NOTES ON (T, S)-INTUITIONISTIC FUZZY SUBHEMIRINGS OF A HEMIRING

K.Umadevi ${ }^{1}$, V.Gopalakrishnan ${ }^{2}$
${ }^{1}$ Assistant Professor,Department of Mathematics,Noorul Islam University,Kumaracoil,Tamilnadu,India
${ }^{2}$ Research Scolar,Department of Civil,,Noorul Islam University,Kumaracoil,Tamilnadu,India

Abstract

In this paper, we made an attempt to study the algebraic nature of a (T, S)-intuitionistic fuzzy subhemiring of a hemiring. 2000 AMS Subject classification: 03F55, 06D72, 08A72.

Key Words: T-fuzzy subhemiring, anti S-fuzzy subhemiring, (T, S)-intuitionistic fuzzy subhemiring, product.

1. INTRODUCTION

There are many concepts of universal algebras generalizing an associative ring ($R ;+;$). Some of them in particular, nearrings and several kinds of semirings have been proven very useful. Semirings (called also halfrings) are algebras ($R ;+;$.) share the same properties as a ring except that (R ; +) is assumed to be a semigroup rather than a commutative group. Semirings appear in a natural manner in some applications to the theory of automata and formal languages. An algebra (R; +,.) is said to be a semiring if (R; +) and (R ; .) are semigroups satisfying $\mathrm{a} .(\mathrm{b}+\mathrm{c})=\mathrm{a} . \mathrm{b}+\mathrm{a} . \mathrm{c}$ and $(b+c) . a=b . a+c$. a for all a, b and c in R. A semiring R is said to be additively commutative if $a+b=b+a$ for $a l l a, b$ and c in R . A semiring R may have an identity 1 , defined by 1 . $\mathrm{a}=\mathrm{a}=\mathrm{a} .1$ and a zero 0 , defined by $0+\mathrm{a}=\mathrm{a}=\mathrm{a}+0$ and a .0 $=0=0 . a$ for all a in R. A semiring R is said to be a hemiring if it is an additively commutative with zero. After the introduction of fuzzy sets by L.A.Zadeh[23], several researchers explored on the generalization of the concept of
fuzzy sets. The concept of intuitionistic fuzzy subset was introduced by K.T.Atanassov[4,5], as a generalization of the notion of fuzzy set. The notion of anti fuzzy left h-ideals in hemiring was introduced by Akram.M and K.H.Dar [1]. The notion of homomorphism and anti-homomorphism of fuzzy and anti-fuzzy ideal of a ring was introduced by N.Palaniappan \& K.Arjunan [16], [17], [18]. In this paper, we introduce the some Theorems in (T, S)-intuitionistic fuzzy subhemiring of a hemiring.

2. PRELIMINARIES

2.1 Definition

A (T, S)-norm is a binary operations $\mathrm{T}:[0,1] \times[0,1] \rightarrow[0,1]$ and
$S:[0,1] \times[0,1] \rightarrow[0,1]$ satisfying the following requirements;
(i) $\mathrm{T}(0, \mathrm{x})=0, \mathrm{~T}(1, \mathrm{x})=\mathrm{x}$ (boundary condition)
(ii) $\mathrm{T}(\mathrm{x}, \mathrm{y})=\mathrm{T}(\mathrm{y}, \mathrm{x})$ (commutativity)
(iii) $\mathrm{T}(\mathrm{x}, \mathrm{T}(\mathrm{y}, \mathrm{z}) \mathrm{f}=\mathrm{T}(\mathrm{T}(\mathrm{x}, \mathrm{y}), \mathrm{z})$ (associativity)
(iv) if $\mathrm{x} \leq \mathrm{y}$ and $\mathrm{w} \leq \mathrm{z}$, then $\mathrm{T}(\mathrm{x}, \mathrm{w}) \leq \mathrm{T}$ (y, z) (monotonicity).
(v) $S(0, x)=x, S(1, x)=1$ (boundary condition)
(vi) $S(x, y)=S(y, x)$ (commutativity)

International Research Journal of Engineering and Technology (IRJET)
e-ISSN: 2395-0056
Volume: 03 Issue: 02 |Feb-2016
www.irjet.net
p-ISSN: 2395-0072
(vii) $S(x, S(y, z))=S(S(x, y), z)$ (associativity)
(viii) if $\mathrm{x} \leq \mathrm{y}$ and $\mathrm{w} \leq \mathrm{z}$, then $\mathrm{S}(\mathrm{x}, \mathrm{w}) \leq \mathrm{S}$ ($\mathrm{y}, \mathrm{z})$ (monotonicity).

2.2 Definition

Let ($R,+,$.) be a hemiring. A fuzzy subset A of R is said to be a T-fuzzy subhemiring (fuzzy subhemiring with respect to T -norm) of R if it satisfies the following conditions:
(i) $\mu_{A}(x+y) \geq T\left(\mu_{A}(x), \mu_{A}(y)\right)$,
(ii) $\mu_{A}(x y) \geq T\left(\mu_{A}(x), \mu_{A}(y)\right)$, for all x and y in R.

2.3 Definition

Let ($R,+,$.) be a hemiring. A fuzzy subset A of R is said to be an anti S-fuzzy subhemiring (anti fuzzy subhemiring with respect to S -norm) of R if it satisfies the following conditions:
(i) $\mu_{\mathrm{A}}(\mathrm{x}+\mathrm{y}) \leq \mathrm{S}\left(\mu_{\mathrm{A}}(\mathrm{x}), \mu_{\mathrm{A}}(\mathrm{y})\right)$,
(ii) $\mu_{A}(x y) \leq S\left(\mu_{A}(x), \mu_{A}(y)\right)$, for all x and y in R.

2.4 Definition

Let ($\mathrm{R},+,$.) be a hemiring. An intuitionistic fuzzy subset A of R is said to be an (T, S)-intuitionistic fuzzy subhemiring(intuitionistic fuzzy subhemiring with respect to (T, S)-norm) of R if it satisfies the following conditions:
(i) $\mu_{\mathrm{A}}(\mathrm{x}+\mathrm{y}) \geq \mathrm{T}\left(\mu_{\mathrm{A}}(\mathrm{x}), \mu_{\mathrm{A}}(\mathrm{y})\right)$,
(ii) $\mu_{A}(x y) \geq T\left(\mu_{A}(x), \mu_{A}(y)\right)$,
(iii) $v_{A}(x+y) \leq S\left(v_{A}(x), v_{A}(y)\right)$,
(iv) $v_{A}(x y) \leq S\left(v_{A}(x), v_{A}(y)\right)$, for all x and y in R.

2.5 Definition

Let A and B be intuitionistic fuzzy subsets of sets G and H, respectively. The product of A and B, denoted by $A \times B$, is defined as $A \times B=\left\{\left\langle(x, y), \mu_{A \times B}(x, y), v_{A \times B}(x, y)\right\rangle /\right.$ for all x in G and y in $H\}$, where $\mu_{A \times B}(x, y)=\min \{$ $\left.\mu_{\mathrm{A}}(\mathrm{x}), \mu_{\mathrm{B}}(\mathrm{y})\right\}$ and $v_{\mathrm{A} \times \mathrm{B}}(\mathrm{x}, \mathrm{y})=\max \left\{v_{\mathrm{A}}(\mathrm{x}), v_{\mathrm{B}}(\mathrm{y})\right\}$.

2.6 Definition

Let A be an intuitionistic fuzzy subset in a set S , the strongest intuitionistic fuzzy relation on S, that is an intuitionistic fuzzy relation on A is V given by $\mu_{\mathrm{V}}(\mathrm{x}, \mathrm{y})$ $=\min \left\{\mu_{\mathrm{A}}(\mathrm{x}), \mu_{\mathrm{A}}(\mathrm{y})\right\}$ and $\nu_{\mathrm{v}}(\mathrm{x}, \mathrm{y})=\max \left\{\nu_{\mathrm{A}}(\mathrm{x}), v_{\mathrm{A}}(\mathrm{y})\right\}$, for all x and y in S.

2.7 Definition

Let ($R,+,$.) and ($\left.R^{\prime},+,.\right)$ be any two hemirings. Let f $: R \rightarrow R^{\prime}$ be any function and A be an (T, S)intuitionistic fuzzy subhemiring in R, V be an (T, S)-intuitionistic fuzzy subhemiring in $f(R)=R^{\prime}$, defined by $\mu_{\mathrm{v}}(\mathrm{y})=\operatorname{Sup}_{x \in f^{-1}(y)} \mu_{\mathrm{A}}(\mathrm{x})$ and $\nu_{\mathrm{v}}(\mathrm{y})=\inf _{x \in f^{-1}(y)} v_{\mathrm{A}}(\mathrm{x})$, for all x in R and y in R^{1}. Then A is called a preimage of V under f and is denoted by $f^{-1}(\mathrm{~V})$.

2.8 Definition

Let A be an (T, S)-intuitionistic fuzzy subhemiring of a hemiring $\quad(R,+, \cdot)$ and a in R. Then the pseudo (T, S)-intuitionistic fuzzy coset (aA) ${ }^{p}$ is defined by $\left(\left(a \mu_{A}\right)^{p}\right)(x)=p(a) \mu_{A}(x)$ and $\left(\left(a v_{A}\right)^{p}\right)(x)=$ $p(a) v_{A}(x)$, for every x in R and for some p in P.

International Research Journal of Engineering and Technology (IRJET)
e-ISSN: 2395-0056
Volume: 03 Issue: 02 | Feb-2016
www.irjet.net
p-ISSN: 2395-0072

3. PROPERTIES

3.1 Theorem

Intersection of any two (T, S)-intuitionistic fuzzy subhemirings of a hemiring R is a (T, S)-intuitionistic fuzzy subhemiring of a hemiring R.

Proof: Let A and B be any two (T, S)-intuitionistic fuzzy subhemirings of a hemiring R and x and y in R. Let $A=\left\{\left(x, \mu_{A}(x), v_{A}(x)\right) / x \in R\right\}$ and $B=\{$ $\left.\left(\mathrm{x}, \mu_{\mathrm{B}}(\mathrm{x}), \nu_{\mathrm{B}}(\mathrm{x})\right) / \mathrm{x} \in \mathrm{R}\right\}$ and also let $\mathrm{C}=\mathrm{A} \cap \mathrm{B}=\{(\mathrm{x}$, $\left.\left.\mu_{C}(x), v_{C}(x)\right) / x \in R\right\}$, where $\min \left\{\mu_{A}(x), \mu_{B}(x)\right\}=\mu_{C}(x)$ and $\max \left\{v_{A}(x), v_{B}(x)\right\}=v_{C}(x)$. Now, $\mu_{C}(x+y)=\min$ $\left\{\mu_{A}(x+y), \mu_{B}(x+y)\right\} \geq \min \left\{T\left(\mu_{A}(x), \mu_{A}(y)\right), T\left(\mu_{B}(x)\right.\right.$, $\left.\left.\mu_{\mathrm{B}}(\mathrm{y})\right)\right\} \geq \mathrm{T}\left(\min \left\{\mu_{\mathrm{A}}(\mathrm{x}), \mu_{\mathrm{B}}(\mathrm{x})\right\}, \min \left\{\mu_{\mathrm{A}}(\mathrm{y}), \mu_{\mathrm{B}}(\mathrm{y})\right\}\right)=$ $\mathrm{T}\left(\mu_{\mathrm{C}}(\mathrm{x}), \mu_{\mathrm{c}}(\mathrm{y})\right)$. Therefore, $\mu_{\mathrm{C}}(\mathrm{x}+\mathrm{y}) \geq \mathrm{T}\left(\mu_{\mathrm{C}}(\mathrm{x}), \mu_{\mathrm{c}}(\mathrm{y})\right.$), for all x and y in R. And, $\mu_{C}(x y)=\min \left\{\mu_{A}(x y), \mu_{B}(x y)\right\}$ $\geq \min \left\{T\left(\mu_{A}(x), \mu_{A}(y)\right), T\left(\mu_{B}(x), \mu_{B}(y)\right)\right\} \geq T(\min \{$ $\left.\left.\mu_{A}(x), \mu_{B}(x)\right\}, \min \left\{\mu_{A}(y), \mu_{B}(y)\right\}\right)=T\left(\mu_{C}(x), \mu_{C}(y)\right)$. Therefore, $\mu_{c}(x y) \geq T\left(\mu_{c}(x), \mu_{c}(y)\right)$, for all x and y in R.

Now, $v_{C}(x+y)=\max \left\{v_{A}(x+y), v_{B}(x+y)\right\} \leq \max$ $\left\{S\left(v_{A}(x), v_{A}(y)\right), S\left(v_{B}(x), v_{B}(y)\right)\right\} \leq S\left(\max \left\{v_{A}(x), v_{B}(x)\right\}\right.$, $\left.\max \left\{v_{A}(y), v_{B}(y)\right\}\right)=S\left(v_{C}(x), v_{c}(y)\right)$. Therefore, $v_{c}(x+y) \leq S\left(v_{c}(x), v_{c}(y)\right)$, for all x and y in R. And, $v_{C}(x y)=\max \left\{v_{A}(x y), v_{B}(x y)\right\} \leq \max \left\{S\left(v_{A}(x), v_{A}(y)\right), S\right.$ $\left.\left(v_{B}(x), v_{B}(y)\right)\right\} \leq S\left(\max \left\{v_{A}(x), v_{B}(x)\right\}, \max \left\{v_{A}(y), v_{B}(y)\right.\right.$ $\})=S\left(v_{C}(x), v_{c}(y)\right)$. Therefore, $v_{C}(x y) \leq S\left(v_{C}(x), v_{c}(y)\right)$, for all x and y in R. Therefore C is an (T, S)intuitionistic fuzzy subhemiring of a hemiring R.

3.2 Theorem

The intersection of a family of (T, S)-intuitionistic fuzzy subhemirings of hemiring R is an (T, S)intuitionistic fuzzy subhemiring of a hemiring R.

Proof: It is trivial.

2.3 Theorem

If A and B are any two (T, S)-intuitionistic fuzzy subhemirings of the hemirings R_{1} and R_{2} respectively, then $A \times B$ is an (T, S)-intuitionistic fuzzy subhemiring of $\mathrm{R}_{1} \times \mathrm{R}_{2}$.

Proof: Let A and B be two (T, S)-intuitionistic fuzzy subhemirings of the hemirings R_{1} and R_{2} respectively. Let x_{1} and x_{2} be in R_{1}, y_{1} and y_{2} be in R_{2}. Then (x_{1}, y_{1}) and ($\mathrm{x}_{2}, \mathrm{y}_{2}$) are in $\mathrm{R}_{1} \times \mathrm{R}_{2}$. Now, $\mu_{\mathrm{A} \times \mathrm{B}}\left[\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)+\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)\right]=$ $\mu_{A \times B}\left(\mathrm{x}_{1}+\mathrm{x}_{2}, \mathrm{y}_{1}+\mathrm{y}_{2}\right)=\min \quad\left\{\mu_{\mathrm{A}}\left(\mathrm{x}_{1}+\mathrm{x}_{2}\right), \mu_{\mathrm{B}}\left(\mathrm{y}_{1}+\mathrm{y}_{2}\right)\right\}$ $\geq \min \left\{T\left(\mu_{A}\left(x_{1}\right), \quad \mu_{A}\left(x_{2}\right)\right), \quad T\left(\mu_{B}\left(y_{1}\right), \quad \mu_{B}\left(y_{2}\right)\right) \quad\right\} \geq$ $\mathrm{T}\left(\min \left\{\mu_{\mathrm{A}}\left(\mathrm{x}_{1}\right), \mu_{B}\left(\mathrm{y}_{1}\right)\right\}, \min \left\{\mu_{\mathrm{A}}\left(\mathrm{x}_{2}\right), \mu_{B}\left(\mathrm{y}_{2}\right)\right\}\right)=\mathrm{T}\left(\mu_{\mathrm{A} \times \mathrm{B}}\left(\mathrm{x}_{1}\right.\right.$, $\left.\left.\mathrm{y}_{1}\right), \mu_{\mathrm{A} \times \mathrm{B}}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)\right)$. Therefore, $\mu_{\mathrm{A} \times \mathrm{B}}\left[\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)+\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)\right] \geq$ $T\left(\mu_{A \times B}\left(x_{1}, y_{1}\right), \mu_{A \times B}\left(x_{2}, y_{2}\right)\right)$. Also, $\mu_{A \times B}\left[\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)\right]$ $=\mu_{A \times B}\left(\mathrm{x}_{1} \mathrm{x}_{2}, \mathrm{y}_{1} \mathrm{y}_{2}\right)=\min \left\{\mu_{\mathrm{A}}\left(\mathrm{x}_{1} \mathrm{x}_{2}\right), \mu_{\mathrm{B}}\left(\mathrm{y}_{1} \mathrm{y}_{2}\right)\right\} \geq \min \{\mathrm{T}$ $\left.\left(\mu_{A}\left(x_{1}\right), \mu_{A}\left(x_{2}\right)\right), T\left(\mu_{B}\left(y_{1}\right), \mu_{B}\left(y_{2}\right)\right)\right\} \geq T\left(\min \left\{\mu_{A}\left(x_{1}\right)\right.\right.$, $\left.\left.\mu_{B}\left(y_{1}\right)\right\}, \min \left\{\mu_{A}\left(x_{2}\right), \mu_{B}\left(y_{2}\right)\right\}\right)=T\left(\mu_{A \times B}\left(x_{1}, y_{1}\right), \mu_{A \times B}\left(x_{2}\right.\right.$, $\left.y_{2}\right)$). Therefore, $\mu_{A \times B}\left[\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)\right] \geq T\left(\mu_{A \times B}\left(x_{1}, y_{1}\right)\right.$, $\left.\mu_{A \times B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)\right)$. Now, $v_{A \times B}\left[\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)+\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)\right]=v_{A \times B}\left(\mathrm{x}_{1}+\mathrm{x}_{2}\right.$, $\left.y_{1}+y_{2}\right)=\max \left\{v_{A}\left(x_{1}+x_{2}\right), v_{B}\left(y_{1}+y_{2}\right)\right\} \leq \max \left\{S\left(v_{A}\left(x_{1}\right)\right.\right.$, $\left.\left.v_{A}\left(x_{2}\right)\right), S\left(v_{B}\left(y_{1}\right), v_{B}\left(y_{2}\right)\right)\right\} \leq S\left(\max \left\{v_{A}\left(x_{1}\right), v_{B}\left(y_{1}\right)\right\}\right.$, $\left.\max \left\{v_{A}\left(x_{2}\right), v_{B}\left(y_{2}\right)\right\}\right)=S\left(v_{A \times B}\left(x_{1}, y_{1}\right), v_{A \times B}\left(x_{2}, y_{2}\right)\right)$. Therefore, $v_{A \times B}\left[\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)\right] \leq S\left(v_{A \times B}\left(x_{1}, y_{1}\right), v_{A \times B}\right.$ $\left.\left(x_{2}, y_{2}\right)\right)$. Also, $v_{A \times B}\left[\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)\right]=v_{A \times B}\left(x_{1} x_{2}, y_{1} y_{2}\right)=$ $\max \left\{v_{A}\left(x_{1} x_{2}\right), v_{B}\left(y_{1} y_{2}\right)\right\} \leq \max \left\{S\left(v_{A}\left(x_{1}\right), v_{A}\left(x_{2}\right)\right)\right.$, $\left.S\left(v_{B}\left(y_{1}\right), v_{B}\left(y_{2}\right)\right)\right\} \leq S\left(\max \left\{v_{A}\left(x_{1}\right), v_{B}\left(y_{1}\right)\right\}, \max \left\{v_{A}\left(x_{2}\right)\right.\right.$, $\left.\left.v_{B}\left(y_{2}\right)\right\}\right)=S\left(v_{A \times B}\left(x_{1}, y_{1}\right), v_{A \times B}\left(x_{2}, y_{2}\right)\right)$.

Therefore, $v_{A \times B}\left[\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)\right] \leq S\left(v_{A \times B}\left(x_{1}, y_{1}\right), v_{A \times B}\left(x_{2}\right.\right.$, y_{2})). Hence $A \times B$ is an (T, S)-intuitionistic fuzzy subhemiring of hemiring of $\mathrm{R}_{1} \times \mathrm{R}_{2}$.

International Research Journal of Engineering and Technology (IRJET)
e-ISSN: 2395-0056
Volume: 03 Issue: 02 |Feb-2016
www.irjet.net
p-ISSN: 2395-0072

3.4 Theorem

If A is a (T, S)-intuitionistic fuzzy subhemiring of a hemiring ($\mathrm{R},+, \cdot \cdot$), then $\mu_{A}(\mathrm{x}) \leq \mu_{A}(0)$ and $v_{A}(x) \geq v_{A}(0)$, for x in R, the zero element 0 in R.

Proof: For x in R and 0 is the zero element of R. Now, $\mu_{A}(x)$ $=\mu_{A}(x+0) \geq T\left(\mu_{A}(x), \mu_{A}(0)\right)$, for all x in R. So, $\mu_{A}(x) \leq \mu_{A}(0)$ is only possible. And $v_{A}(x)=v_{A}(x+0) \leq S\left(v_{A}(x), v_{A}(0)\right)$ for all x in R. So, $v_{A}(x) \geq v_{A}(0)$ is only possible.

3.5 Theorem

Let A and B be (T, S)-intuitionistic fuzzy subhemiring of the hemirings R_{1} and R_{2} respectively. Suppose that 0 and 0_{1} are the zero element of R_{1} and R_{2} respectively. If $A \times B$ is an (T, S)-intuitionistic fuzzy subhemiring of $R_{1} \times R_{2}$, then at least one of the following two statements must hold. (i) $\mu_{\mathrm{B}}\left(0_{1}\right) \geq \mu_{\mathrm{A}}(\mathrm{x})$ and $\nu_{\mathrm{B}}\left(0_{\text {I }}\right) \leq$ $v_{A}(x)$, for all x in R_{1}, (ii) $\mu_{A}(0) \geq \mu_{B}(y)$ and $v_{A}(0) \leq$ $v_{B}(y)$, for all y in R_{2}.

Proof: Let $\mathrm{A} \times \mathrm{B}$ be an (T, S)-intuitionistic fuzzy subhemiring of $\mathrm{R}_{1} \times \mathrm{R}_{2}$. By contraposition, suppose that none of the statements (i) and (ii) holds. Then we can find a in R_{1} and b in R_{2} such that $\mu_{A}(a)>\mu_{B}\left(0_{1}\right), v_{A}(a)<$ $\nu_{B}\left(0_{I}\right)$ and $\mu_{B}(b)>\mu_{A}(0), v_{B}(b)<v_{A}(0)$. We have, $\mu_{\mathrm{A} \times \mathrm{B}}(\mathrm{a}, \mathrm{b})=\min \left\{\mu_{\mathrm{A}}(\mathrm{a}), \mu_{\mathrm{B}}(\mathrm{b})\right\}>\min \left\{\mu_{\mathrm{B}}\left(0_{\mathrm{I}}\right), \mu_{\mathrm{A}}(0)\right\}=$ $\min \left\{\mu_{\mathrm{A}}(0), \mu_{\mathrm{B}}\left(0_{I}\right)\right\}=\mu_{\mathrm{A} \times \mathrm{B}}\left(0,0_{\text {I }}\right)$. And, $v_{\mathrm{A} \times \mathrm{B}}(\mathrm{a}, \mathrm{b})=$ $\max \left\{v_{A}(a), v_{B}(b)\right\}<\max \left\{v_{B}\left(0_{I}\right), v_{A}(0)\right\}=\max \left\{v_{A}(0)\right.$, $\left.v_{B}\left(0_{I}\right)\right\}=v_{A \times B}\left(0,0_{l}\right)$. Thus $A \times B$ is not an (T, S)intuitionistic fuzzy subhemiring of $\mathrm{R}_{1} \times \mathrm{R}_{2}$. Hence either $\mu_{\mathrm{B}}\left(0_{\text {I }}\right) \geq \mu_{\mathrm{A}}(\mathrm{x})$ and $\nu_{\mathrm{B}}\left(0_{\mathrm{I}}\right) \leq \nu_{\mathrm{A}}(\mathrm{x})$, for all x in R_{1} or $\mu_{A}(0) \geq \mu_{B}(y)$ and $v_{A}(0) \leq v_{B}(y)$, for all y in R_{2}.

3.6 Theorem

Let A and B be two intuitionistic fuzzy subsets of the hemirings R_{1} and R_{2} respectively and $A \times B$ is an (T, S)intuitionistic fuzzy subhemiring of $R_{1} \times R_{2}$. Then the following are true:
(i) if $\mu_{A}(x) \leq \mu_{B}\left(0_{1}\right)$ and $v_{A}(x) \geq v_{B}\left(0_{I}\right)$, then A is an (T, S)-intuitionistic fuzzy subhemiring of R_{1}.
(ii) if $\mu_{B}(x) \leq \mu_{A}(0)$ and $\nu_{B}(x) \geq v_{A}(0)$, then B is an (T, $S)$-intuitionistic fuzzy subhemiring of R_{2}.
(iii) either A is an (T, S)-intuitionistic fuzzy subhemiring of R_{1} or B is an
(T, S)intuitionistic fuzzy subhemiring of R_{2}.

Proof: Let $A \times B$ be an (T, S)-intuitionistic fuzzy subhemiring of $R_{1} \times R_{2}$ and x and y in R_{1} and 0_{1} in R_{2}. Then ($x, 0_{\text {I }}$) and ($y, 0_{\text {I }}$) are in $R_{1} \times R_{2}$. Now, using the property that $\mu_{A}(x) \leq \mu_{B}\left(0_{1}\right)$ and $\nu_{A}(x) \geq \nu_{B}\left(0_{1}\right)$, for all x in R_{1}. We get, $\mu_{A}(x+y)=\min \left\{\mu_{A}(x+y), \quad \mu_{B}\left(0_{1}+0_{I}\right)\right\}=$ $\mu_{A \times B}\left((x+y),\left(0_{1}+0_{I}\right)\right)=\mu_{A \times B}\left[\left(x, 0_{I}\right)+\left(y, 0_{I}\right)\right] \geq T\left(\mu_{A \times B}(x\right.$, $\left.\left.0_{\mid}\right), \mu_{A \times B}\left(y, 0_{I}\right)\right)=T\left(\min \left\{\mu_{A}(x), \mu_{B}\left(0_{I}\right)\right\}, \min \left\{\mu_{A}(y)\right.\right.$, $\left.\left.\mu_{\mathrm{B}}\left(0_{I}\right)\right\}\right)=\mathrm{T}\left(\mu_{\mathrm{A}}(\mathrm{x}), \mu_{\mathrm{A}}(\mathrm{y})\right)$. Therefore, $\mu_{\mathrm{A}}(\mathrm{x}+\mathrm{y}) \geq$ $T\left(\mu_{A}(x), \mu_{A}(y)\right)$, for all x and y in R_{1}. Also, $\mu_{A}(x y)=$ $\min \left\{\mu_{\mathrm{A}}(\mathrm{xy}), \mu_{\mathrm{B}}\left(0_{\mathrm{I}} 0_{I}\right)\right\}=\mu_{\mathrm{A} \times \mathrm{B}}\left((\mathrm{xy}),\left(0_{\mid} 0_{\mathrm{I}}\right)\right)=\mu_{\mathrm{A} \times \mathrm{B}}[(\mathrm{x}$, $\left.\left.0_{I}\right)\left(y, 0_{I}\right)\right] \geq T\left(\mu_{A \times B}\left(x, 0_{I}\right), \mu_{A \times B}\left(y, 0_{l}\right)\right)=T\left(\min \left\{\mu_{A}(x)\right.\right.$, $\left.\left.\mu_{\mathrm{B}}\left(0_{\mathrm{I}}\right)\right\}, \min \left\{\mu_{\mathrm{A}}(\mathrm{y}), \quad \mu_{\mathrm{B}}\left(0_{\mathrm{I}}\right)\right\}\right)=\mathrm{T}\left(\mu_{\mathrm{A}}(\mathrm{x}), \quad \mu_{\mathrm{A}}(\mathrm{y})\right)$. Therefore, $\mu_{A}(x y) \geq T\left(\mu_{A}(x), \mu_{A}(y)\right)$, for all x and y in R_{1}. And, $v_{A}(x+y)=\max \left\{v_{A}(x+y), v_{B}\left(0_{I}+0_{I}\right)\right\}=v_{A \times B}($ $\left.(x+y),\left(0_{I}+0_{l}\right)\right)=v_{A \times B}\left[\left(x, 0_{I}\right)+\left(y, 0_{l}\right)\right] \leq S\left(v_{A \times B}\left(x, 0_{I}\right)\right.$, $\left.v_{A \times B}\left(y, 0_{I}\right)\right)=S\left(\max \left\{v_{A}(x), v_{B}\left(0_{I}\right)\right\}, \max \quad\left\{v_{A}(y)\right.\right.$, $\left.\left.v_{B}\left(0_{\|}\right)\right\}\right)=S\left(v_{A}(x), v_{A}(y)\right)$. Therefore, $v_{A}(x+y) \leq S$ $\left(v_{A}(x), v_{A}(y)\right)$, for all x and y in R_{1}. Also, $v_{A}(x y)=$ $\max \left\{v_{A}(x y), v_{B}\left(0_{\mid} 0_{I}\right)\right\}=v_{A \times B}\left((x y),\left(0_{\mid} 0_{I}\right)\right)=v_{A \times B}[(x$,
$\left.\left.0_{I}\right)\left(y, 0_{I}\right)\right] \leq S\left(v_{A \times B}\left(x, 0_{I}\right), v_{A \times B}\left(y, 0_{I}\right)\right)=S\left(\max \left\{v_{A}(x)\right.\right.$, $\left.\left.v_{B}\left(0_{1}\right)\right\}, \max \left\{v_{A}(y), v_{B}\left(0_{I}\right)\right\}\right)=S\left(v_{A}(x), v_{A}(y)\right)$. Therefore, $v_{A}(x y) \leq S\left(v_{A}(x), v_{A}(y)\right)$, for all x and y in R_{1}. Hence A is an (T, S)-intuitionistic fuzzy subhemiring of R_{1}. Thus (i) is proved. Now, using the property that $\mu_{B}(x) \leq \mu_{A}(0)$ and $\nu_{B}(x) \geq v_{A}(0)$, for all x in R_{2}, let x and y in R_{2} and 0 in R_{1}. Then $(0, x)$ and $(0, y)$ are in $R_{1} \times R_{2}$.We get, $\mu_{B}(x+y)=\min \left\{\mu_{B}(x+y), \mu_{A}(0+0)\right\}=$ $\min \left\{\mu_{\mathrm{A}}(0+0), \mu_{\mathrm{B}}(\mathrm{x}+\mathrm{y})\right\}=\mu_{\mathrm{A} \times \mathrm{B}}((0+0),(\mathrm{x}+\mathrm{y}))=\mu_{\mathrm{A} \times \mathrm{B}}[(0$, $\mathrm{x})+(0, y)] \geq \mathrm{T}\left(\mu_{\mathrm{A} \times \mathrm{B}}(0, x), \mu_{\mathrm{A} \times \mathrm{B}}(0, y)\right)=\mathrm{T}\left(\min \left\{\mu_{\mathrm{A}}(0)\right.\right.$, $\left.\mu_{\mathrm{B}}(\mathrm{x})\right\}, \min \left\{\mu_{\mathrm{A}}(0), \mu_{\mathrm{B}}(\mathrm{y})\right)=\mathrm{T}\left(\mu_{\mathrm{B}}(\mathrm{x}), \mu_{\mathrm{B}}(\mathrm{y})\right)$. Therefore, $\mu_{B}(x+y) \geq S\left(\mu_{B}(x), \mu_{B}(y)\right)$, for all x and y in R_{2}. Also, $\mu_{\mathrm{B}}(\mathrm{xy})=\min \left\{\mu_{\mathrm{B}}(\mathrm{xy}), \mu_{\mathrm{A}}(00)\right\}=\min \left\{\mu_{\mathrm{A}}(00), \mu_{\mathrm{B}}(\mathrm{xy})\right\}=$ $\left.\mu_{A \times B} B(00),(x y)\right)=\mu_{A \times B}[(0, x)(0, y)] \geq T\left(\mu_{A \times B}(0, x)\right.$, $\left.\mu_{A \times B}(0, y)\right)=T\left(\min \left\{\mu_{A}(0), \mu_{B}(x)\right\}, \min \left\{\mu_{A}(0), \mu_{B}(y)\right\}\right)$ $=T\left(\mu_{\mathrm{B}}(\mathrm{x}), \mu_{\mathrm{B}}(\mathrm{y})\right)$. Therefore, $\mu_{\mathrm{B}}(\mathrm{xy}) \geq \mathrm{T}\left(\mu_{\mathrm{B}}(\mathrm{x}), \mu_{\mathrm{B}}(\mathrm{y})\right)$, for all x and y in R_{2}. And, $v_{B}(x+y)=\max \left\{v_{B}(x+y)\right.$, $\left.v_{A}(0+0)\right\}=\max \left\{v_{A}(0+0), v_{B}(x+y)\right\}=v_{A \times B}((0+0),(x+y))$ $=v_{A \times B}[(0, x)+(0, y)] \leq S\left(v_{A \times B}(0, x), v_{A \times B}(0, y)\right)=S($ $\left.\max \left\{v_{A}(0), v_{B}(x)\right\}, \max \left\{v_{A}(0), v_{B}(y)\right\}\right)=S\left(v_{B}(x), v_{B}(y)\right.$). Therefore, $v_{B}(x+y) \leq S\left(v_{B}(x), v_{B}(y)\right)$, for all x and y in R_{2}. Also, $v_{B}(x y)=\max \left\{v_{B}(x y), v_{A}(00)\right\}=\max \left\{v_{A}(00)\right.$, $\left.v_{B}(x y)\right\}=v_{A \times B}((00),(x y))=v_{A \times B}[(0, x)(0, y)] \leq S\left(v_{A \times B}(0\right.$, $\left.x), v_{A \times B}(0, y)\right)=S\left(\max \left\{v_{A}(0), v_{B}(x)\right\}, \max \left\{v_{A}(0)\right.\right.$, $\left.\left.v_{B}(y)\right\}\right)=S\left(v_{B}(x), v_{B}(y)\right)$. Therefore, $v_{B}(x y) \leq S\left(v_{B}(x)\right.$, $v_{B}(y)$), for all x and y in R_{2}. Hence B is an (T, S)intuitionistic fuzzy subhemiring of a hemiring R_{2}. Thus (ii) is proved. (iii) is clear.

3.7 Theorem

Let A be an intuitionistic fuzzy subset of a hemiring R and V be the strongest intuitionistic fuzzy relation of R. Then A is an (T, S)-intuitionistic fuzzy subhemiring
of R if and only if V is an (T, S)-intuitionistic fuzzy subhemiring of $R \times R$.

Proof: Suppose that A is an (T, S)-intuitionistic fuzzy subhemiring of a hemiring R. Then for any $x=\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$ are in $R \times R$. We have, $\mu_{v}(x+y)=\mu_{\mathrm{v}}\left[\left(\mathrm{x}_{1}\right.\right.$, $\left.\left.x_{2}\right)+\left(y_{1}, y_{2}\right)\right]=\mu_{v}\left(x_{1}+y_{1}, x_{2}+y_{2}\right)=\min \left\{\mu_{\mathrm{A}}\left(\mathrm{x}_{1}+\mathrm{y}_{1}\right)\right.$, $\left.\mu_{A}\left(\mathrm{x}_{2}+\mathrm{y}_{2}\right)\right\} \geq \min \left\{\mathrm{T}\left(\mu_{\mathrm{A}}\left(\mathrm{x}_{1}\right), \mu_{\mathrm{A}}\left(\mathrm{y}_{1}\right)\right), \mathrm{T}\left(\mu_{\mathrm{A}}\left(\mathrm{x}_{2}\right), \mu_{\mathrm{A}}\left(\mathrm{y}_{2}\right)\right)\right\} \geq$ $\mathrm{T}\left(\min \left\{\mu_{\mathrm{A}}\left(\mathrm{x}_{1}\right), \mu_{\mathrm{A}}\left(\mathrm{x}_{2}\right)\right\}, \min \left\{\mu_{\mathrm{A}}\left(\mathrm{y}_{1}\right), \mu_{\mathrm{A}}\left(\mathrm{y}_{2}\right)\right\}\right)=\mathrm{T}\left(\mu_{\mathrm{v}}\left(\mathrm{x}_{1}\right.\right.$, $\left.\left.\mathrm{x}_{2}\right), \mu_{\mathrm{v}}\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\right)=\mathrm{T}\left(\mu_{\mathrm{v}}(\mathrm{x}), \mu_{\mathrm{v}}(\mathrm{y})\right)$. Therefore, $\mu_{\mathrm{v}}(\mathrm{x}+\mathrm{y}) \geq$ $\mathrm{T}\left(\mu_{\mathrm{v}}(\mathrm{x}), \mu_{\mathrm{v}}(\mathrm{y})\right)$, for all x and y in $\mathrm{R} \times \mathrm{R}$. And, $\mu_{\mathrm{v}}(\mathrm{xy})=\mu_{\mathrm{v}}\left[\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\right]=\mu_{\mathrm{v}}\left(\mathrm{x}_{1} \mathrm{y}_{1}, \mathrm{x}_{2} \mathrm{y}_{2}\right)=$ $\min \left\{\mu_{A}\left(\mathrm{x}_{1} \mathrm{y}_{1}\right), \mu_{A}\left(\mathrm{x}_{2} \mathrm{y}_{2}\right)\right\} \quad \geq \min \left\{\mathrm{T}\left(\mu_{\mathrm{A}}\left(\mathrm{x}_{1}\right)\right.\right.$, $\left.\left.\mu_{A}\left(y_{1}\right)\right), T\left(\mu_{A}\left(x_{2}\right), \mu_{A}\left(y_{2}\right)\right)\right\} \geq T\left(\min \left\{\mu_{A}\left(x_{1}\right), \mu_{A}\left(x_{2}\right)\right\}\right.$, $\left.\min \left\{\mu_{A}\left(y_{1}\right), \mu_{A}\left(y_{2}\right)\right\}\right)=T\left(\mu_{v}\left(x_{1}, x_{2}\right), \mu_{v}\left(y_{1}, y_{2}\right)\right)=$ $T\left(\mu_{v}(x), \mu_{v}(y)\right)$. Therefore, $\mu_{v}(x y) \geq T\left(\mu_{v}(x), \mu_{v}(y)\right)$, for all x and y in $R \times R$. We have, $v_{v}(x+y)=v_{v}\left[\left(x_{1}, x_{2}\right)+\left(y_{1}\right.\right.$, $\left.\left.y_{2}\right)\right]=v_{v}\left(x_{1}+y_{1}, x_{2}+y_{2}\right)=\max \left\{v_{A}\left(x_{1}+y_{1}\right), v_{A}\left(x_{2}+y_{2}\right)\right\} \leq$ $\max \left\{S\left(v_{A}\left(x_{1}\right), v_{A}\left(y_{1}\right)\right), S\left(v_{A}\left(x_{2}\right), v_{A}\left(y_{2}\right)\right)\right\} \leq S(\max$ $\left.\left\{v_{A}\left(x_{1}\right), v_{A}\left(x_{2}\right)\right\}, \max \left\{v_{A}\left(y_{1}\right), v_{A}\left(y_{2}\right)\right\}\right)=S\left(v_{v}\left(x_{1}, x_{2}\right)\right.$, $\left.v_{v}\left(y_{1}, y_{2}\right)\right)=S\left(v_{v}(x), v_{v}(y)\right)$. Therefore, $v_{v}(x+y) \leq S\left(v_{v}\right.$ $\left.(x), v_{v}(y)\right)$, for all x and y in $R \times R$. And, $v_{v}(x y)=v_{v}\left[\left(x_{1}\right.\right.$, $\left.\left.\mathrm{x}_{2}\right)\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\right]=v_{\mathrm{V}}\left(\mathrm{x}_{1} \mathrm{y}_{1}, \mathrm{x}_{2} \mathrm{y}_{2}\right)=\max \left\{v_{\mathrm{A}}\left(\mathrm{x}_{1} \mathrm{y}_{1}\right), v_{\mathrm{A}}\left(\mathrm{x}_{2} \mathrm{y}_{2}\right)\right.$ $\} \leq \max \left\{S\left(v_{A}\left(x_{1}\right), v_{A}\left(y_{1}\right)\right), S\left(v_{A}\left(x_{2}\right), v_{A}\left(y_{2}\right)\right)\right\} \leq S(\max \{$ $\left.\left.v_{A}\left(x_{1}\right), v_{A}\left(x_{2}\right)\right\}, \max \left\{v_{A}\left(y_{1}\right), v_{A}\left(y_{2}\right)\right\}\right)=S\left(v_{v}\left(x_{1}, x_{2}\right)\right.$, $\left.v_{v}\left(y_{1}, y_{2}\right)\right)=S\left(v_{v}(x), v_{v}(y)\right)$. Therefore, $v_{v}(x y) \leq$ $S\left(v_{v}(x), v_{v}(y)\right)$, for all x and y in $R \times R$. This proves that V is an (T, S)-intuitionistic fuzzy subhemiring of $R \times R$. Conversely assume that V is an (T, S)-intuitionistic fuzzy subhemiring of $R \times R$, then for any $x=\left(x_{1}, x_{2}\right)$ and $\mathrm{y}=\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)$ are in $\mathrm{R} \times \mathrm{R}$, we have $\min \left\{\mu_{\mathrm{A}}\left(\mathrm{x}_{1}+\mathrm{y}_{1}\right), \mu_{\mathrm{A}}\left(\mathrm{x}_{2}+\right.\right.$ $\left.\left.\mathrm{y}_{2}\right)\right\}=\mu_{\mathrm{v}}\left(\mathrm{x}_{1}+\mathrm{y}_{1}, \mathrm{x}_{2}+\mathrm{y}_{2}\right)=\mu_{\mathrm{v}}\left[\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)+\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\right]=\mu_{\mathrm{v}}$ $(\mathrm{x}+\mathrm{y}) \geq \mathrm{T}\left(\mu_{\mathrm{v}}(\mathrm{x}), \mu_{\mathrm{v}}(\mathrm{y})\right)=\mathrm{T}\left(\mu_{\mathrm{v}}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right), \mu_{\mathrm{v}}\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\right)=\mathrm{T}($ $\min \left\{\mu_{A}\left(x_{1}\right), \mu_{A}\left(x_{2}\right)\right\}, \min \left\{\mu_{A}\left(y_{1}\right), \mu_{A}\left(y_{2}\right)\right\}$. If $x_{2}=0, y_{2}=0$,
we get, $\mu_{A}\left(x_{1}+y_{1}\right) \geq T\left(\mu_{A}\left(x_{1}\right), \mu_{A}\left(y_{1}\right)\right)$, for all x_{1} and y_{1} in R. And, $\min \left\{\mu_{A}\left(x_{1} y_{1}\right), \mu_{A}\left(x_{2} y_{2}\right)\right\}=\mu_{V}\left(x_{1} y_{1}, x_{2} y_{2}\right)=$ $\mu_{\mathrm{v}}\left[\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\right]=\mu_{\mathrm{v}}(\mathrm{xy}) \geq \mathrm{T}\left(\mu_{\mathrm{v}}(\mathrm{x}), \mu_{\mathrm{v}}(\mathrm{y})\right)=\mathrm{T}\left(\mu_{\mathrm{v}}\left(\mathrm{x}_{1}\right.\right.$, $\left.\left.x_{2}\right), \mu_{v}\left(y_{1}, y_{2}\right)\right)=T\left(\min \left\{\mu_{A}\left(x_{1}\right), \mu_{A}\left(x_{2}\right)\right\}, \min \left\{\mu_{A}\left(y_{1}\right)\right.\right.$, $\left.\left.\mu_{A}\left(y_{2}\right)\right\}\right)$. If $x_{2}=0, y_{2}=0$, we get, $\mu_{A}\left(x_{1} y_{1}\right) \geq T\left(\mu_{A}\left(x_{1}\right)\right.$, $\left.\mu_{A}\left(y_{1}\right)\right)$, for all x_{1} and y_{1} in R.

We have, $\max \left\{v_{A}\left(x_{1}+y_{1}\right), v_{A}\left(x_{2}+y_{2}\right)\right\}=v_{V}\left(x_{1}+y_{1}, x_{2}+\right.$ $\left.y_{2}\right)=v_{v}\left[\left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right)\right]=v_{v}(x+y) \leq S\left(v_{v}(x), v_{v}(y)\right)=$ $S\left(v_{v}\left(x_{1}, x_{2}\right), v_{v}\left(y_{1}, y_{2}\right)\right)=S\left(\max \left\{v_{A}\left(x_{1}\right), v_{A}\left(x_{2}\right)\right\}, \max \right.$ $\left.\left\{v_{A}\left(y_{1}\right), v_{A}\left(y_{2}\right)\right\}\right)$. If $x_{2}=0, y_{2}=0$, we get, $v_{A}\left(x_{1}+y_{1}\right) \leq$ $S\left(v_{A}\left(x_{1}\right), v_{A}\left(y_{1}\right)\right)$, for all x_{1} and y_{1} in R.

And, $\max \left\{v_{A}\left(x_{1} y_{1}\right), v_{A}\left(x_{2} y_{2}\right)\right\}=v_{v}\left(x_{1} y_{1}, x_{2} y_{2}\right)=v_{v}\left[\left(x_{1}\right.\right.$, $\left.\left.x_{2}\right)\left(y_{1}, y_{2}\right)\right]=v_{v}(x y) \leq S\left(v_{v}(x), v_{v}(y)\right)=S\left(v_{v}\left(x_{1}, x_{2}\right)\right.$, $\left.v_{V}\left(y_{1}, y_{2}\right)\right)=S\left(\max \left\{v_{A}\left(x_{1}\right), v_{A}\left(x_{2}\right)\right\}, \max \left\{v_{A}\left(y_{1}\right), v_{A}\left(y_{2}\right)\right.\right.$ \}). If $x_{2}=0, y_{2}=0$, we get $v_{A}\left(x_{1} y_{1}\right) \leq S\left(v_{A}\left(x_{1}\right), v_{A}\left(y_{1}\right)\right)$, for all x_{1} and y_{1} in R.

Therefore A is an (T, S)-intuitionistic fuzzy subhemiring of R.

3.8 Theorem

If A is an (T, S)-intuitionistic fuzzy subhemiring of a hemiring

$$
\left(\mathrm{R},+, . \text {), then } H=\left\{x / x \in R: \mu_{A}(x)=\right.\right.
$$ $\left.1, v_{A}(x)=0\right\}$ is either empty or is a subhemiring of R.

Proof: It is trivial.

3.9 Theorem

If A be an (T, S)-intuitionistic fuzzy subhemiring of a hemiring $\quad(R,+,$.$) , then (i) if \mu_{A}(x+y)=0$, then either $\mu_{A}(x)=0$ or $\mu_{A}(y)=0$,for all x and y in R.
(ii) if $\mu_{A}(x y)=0$, then either $\mu_{A}(x)=0$ or $\mu_{A}(y)=0$,for all x and y in R.
(iii) if $v_{A}(x+y)=1$, then either $v_{A}(x)=1$ or $v_{A}(y)=1$,for all x and y in R.
(iv) if $v_{A}(x y)=1$, then either $v_{A}(x)=1$ or $v_{A}(y)=1$,for all x and y in R.

Proof: It is trivial.

3.10 Theorem

If A is an (T, S)-intuitionistic fuzzy subhemiring of a hemiring
$(R,+,$.$) , then H=\left\{\left\langle x, \mu_{A}(x)\right\rangle: 0<\right.$ $\mu_{\mathrm{A}}(\mathrm{x}) \leq 1$ and $\left.v_{\mathrm{A}}(\mathrm{x})=0\right\}$ is either empty or a $\quad \mathrm{T}$ fuzzy subhemiring of R.

Proof: It is trivial.

3.11 Theorem

If A is an (T, S)-intuitionistic fuzzy subhemiring of a hemiring $\quad(\mathrm{R},+,$.$) then \mathrm{H}=\left\{\left\langle\mathrm{x}, \mu_{\mathrm{A}}(\mathrm{x})\right\rangle: 0<\right.$ $\left.\mu_{\mathrm{A}}(\mathrm{x}) \leq 1\right\}$ is either empty or a T-fuzzy subhemiring of R.

Proof: It is trivial.

3.12 Theorem

If A is an (T, S)-intuitionistic fuzzy subhemiring of a hemiring $(R,+,$.$) , then H=\left\{\left\langle x, v_{A}(x)\right\rangle: 0<\right.$ $\left.v_{A}(x) \leq 1\right\}$ is either empty or an anti S-fuzzy subhemiring of R .

Proof: It is trivial.

3.13 Theorem

If A is an (T, S)-intuitionistic fuzzy subhemiring of a hemiring $(R,+,$.$) , then \square A$ is an (T, S)intuitionistic fuzzy subhemiring of R.

Proof: Let A be an (T, S)-intuitionistic fuzzy subhemiring of a hemiring R. Consider $A=\left\{\left\langle x, \mu_{A}(x)\right.\right.$, $\left.\left.v_{A}(x)\right\rangle\right\}$, for all x in R, we take $\square A=B=\left\{\left\langle x, \mu_{B}(x), v_{B}(x)\right\rangle\right.$ $\}$, where $\mu_{B}(x)=\mu_{A}(x), \nu_{B}(x)=1-\mu_{A}(x)$. Clearly, $\mu_{B}(x+y) \geq T\left(\mu_{B}(x), \mu_{B}(y)\right)$, for all x and y in R and $\mu_{B}(x y) \geq T\left(\mu_{B}(x), \mu_{B}(y)\right)$, for all x and y in R. Since A is an
(T, S)-intuitionistic fuzzy subhemiring of R, we have $\mu_{A}(x+y) \geq T\left(\mu_{A}(x), \mu_{A}(y)\right)$, for all x and y in R, which implies that $1-v_{B}(x+y) \geq T\left(\left(1-v_{B}(x)\right)\right.$, ($\left.1-v_{B}(y)\right)$), which implies that $v_{B}(x+y) \leq 1-T((1-$ $\left.\left.v_{B}(x)\right),\left(1-v_{B}(y)\right)\right) \leq S\left(v_{B}(x), v_{B}(y)\right)$. Therefore, $v_{B}(x+y) \leq S\left(v_{B}(x), v_{B}(y)\right)$, for all x and y in R. And $\mu_{A}(x y) \geq T\left(\mu_{A}(x), \mu_{A}(y)\right)$, for all x and y in R, which implies that $1-v_{B}(x y) \geq T\left(\left(1-v_{B}(x)\right),\left(1-v_{B}(y)\right)\right)$
which implies that $v_{B}(x y) \leq 1-T\left(\left(1-v_{B}(x)\right)\right.$, (1$\left.\left.v_{B}(y)\right)\right) \leq S\left(v_{B}(x), v_{B}(y)\right)$. Therefore, $v_{B}(x y) \leq S\left(v_{B}(x)\right.$, $v_{B}(y)$), for all x and y in R. Hence $B=\square A$ is an (T, S)-intuitionistic fuzzy subhemiring of a hemiring R.

3.14 Theorem

If A is an (T, S)-intuitionistic fuzzy subhemiring of a hemiring $\quad(R,+,$.$) , then \forall A$ is an (T, S)intuitionistic fuzzy subhemiring of R.

Proof: Let A be an (T, S)-intuitionistic fuzzy subhemiring of a hemiring R.That is $A=\left\{\left\langle x, \mu_{A}(x)\right.\right.$, $\left.\left.v_{A}(x)\right\rangle\right\}$, for all x in R. Let $\diamond A=B=\left\{\left\langle x, \mu_{B}(x), v_{B}(x)\right\rangle\right\}$, where $\mu_{B}(x)=1-v_{A}(x), v_{B}(x)=v_{A}(x)$. Clearly, $v_{B}(x+y) \leq$ $S\left(v_{B}(x), v_{B}(y)\right)$, for all x and y in R and $v_{B}(x y) \leq S\left(v_{B}(x)\right.$, $v_{B}(y)$), for all x and y in R. Since A is an (T, S)intuitionistic fuzzy subhemiring of R, we have $v_{A}(x+y)$ $\leq S\left(v_{A}(x), v_{A}(y)\right)$, for all x and y in R, which implies that $1-\mu_{B}(x+y) \leq S\left(\left(1-\mu_{B}(x)\right),\left(1-\mu_{B}(y)\right)\right)$ which implies that $\mu_{B}(x+y) \geq 1-S\left(\left(1-\mu_{B}(x)\right),\left(1-\mu_{B}(y)\right)\right) \geq$
$\mathrm{T}\left(\mu_{\mathrm{B}}(\mathrm{x}), \mu_{\mathrm{B}}(\mathrm{y})\right)$. Therefore, $\mu_{\mathrm{B}}(\mathrm{x}+\mathrm{y}) \geq \mathrm{T}\left(\mu_{\mathrm{B}}(\mathrm{x}), \mu_{\mathrm{B}}(\mathrm{y})\right)$, for all x and y in R. And $v_{A}(x y) \leq S\left(v_{A}(x), v_{A}(y)\right)$, for all x and y in R, which implies that $1-\mu_{B}(x y) \leq S\left(\left(1-\mu_{B}(x)\right)\right.$, $\left(1-\mu_{B}(y)\right)$), which implies that $\mu_{B}(x y) \geq 1-S(1-$ $\left.\left.\mu_{B}(x)\right),\left(1-\mu_{B}(y)\right)\right) \geq T\left(\mu_{B}(x), \mu_{B}(y)\right)$. Therefore, $\mu_{B}(x y) \geq$ $T\left(\mu_{B}(x), \mu_{B}(y)\right)$, for all x and y in R. Hence $B=\diamond A$ is an (T, S)-intuitionistic fuzzy subhemiring of a hemiring R.

3.15 Theorem

Let ($\mathrm{R}, \mathrm{+}$, .) be a hemiring and A be a non empty subset of R. Then A is a subhemiring of R if and only if $B=\left\langle\chi_{A}, \overline{\chi_{A}}\right\rangle$ is an (T, S)-intuitionistic fuzzy subhemiring of R , where χ_{A} is the characteristic function.

Proof: It is trivial.

3.16 Theorem

Let A be an (T, S)-intuitionistic fuzzy subhemiring of a hemiring H and f is an isomorphism from a hemiring R onto H. Then A॰f is an
(T, S)intuitionistic fuzzy subhemiring of R .

Proof: Let x and y in R and A be an (T, S)-intuitionistic fuzzy subhemiring of a hemiring H. Then we have, $\left(\mu_{A} \circ f\right)(x+y)=\mu_{A}(f(x+y))=\mu_{A}(f(x)+f(y)) \geq T\left(\mu_{A}(f(x))\right.$, $\left.\mu_{A}(f(y))\right)=T\left(\left(\mu_{A} \circ f\right)(x),\left(\mu_{A} \circ f\right)(y)\right)$, which implies that $\left(\mu_{A} \circ f\right)(x+y) \geq T\left(\left(\mu_{A} \circ f\right)(x),\left(\mu_{A} \circ f\right)(y)\right)$. And, $\left(\mu_{A} \circ f\right)(x y)=$ $\mu_{A}(f(x y))=\mu_{A}(f(x) f(y)) \geq T\left(\mu_{A}(f(x)), \quad \mu_{A}(f(y))\right)=$ $\mathrm{T}\left(\left(\mu_{A} \circ f\right)(x),\left(\mu_{A} \circ f\right)(y)\right)$, which implies that $\left(\mu_{A} \circ f\right)(x y) \geq$ $T\left(\left(\mu_{A} \circ f\right)(x),\left(\mu_{A} \circ f\right)(y)\right)$. Then we have, $\left(v_{A} \circ f\right)(x+y)=$ $v_{A}(f(x+y))=v_{A}(f(x)+f(y)) \leq S\left(v_{A}(f(x)), v_{A}(f(y))\right)$ $=S\left(\left(v_{A} \circ f\right)(x),\left(v_{A} \circ f\right)(y)\right)$, which implies that $\left(v_{A} \circ f\right)(x+y)$
$\leq S\left(\left(v_{A} \circ f\right)(x),\left(v_{A} \circ f\right)(y)\right)$. And $\left(v_{A} \circ f\right)(x y)=v_{A}(f(x y))=$
$v_{A}(f(x) f(y)) \leq S\left(v_{A}(f(x)), v_{A}(f(y))\right)=S\left(\left(v_{A} \circ f\right)(x)\right.$, $\left.\left(v_{A} \circ f\right)(y)\right)$, which implies that $\left(v_{A} \circ f\right)(x y) \leq S\left(\left(v_{A} \circ f\right)(x)\right.$, $\left(v_{A} \circ f\right)(y)$). Therefore ($A \circ f$) is an (T, S)-intuitionistic fuzzy subhemiring of a hemiring R.

3.17 Theorem

Let A be an (T, S)-intuitionistic fuzzy subhemiring of a hemiring H and f is an anti-isomorphism from a hemiring R onto H . Then A 。f is an
(T, S)-intuitionistic fuzzy subhemiring of R.

Proof: Let x and y in R and A be an (T, S)-intuitionistic fuzzy subhemiring of a hemiring H. Then we have, $\left(\mu_{A} \circ f\right)(x+y)=\mu_{A}(f(x+y))=\mu_{A}(f(y)+f(x)) \geq T\left(\mu_{A}(f(x))\right.$, $\left.\mu_{A}(f(y))\right)=T\left(\left(\mu_{A} \circ f\right)(x),\left(\mu_{A} \circ f\right)(y)\right)$, which implies that $\left.\left(\mu_{A} \circ f\right)(x+y) \geq T\left(\mu_{A} \circ f\right)(x),\left(\mu_{A} \circ f\right)(y)\right)$. And, $\left(\mu_{A} \circ f\right)(x y)=$ $\mu_{A}(f(x y))=\mu_{A}(f(y) f(x)) \geq T\left(\mu_{A}(f(x)), \mu_{A}(f(y))\right)=$ $T\left(\left(\mu_{A} \circ f\right)(x),\left(\mu_{A} \circ f\right)(y)\right)$, which implies that $\left(\mu_{A} \circ f\right)(x y) \geq$ $T\left(\left(\mu_{A} \circ f\right)(x),\left(\mu_{A} \circ f\right)(y)\right)$. Then we have, $\left(v_{A} \circ f\right)(x+y)=$ $v_{A}(f(x+y))=v_{A}(f(y)+f(x)) \leq S\left(v_{A}(f(x)), v_{A}(f(y))\right)=$ $S\left(\left(v_{A} \circ f\right)(x),\left(v_{A} \circ f\right)(y)\right)$, which implies that $\left(v_{A} \circ f\right)(x+y) \leq$ $S\left(\left(v_{A} \circ f\right)(x),\left(v_{A} \circ f\right)(y)\right)$.

And, $\left(v_{A} \circ f\right)(x y)=v_{A}(f(x y))=v_{A}(f(y) f(x)) \leq S\left(v_{A}(f(x))\right.$, $\left.v_{A}(f(y))\right)=S\left(\left(v_{A} \circ f\right)(x),\left(v_{A} \circ f\right)(y)\right)$, which implies that $\left(v_{A} \circ f\right)(x y) \leq S\left(\left(v_{A} \circ f\right)(x),\left(v_{A} \circ f\right)(y)\right)$. Therefore $A \circ f$ is an (T, S)-intuitionistic fuzzy subhemiring of the hemiring R.

3.18 Theorem

Let A be an (T, S)-intuitionistic fuzzy subhemiring of a hemiring ($\mathrm{R},+,$.), then the pseudo (T, S)intuitionistic fuzzy coset $(\mathrm{aA})^{\mathrm{p}}$ is an
(T, S)-intuitionistic fuzzy subhemiring of a hemiring R , for every a in R .

Proof: Let A be an (T, S)-intuitionistic fuzzy subhemiring of a hemiring R.

For every x and y in R, we have, $\left(\left(a \mu_{A}\right)^{p}\right)(x+y)=$ $\mathrm{p}(\mathrm{a}) \mu_{\mathrm{A}}(\mathrm{x}+\mathrm{y}) \geq \mathrm{p}(\mathrm{a}) \mathrm{T}\left(\left(\mu_{\mathrm{A}}(\mathrm{x}), \mu_{\mathrm{A}}(\mathrm{y})\right)=\mathrm{T}\left(\mathrm{p}(\mathrm{a}) \mu_{\mathrm{A}}(\mathrm{x})\right.\right.$, $\left.p(a) \mu_{A}(y)\right)=T\left(\left(\left(a \mu_{A}\right)^{p}\right)(x),\left(\left(a \mu_{A}\right)^{p}\right)(y)\right)$. Therefore, $\left(\left(a \mu_{A}\right)^{p}\right)(x+y) \geq T\left(\left(\left(a \mu_{A}\right)^{p}\right)(x),\left(\left(a \mu_{A}\right)^{p}\right)(y)\right)$. Now, $($ $\left.\left(a \mu_{A}\right)^{p}\right)(x y)=p(a) \mu_{A}(x y) \geq p(a) T\left(\mu_{A}(x), \mu_{A}(y)\right)=T($ $\left.p(a) \mu_{A}(x), p(a) \mu_{A}(y)\right)=T\left(\left(\left(a \mu_{A}\right)^{p}\right)(x),\left(\left(a \mu_{A}\right)^{p}\right)(y)\right)$. Therefore, $\left(\left(a \mu_{A}\right)^{p}\right)(x y) \geq T\left(\left(\left(a \mu_{A}\right)^{p}\right)(x),\left(\left(a \mu_{A}\right)^{p}\right)(y)\right.$). For every x and y in R, we have, $\left(\left(a v_{A}\right)^{p}\right)(x+y)=$ $p(a) v_{A}(x+y) \leq p(a) S\left(\left(v_{A}(x), v_{A}(y)\right)=S\left(p(a) v_{A}(x)\right.\right.$, $\left.p(a) v_{A}(y)\right)=S\left(\left(\left(a v_{A}\right)^{p}\right)(x),\left(\left(a v_{A}\right)^{p}\right)(y)\right)$. Therefore, $\left(\left({a v_{A}}^{p}\right)(x+y) \leq \quad S\left(\left({a v_{A}}^{p}\right)(x)\right.\right.$, $\left.\left(\left(a v_{A}\right)^{p}\right)(y)\right)$. Now, $\left(\left(a v_{A}\right)^{p}\right)(x y)=p(a) v_{A}(x y) \leq p(a)$ $S\left(v_{A}(x), v_{A}(y)\right)=S\left(p(a) v_{A}(x), p(a) v_{A}(y)\right)=S(($ $\left.\left(a v_{A}\right)^{p}\right)(x),\left(\left(a v_{A}\right)^{p}\right)(y)$). Therefore, $\quad\left(\left(a v_{A}\right)^{p}\right)(x y)$ $\leq S\left(\left(\left(a v_{A}\right)^{p}\right)(x),\left(\left(a v_{A}\right)^{p}\right)(y)\right)$. Hence $(a A)^{p}$ is an $(T$, S)-intuitionistic fuzzy subhemiring of a hemiring R.

3.19 Theorem

Let ($R,+,$.) and ($\left.R^{\prime},+,.\right)$ be any two hemirings. The homomorphic image of an (T, S)-intuitionistic fuzzy subhemiring of R is an (T, S)-intuitionistic fuzzy subhemiring of R^{1}.

Proof: Let ($\mathrm{R},+$, .) and ($\mathrm{R}^{\prime},+$,) be any two hemirings. Let $f: R \rightarrow R^{\prime}$ be a homomorphism. Then, f $(x+y)=f(x)+f(y)$ and $f(x y)=f(x) f(y)$, for all x and y in R. Let $V=f(A)$, where A is an (T, S)-intuitionistic fuzzy subhemiring of R. We have to prove that V is an (T, S)-
intuitionistic fuzzy subhemiring of R^{L}. Now, for $\mathrm{f}(\mathrm{x})$, $f(y)$ in $R^{\prime}, \mu_{v}(f(x)+f(y))=\mu_{v}(f(x+y)) \geq \mu_{A}(x+y) \geq T$ $\left(\mu_{\mathrm{A}}(\mathrm{x}), \mu_{\mathrm{A}}(\mathrm{y})\right)$ which implies that $\mu_{\mathrm{v}}(\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{y})) \geq \mathrm{T}$ $\left(\mu_{\mathrm{v}}(\mathrm{f}(\mathrm{x})), \mu_{\mathrm{v}}(\mathrm{f}(\mathrm{y}) \mathrm{)})\right.$. Again, $\mu_{\mathrm{v}}\left(\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y}) \mathrm{)}=\mu_{\mathrm{v}}(\mathrm{f}(\mathrm{xy}))\right.$ $\geq \mu_{\mathrm{A}}(\mathrm{xy}) \quad \geq \mathrm{T}\left(\mu_{\mathrm{A}}(\mathrm{x}), \mu_{\mathrm{A}}(\mathrm{y})\right.$), which implies that $\mu_{\mathrm{v}}(\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y})) \geq \mathrm{T}\left(\mu_{\mathrm{v}}(\mathrm{f}(\mathrm{x})), \mu_{\mathrm{v}}(\mathrm{f}(\mathrm{y}))\right)$.

Now,for $f(x), f(y)$ in $R^{1}, v_{v}(f(x)+f(y))=v_{v}(f(x+y)) \leq$ $v_{A}(x+y) \leq S\left(v_{A}(x), v_{A}(y)\right), v_{v}(f(x)+f(y)) \leq S\left(v_{v}(f(x)\right.$), $v_{v}(f(y))$.

Again, $v_{v}(f(x) f(y))=v_{v}(f(x y)) \leq v_{A}(x y) \leq S\left(v_{A}(x)\right.$, $\left.v_{A}(y)\right)$, which implies that $v_{v}(f(x) f(y)) \leq S\left(v_{v}(f(x))\right.$, $v_{v}(f(y))$). Hence V is an (T, S)-intuitionistic fuzzy subhemiring of R^{1}.

3.20 Theorem

Let ($R,+,$.) and ($\left.R^{\prime},+,.\right)$ be any two hemirings. The homomorphic preimage of an (T, S)-intuitionistic fuzzy subhemiring of R^{1} is a (T, S)intuitionistic fuzzy subhemiring of R.

Proof: Let $V=f(A)$, where V is an (T, S)-intuitionistic fuzzy subhemiring of R^{\prime}. We have to prove that A is an (T, S)-intuitionistic fuzzy subhemiring of R. Let x and y in R. Then, $\mu_{A}(x+y)=\mu_{v}(f(x+y))=\mu_{v}(f(x)+f(y)) \geq T\left(\mu_{v}(f(x)\right.$), $\left.\mu_{\mathrm{v}}(\mathrm{f}(\mathrm{y}))\right)=\mathrm{T}\left(\mu_{\mathrm{A}}(\mathrm{x}), \quad \mu_{\mathrm{A}}(\mathrm{y})\right)$, since $\mu_{\mathrm{v}}(\mathrm{f}(\mathrm{x}))=\mu_{\mathrm{A}}(\mathrm{x})$, which implies that $\mu_{\mathrm{A}}(\mathrm{x}+\mathrm{y}) \geq \mathrm{T}\left(\mu_{\mathrm{A}}(\mathrm{x}), \mu_{\mathrm{A}}(\mathrm{y})\right)$. Again, $\mu_{\mathrm{A}}(\mathrm{xy})=\mu_{\mathrm{v}}(\mathrm{f}(\mathrm{xy}))=\mu_{\mathrm{v}}(\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y})) \geq \mathrm{T}\left(\mu_{\mathrm{v}}(\mathrm{f}(\mathrm{x})), \mu_{\mathrm{v}}(\mathrm{f}(\mathrm{y})\right.$) $)=T\left(\mu_{A}(x), \mu_{A}(y)\right)$, since $\mu_{v}(f(x))=\mu_{A}(x)$ which implies that $\mu_{A}(x y) \geq T\left(\mu_{A}(x), \mu_{A}(y)\right)$. Let x and y in R. Then, $v_{A}(x+y)=v_{v}(f(x+y))=v_{v}(f(x)+f(y)) \leq S\left(v_{v}(f(x))\right.$, $\left.v_{v}(f(y))\right)=S\left(v_{A}(x), v_{A}(y)\right)$, since $v_{v}(f(x))=v_{A}(x)$ which implies that $v_{A}(x+y) \leq S\left(v_{A}(x), v_{A}(y)\right)$. Again, $v_{A}(x y)=$ $v_{v}(f(x y))=v_{v}(f(x) f(y)) \leq S\left(v_{v}(f(x)), v_{v}(f(y))\right)=S\left(v_{A}(x)\right.$,
$\left.v_{\mathrm{A}}(\mathrm{y})\right)$, since $v_{\mathrm{v}}(\mathrm{f}(\mathrm{x}))=v_{\mathrm{A}}(\mathrm{x})$ which implies that $v_{\mathrm{A}}(\mathrm{xy}) \leq$ $S\left(v_{A}(x), v_{A}(y)\right)$. Hence A is an intuitionistic fuzzy subhemiring of R.

3.21 Theorem

Let ($R,+,$.) and ($R^{1},+,$.) be any two hemirings. The anti-homomorphic image of an (T, S)-intuitionistic fuzzy subhemiring of R is an (T, S)intuitionistic fuzzy subhemiring of R^{1}.

Proof: Let ($\mathrm{R}, \mathrm{+},$.) and ($\left.\mathrm{R}^{\prime},+,.\right)$ be any two hemirings. Let $f: R \rightarrow R^{\prime}$ be an anti-homomorphism. Then, $f(x+y)=f(y)+f(x)$ and $f(x y)=f(y) f(x)$, for all x and y in R. Let $V=f(A)$, where A is an (T, S)intuitionistic fuzzy subhemiring of R. We have to prove that V is an (T, S)-intuitionistic fuzzy subhemiring of R^{\prime}. Now, for $f(x), f(y)$ in R^{\prime}, $\mu_{v}(f(x)+f(y))=\mu_{v}(f(y+x)) \geq \mu_{A}(y+x) \geq T\left(\mu_{A}(y), \mu_{A}(x)\right)=$ $T\left(\mu_{A}(x), \mu_{A}(y)\right)$, which implies that $\mu_{v}(f(x)+f(y)) \geq$ $T\left(\mu_{v}(f(x)), \mu_{v}(f(y))\right)$. Again, $\mu_{v}(f(x) f(y))=\mu_{v}(f(y x)) \geq$ $\mu_{A}(y x) \geq \mathrm{T}\left(\mu_{\mathrm{A}}(\mathrm{y}), \mu_{\mathrm{A}}(\mathrm{x})\right)=\mathrm{T}\left(\mu_{\mathrm{A}}(\mathrm{x}), \mu_{\mathrm{A}}(\mathrm{y})\right)$, which implies that $\mu_{v}(f(x) f(y)) \geq T\left(\mu_{v}(f(x)), \mu_{v}(f(y))\right)$. Now for $\mathrm{f}(\mathrm{x})$, $\mathrm{f}(\mathrm{y})$ in $\mathrm{R}^{\prime}, v_{v}(\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{y}))=v_{\mathrm{v}}(\mathrm{f}(\mathrm{y}+\mathrm{x})) \leq v_{\mathrm{A}}(\mathrm{y}+\mathrm{x}) \leq \mathrm{S}($ $\left.v_{A}(y), v_{A}(x)\right)=S\left(v_{A}(x), v_{A}(y)\right)$, which implies that $v_{v}($ $f(x)+f(y)) \leq S\left(v_{v}(f(x)), v_{v}(f(y))\right)$.

Again, $v_{v}(f(x) f(y))=v_{v}(f(y x)) \leq v_{A}(y x) \leq S\left(v_{A}(y)\right.$, $\left.v_{A}(x)\right)=S\left(v_{A}(x), v_{A}(y)\right)$, which implies that $v_{v}(f(x) f(y)$ $) \leq S\left(v_{v}(f(x)), v_{v}(f(y))\right)$. Hence V is an (T, S)intuitionistic fuzzy subhemiring of R^{\prime}.

3.22 Theorem

Let ($\mathrm{R},+,$.) and ($\mathrm{R}^{1},+,$.) be any two hemirings. The anti-homomorphic preimage of an (T, S)-intuitionistic
fuzzy subhemiring of R^{1} is an (T, S)intuitionistic fuzzy subhemiring of R.

Proof: Let $V=f(A)$, where V is an (T, S)-intuitionistic fuzzy subhemiring of R^{\prime}. We have to prove that A is an (T, S)-intuitionistic fuzzy subhemiring of R. Let x and y in R. Then, $\mu_{\mathrm{A}}(\mathrm{x}+\mathrm{y})=\mu_{\mathrm{v}}(\mathrm{f}(\mathrm{x}+\mathrm{y}))=\mu_{\mathrm{v}}(\mathrm{f}(\mathrm{y})+\mathrm{f}(\mathrm{x})) \geq$ $T\left(\mu_{\mathrm{v}}(\mathrm{f}(\mathrm{y})), \mu_{\mathrm{v}}(\mathrm{f}(\mathrm{x}))\right)=\mathrm{T}\left(\mu_{\mathrm{v}}(\mathrm{f}(\mathrm{x})), \mu_{\mathrm{v}}(\mathrm{f}(\mathrm{y}))\right)=\mathrm{T}\left(\mu_{\mathrm{A}}(\mathrm{x})\right.$, $\left.\mu_{A}(y)\right)$, which implies that $\mu_{A}(x+y) \geq T\left(\mu_{A}(x), \mu_{A}(y)\right)$. Again, $\mu_{\mathrm{A}}(\mathrm{xy})=\mu_{\mathrm{v}}(\mathrm{f}(\mathrm{xy}))=\mu_{\mathrm{v}}(\mathrm{f}(\mathrm{y}) \mathrm{f}(\mathrm{x})) \geq \mathrm{T}\left(\mu_{\mathrm{v}}(\mathrm{f}(\mathrm{y}))\right.$, $\left.\mu_{\mathrm{v}}(\mathrm{f}(\mathrm{x}))\right)=\mathrm{T}\left(\mu_{\mathrm{v}}(\mathrm{f}(\mathrm{x})), \mu_{\mathrm{v}}(\mathrm{f}(\mathrm{y}))\right)=\mathrm{T}\left(\mu_{\mathrm{A}}(\mathrm{x}), \mu_{\mathrm{A}}(\mathrm{y})\right)$, since $\mu_{\mathrm{v}}(\mathrm{f}(\mathrm{x}))=\mu_{\mathrm{A}}(\mathrm{x})$ which implies that $\mu_{\mathrm{A}}(\mathrm{xy}) \geq$ $\mathrm{T}\left(\mu_{\mathrm{A}}(\mathrm{x}), \quad \mu_{\mathrm{A}}(\mathrm{y})\right)$. Then, $\quad v_{\mathrm{A}}(\mathrm{x}+\mathrm{y})=\quad v_{\mathrm{v}}(\mathrm{f}(\mathrm{x}+\mathrm{y}))=$ $v_{v}(f(y)+f(x)) \leq S\left(v_{v}(f(y)), v_{v}(f(x))\right)=S\left(v_{v}(f(x))\right.$, $\left.v_{v}(f(y))\right)=S\left(v_{A}(x), v_{A}(y)\right)$ which implies that $v_{A}(x+y) \leq$
$S\left(v_{A}(x), v_{A}(y)\right)$. Again, $v_{A}(x y)=v_{v}(f(x y))=v_{v}(f(y) f(x)) \leq$
$S\left(v_{v}(f(y)), v_{v}(f(x))\right)=S\left(v_{v}(f(x)), v_{v}(f(y))\right)=S\left(v_{A}(x)\right.$, $\left.v_{A}(y)\right)$, which implies that $v_{A}(x y) \leq S\left(v_{A}(x), v_{A}(y)\right)$. Hence A is an
(T, S)-intuitionistic fuzzy subhemiring of R.

REFERENCES

1. Akram . M and K.H.Dar , 2007. On

Anti Fuzzy Left h- ideals in Hemirings, International Mathematical Forum, 2(46): 2295-2304.
2. Anthony.J.M. and H Sherwood, 1979. Fuzzy groups Redefined, Journal of mathematical analysis and applications, 69:124-130.
3. Asok Kumer Ray, 1999. On product of fuzzy subgroups, fuzzy sets and sysrems, 105 : 181-183.
4. Atanassov.K.T.,1986. Intuitionistic fuzzy sets, fuzzy sets and systems, 20(1): 87-96.
5. Atanassov.K.T., 1999. Intuitionistic fuzzy sets theory and applications, Physica-Verlag, A Springer-Verlag company, Bulgaria.
6. Azriel Rosenfeld,1971. Fuzzy Groups, Journal of mathematical analysis and applications, 35 :512-517.
7. Banerjee.B and D.K.Basnet, 2003. Intuitionistic fuzzy subrings and ideals, J.Fuzzy Math.11(1): 139-155.
8. Chakrabarty, K., Biswas and R., Nanda, 1997 . A note on union and intersection of Intuitionistic fuzzy sets , Notes on Intuitionistic Fuzzy Sets, 3(4).
9. Choudhury.F.P, A.B.Chakraborty and S.S.Khare , 1988 . A note on fuzzy subgroups and fuzzy homomorphism, Journal of mathematical analysis and applications, 131 :537-553.
10. De, K., R.Biswas and A.R.Roy,1997. On intuitionistic fuzzy sets, Notes on Intuitionistic Fuzzy Sets, 3(4).
11. Hur.K, H.W Kang and H.K.Song, 2003. Intuitionistic fuzzy subgroups and subrings, Honam Math. J. 25 (1) : 1941.
12. Hur.K, S.Y Jang and H.W Kang, 2005. (T, S)-intuitionistic fuzzy ideals of a ring, J.Korea Soc. Math.Educ.Ser.B: pure Appl.Math. 12(3):193-209.
13. JIANMING ZHAN, 2005 .On Properties of Fuzzy Left h - Ideals in Hemiring With t -Norms, International Journal of Mathematical Sciences , 19:31273144.
14. Jun.Y.B, M.A Ozturk and C.H.Park, 2007. Intuitionistic nil radicals of (T, S)-intuitionistic fuzzy ideals and Euclidean (T, S)-intuitionistic fuzzy ideals in rings, Inform.Sci. 177 : 46624677.
15. Mustafa Akgul,1988. Some properties of fuzzy groups, Journal of mathematical analysis and applications, 133: 93-100.
16. Palaniappan. N \& K. Arjunan, 2008. The homomorphism, anti homomorphism of a fuzzy and an anti fuzzy ideals of a ring, Varahmihir Journal of Mathematical Sciences, 6(1): 181-006.
17. Palaniappan. N \& K. Arjunan, 2007. Operation on fuzzy and anti fuzzy ideals, Antartica J. Math ., 4(1): 5964.

International Research Journal of Engineering and Technology (IRJET)
e-ISSN: 2395-0056
Volume: 03 Issue: 02 | Feb-2016
www.irjet.net
p-ISSN: 2395-0072
18. Palaniappan. N \& K.Arjunan. 2007. Some properties of intuitionistic fuzzy subgroups , Acta Ciencia Indica , Vol.XXXIII (2) : 321-328.
19. Rajesh Kumar, 1991. Fuzzy irreducible ideals in rings, Fuzzy Sets and Systems, 42: 369-379
20. Umadevi. K,Elango. C,Thankavelu. P.2013.AntiS-fuzzy Subhemirings of a Hemiring,International Journal of Scientific Research,vol 2(8).301-302
21. Sivaramakrishna das.P, 1981. Fuzzy groups and level subgroups, Journal of Mathematical Analysis and Applications, 84 : 264-269.
22. Vasantha kandasamy.W.B, 2003. Smarandache fuzzy algebra, American research press, Rehoboth.
23. Zadeh .L.A, Fuzzy sets, 1965. Information and control, $8: 338-353$.

International Research Journal of Engineering and Technology (IRJET)
e-ISSN: 2395 -

