from the addition result (i.e. A_exponent 

+ B_exponent - Bias). The result of this stage is 

called the intermediate exponent. The add 

operation is done on 8 bits, and there is no need for 

a quick result because most of the calculation time 

is spent in the significand multiplication process 

(multiplying 24 bits by 24 bits); thus we need a 

moderate exponent adder and a fast significand 

multiplier. An 8-bit ripple carry adder is used to 

add the two input exponents. As shown in Fig. 3 a 
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ripple carry adder is a chain of cascaded full adders 

and one half adder; each full adder has three inputs 

(A, B, Ci) and two outputs (S, Co). The carry out (Co) 

of each adder is fed to the next full adder (i.e each 

carry bit "ripples" to the next full adder). 

 

Figure 3. Ripple Carry Adder 

 

The addition process produces an 8 bit sum 

(S7 to S0) and a carry bit (Co,7). These bits are 

concatenated to form a 9 bit addition result (S8 to 

S0) from which the Bias is subtracted. The Bias is 

subtracted using an array of ripple borrow 

subtractors. 

A normal subtractor has three inputs (minuend (S), 

subtrahend (T), Borrow in (Bi)) and two outputs 

(Difference (R), Borrow out (Bo)). The subtractor 

logic can be optimized if one of its inputs is a 

constant value which is our case, where the Bias is 

constant (127|10 = 001111111|2). Table I shows 

the truth table for a 1-bit subtractor with the input 

T equal to 1 which we will call “one subtractor (OS) 

 

 

TABLE I. 1-BIT SUBTRACTOR WITH THE INPUT T = 

1 

 

The Boolean equations (2) and (3) represent this 

subtractor: 

 

 

Figure 4. 1-bit subtractor with the input T = 1Table 

II shows the truth table for a 1-bit subtractor with 

the input T equal to 0 which we will call “zero 

subtractor (ZS)” 
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TABLE II. 1-BIT SUBTRACTOR WITH THE INPUT T 

= 0 

 

The Boolean equations (4) and (5) represent this 

subtractor: 

 

 

Figure 

5. 1-bit subtractor with the input 

 T =0 

Fig. 6 shows the Bias subtractor which is a chain of 

7 one subtractors (OS) followed by 2 zero 

subtractors (ZS); the borrow output of each 

subtractor is fed to the next subtractor. If an 

underflow occurs then Eresult < 0 and the number 

is out of the IEEE 754 single precision normalized 

numbers range; in this case the output is signaled to 

0 and an underflow flag is asserted. C. 

 

 

Figure 6. Ripple Borrow Subtractor 

 

 

 

C. Unsigned Multiplier (for significand 

multiplication) 

 This unit is responsible for multiplying the 

unsigned significand and placing the decimal point 

in the multiplication product. The result of 

significand multiplication will be called the 

intermediate product (IP). The unsigned significand 

multiplication is done on 24 bit. Multiplier 

performance should be taken into consideration so 

as not to affect the whole multiplier’s performance. 

A 24x24 bit carry save multiplier architecture is 

used as it has a moderate speed with a simple 

architecture. In the carry save multiplier, the carry 

bits are passed diagonally downwards (i.e. the 

carry bit is propagated to the next stage). Partial 

products are made by ANDing the inputs together 

and passing them to the appropriate adder. 

Carry save multiplier has three main stages: 

1- The first stage is an array of half adders. 

2- The middle stages are arrays of full adders. The 

number of middle stages is equal to the significand 

size minus two. 

3- The last stage is an array of ripple carry adders. 

This stage is called the vector merging stage. The 

number of adders (Half adders and Full adders) in 

each stage is equal to the significand size minus 

one. For example, a 4x4 carry save multiplier is 

shown in Fig. 7 and it has the following stages: 

1- The first stage consists of three half adders. 

2- Two middle stages; each consists of three full 

adders. 

3- The vector merging stage consists of one half 

adder and two full adders. 
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The decimal point is between bits 45 and 46 

in the significand multiplier result. The 

multiplication time taken by the carry save 

multiplier is determined by its critical path. The 

critical path starts at the AND gate of the first 

partial products (i.e. a1b0 and a0b1), passes 

through the carry logic of the first half adder and 

the carry logic of the first full adder of the middle 

stages, then passes through all the vector merging 

adders. The critical path is marked in bold in Fig. 7 

 

Figure 7. 4x4 bit Carry Save multiplier 

In Fig. 7: 

1- Partial product: aibj = ai and bj 

2- HA: half adder 

3- FA: full adder 

D. Normalizer 

The result of the significand multiplication 

(intermediate product) must be normalized to have 

a leading ‘1’ just to the left of the decimal point (i.e. 

in the bit 46 in the intermediate product). Since the 

inputs are normalized numbers then the 

intermediate product has the leading one at bit 46 

or 47 

1- If the leading one is at bit 46 (i.e. to the left of the 

decimal point) then the intermediate product is 

already a normalized number and no shift is 

needed. 

2- If the leading one is at bit 47 then the 

intermediate product is shifted to the right and the 

exponent is incremented by 1. 

The shift operation is done using 

combinational shift logic made by multiplexers. Fig. 

8 shows a simplified logic of a Normalizer that has 

an 8 bit intermediate product input and a 6 bit 

intermediate exponent input. 

 

Figure 8. Simplified Normalizer logic 

4. UNDERFLOW/OVERFLOW DETECTION 

Overflow/underflow means that the result’s 

exponent is too large/small to be represented in the 

exponent field. The exponent of the result must be 8 

bits in size, and must be between 1 and 254 

otherwise the value is not a normalized one. An 

overflow may occur while adding the two 

exponents or during normalization. Overflow due to 

exponent addition may be compensated during 

subtraction of the bias; resulting in a normal output 

value (normal operation). An underflow may occur 

while subtracting the bias to form the intermediate 

exponent. If the intermediate exponent < 0 then it’s 

an underflow that can never be compensated; if the 
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intermediate exponent = 0 then it’s an underflow 

that may be compensated during normalization by 

adding 1 to it. 

When an overflow occurs an overflow flag 

signal goes high and the result turns to ±Infinity 

(sign determined according to the sign of the 

floating point multiplier inputs). When an 

underflow occurs an underflow flag signal goes 

high and the result turns to ±Zero (sign determined 

according to the sign of the floating point multiplier 

inputs). Denormalized numbers are signaled to 

Zero with the appropriate sign calculated from the 

inputs and an underflow flag is raised. Assume that 

E1 and E2 are the exponents of the two numbers A 

and B respectively; the result’s exponent is 

calculated by (6) 

Eresult = E1 + E2 - 127 (6) 

E1 and E2 can have the values from 1 to 

254; resulting in Eresult having values from -125 

(2-127) to 381 (508-127); but for normalized 

numbers, Eresult can only have the values from 1 to 

254. Table III summarizes the Eresult different 

values and the effect of normalization on it. 

TABLE III. NORMALIZATION EFFECT ON RESULT’S 

EXPONENT AND OVERFLOW/UNDERFLOW 

DETECTION 

 

 

5. PIPELINING THE MULTIPLIER 

In order to enhance the performance of the 

multiplier, three pipelining stages are used to 

divide the critical path thus increasing the 

maximum operating frequency of the multiplier. 

The pipelining stages are imbedded at the following 

locations: 

1. In the middle of the significand multiplier, and in 

the middle of the exponent adder (before the bias 

subtraction). 

2. After the significand multiplier, and after the 

exponent adder.  

3. At the floating point multiplier outputs (sign, 

exponent and mantissa bits). Fig. 9 shows the 

pipelining stages as dotted lines. 

Figure 7. 4x4 bit Carry Save multiplier 

 

Figure 9. Floating point multiplier with pipelined 

stages 

Three pipelining stages mean that there is latency 

in the output by three clocks. The synthesis tool 

“retiming” option was used so that the synthesizer 

uses its optimization logic to better place the 

pipelining registers across the critical path. 

6. IMPLEMENTATION AND TESTING 

The whole multiplier (top unit) was tested 

against the Xilinx floating point multiplier core 

generated by Xilinx coregen. Xilinx core was 

customized to have two flags to indicate overflow 
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and underflow, and to have a maximum latency of 

three cycles. Xilinx core implements the “round to 

nearest” rounding mode. 

A testbench is used to generate the stimulus and 

applies it to the implemented floating point 

multiplier and to the Xilinx core then compares the 

results. The floating point multiplier code was also 

checked using DesignChecker [7]. DesignChecker is 

a linting tool which helps in filtering design issues 

like gated clocks, unused/undriven logic, and 

combinational loops. The design was synthesized 

using Precision synthesis tool [8] targeting Xilinx 

Virtex-5 5VFX200TFF1738 with a timing constraint 

of 300MHz. Post synthesis and place and route 

simulations were made to ensure the design 

functionality after synthesis and place and route. 

Table IV shows the resources and frequency of the 

implemented floating point multiplier and Xilinx 

core. 

TABLE IV. AREA AND FREQUENCY COMPARISON 

BETWEEN THE 

IMPLEMENTED FLOATING POINT MULTIPLIER 

AND XILINX CORE 

 

 

The area of Xilinx core is less than the 

implemented floating point multiplier because the 

latter doesn’t truncate/round the 48 bits result of 

the mantissa multiplier which is reflected in the 

amount of function generators and registers used to 

perform operations on the extra bits; also the speed 

of Xilinx core is affected by the fact that it 

implements the round to nearest rounding mode. 

7. CONCLUSIONS AND FUTURE WORK 

This paper presents an implementation of a 

floating point multiplier that supports the IEEE 

754-2008 binary interchange format; the multiplier 

doesn’t implement rounding and just presents the 

significand multiplication result as is (48 bits); this 

gives better precision if the whole 48 bits are 

utilized in another unit; i.e. a floating point adder to 

form a MAC unit. The design has three pipelining 

stages and after implementation on a Xilinx Virtex5 

FPGA it achieves 301 MFLOPs. 
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