

NOTES ON (T, S)-INTUITIONISTIC FUZZY SUBHEMIRINGS OF A HEMIRING

K.Umadevi¹, V.Gopalakrishnan²

¹Assistant Professor, Department of Mathematics, Noorul Islam University, Kumaracoil, Tamilnadu, India

²Research Scolar, Department of Civil, Noorul Islam University, Kumaracoil, Tamilnadu, India

Abstract - In this paper, we made an attempt to study the algebraic nature of a (T, S)-intuitionistic fuzzy subhemiring of a hemiring.2000 AMS Subject classification: 03F55, 06D72, 08A72.

Key Words: T-fuzzy subhemiring, anti S-fuzzy subhemiring, (T, S)-intuitionistic fuzzy subhemiring, product.

1. INTRODUCTION

There are many concepts of universal algebras generalizing an associative ring (R; +; .). Some of them in particular, nearrings and several kinds of semirings have been proven very useful. Semirings (called also halfrings) are algebras (R; +; .) share the same properties as a ring except that (R; +; .); +) is assumed to be a semigroup rather than a commutative group. Semirings appear in a natural manner in some applications to the theory of automata and formal languages. An algebra (R; +, .) is said to be a semiring if (R;+) and (R; .) are semigroups satisfying a. (b+c) = a. b+a. c and (b+c).a = b.a+c.a for all a, b and c in R. A semiring R is said to be additively commutative if a+b = b+a for all a, b and c in R. A semiring R may have an identity 1, defined by 1. a = a = a. 1 and a zero 0, defined by 0+a = a = a+0 and a.0 = 0 = 0.a for all a in R. A semiring R is said to be a hemiring if it is an additively commutative with zero. After the introduction of fuzzy sets by L.A.Zadeh[23], several researchers explored on the generalization of the concept of fuzzy sets. The concept of intuitionistic fuzzy subset was introduced by K.T.Atanassov[4,5], as a generalization of the notion of fuzzy set. The notion of anti fuzzy left h-ideals in hemiring was introduced by Akram.M and K.H.Dar [1]. The notion of homomorphism and anti-homomorphism of fuzzy and anti-fuzzy ideal of a ring was introduced by N.Palaniappan & K.Arjunan [16], [17], [18]. In this paper, we introduce the some Theorems in (T, S)-intuitionistic fuzzy subhemiring of a hemiring.

2. PRELIMINARIES

2.1 Definition

A (T, S)-norm is a binary operations T: $[0, 1] \times [0, 1] \rightarrow [0, 1]$ and S: $[0, 1] \times [0, 1] \rightarrow [0, 1]$ satisfying the following requirements;

(i) T(0, x) = 0, T(1, x) = x (boundary condition)

(ii) T(x, y) = T(y, x) (commutativity)

(iii) T(x, T(y, z))= T (T(x,y), z)(associativity)

(iv) if $x \le y$ and $w \le z$, then T(x, w) \le T (y, z)(monotonicity).

(v) S(0, x) = x, S(1, x) = 1 (boundary condition)

(vi) S(x, y) = S(y, x)(commutativity)

(vii) S(x, S(y, z)) = S(S(x, y), z) (associativity)

(viii) if $x \le y$ and $w \le z$, then S (x, w) \le S (y, z)(monotonicity).

2.2 Definition

Let (R, +, .) be a hemiring. A fuzzy subset A of R is said to be a T-fuzzy subhemiring (fuzzy subhemiring with respect to T-norm) of R if it satisfies the following conditions:

- (i) $\mu_A(x+y) \ge T(\mu_A(x), \mu_A(y))$,
- (ii) $\mu_A(xy) \ge T(\mu_A(x), \mu_A(y))$, for all x and y in R.

2.3 Definition

Let (R, +, .) be a hemiring. A fuzzy subset A of R is said to be an anti S-fuzzy subhemiring (anti fuzzy subhemiring with respect to S-norm) of R if it satisfies the following conditions:

(i) $\mu_A(x+y) \leq S(\mu_A(x), \mu_A(y)),$

(ii) $\mu_A(xy) \leq S(\mu_A(x), \mu_A(y))$, for all x and y in R.

2.4 Definition

Let (R, +, .) be a hemiring. An intuitionistic fuzzy subset A of R is said to be an (T, S)-intuitionistic fuzzy subhemiring(intuitionistic fuzzy subhemiring with respect to (T, S)-norm) of R if it satisfies the following conditions:

- $(i) \quad \mu_A(x+y) \geq T \ (\mu_A(x), \ \mu_A(y) \),$
- (ii) $\mu_A(xy) \ge T(\mu_A(x), \mu_A(y)),$
- (iii) $v_A(x + y) \leq S(v_A(x), v_A(y))$,

(iv) $v_A(xy) \leq S(v_A(x), v_A(y))$, for all x and y in R.

2.5 Definition

Let A and B be intuitionistic fuzzy subsets of sets G and H, respectively. The product of A and B, denoted by A×B, is defined as A×B = { $\langle (x, y), \mu_{A\times B}(x, y), \nu_{A\times B}(x, y) \rangle /$ for all x in G and y in H }, where $\mu_{A\times B}(x, y) = \min \{ \mu_A(x), \mu_B(y) \}$ and $\nu_{A\times B}(x, y) = \max\{ \nu_A(x), \nu_B(y) \}$.

2.6 Definition

Let A be an intuitionistic fuzzy subset in a set S, the strongest intuitionistic fuzzy relation on S, that is an intuitionistic fuzzy relation on A is V given by $\mu_V(x, y) = \min\{ \mu_A(x), \mu_A(y) \}$ and $\nu_V(x, y) = \max\{ \nu_A(x), \nu_A(y) \}$, for all x and y in S.

2.7 Definition

Let (R, +, .) and (R¹, +, .) be any two hemirings. Let f : R \rightarrow R¹ be any function and A be an (T, S)intuitionistic fuzzy subhemiring in R, V be an (T, S)-intuitionistic fuzzy subhemiring in f(R)= R¹, defined by $\mu_V(y) = \sup_{x \in f^{-1}(y)} \mu_A(x)$ and $\nu_V(y) = \inf_{x \in f^{-1}(y)} \nu_A(x)$, for

all x in R and y in R^{1} . Then A is called a preimage of V under f and is denoted by f⁻¹(V).

2.8 Definition

Let A be an (T, S)-intuitionistic fuzzy subhemiring of a hemiring (R, +, ·) and a in R. Then the pseudo (T, S)-intuitionistic fuzzy coset (aA)^p is defined by ($(a\mu_A)^p$)(x) = p(a) $\mu_A(x)$ and $((a\nu_A)^p)(x) =$ p(a) $\nu_A(x)$, for every x in R and for some p in P.

3. PROPERTIES

3.1 Theorem

Intersection of any two (T, S)-intuitionistic fuzzy subhemirings of a hemiring R is a (T, S)-intuitionistic fuzzy subhemiring of a hemiring R.

Proof: Let A and B be any two (T, S)-intuitionistic fuzzy subhemirings of a hemiring R and x and y in R. Let A = { (x, $\mu_A(x)$, $\nu_A(x)$) / x \in R } and B = { (x, $\mu_B(x)$, $\nu_B(x)$) / x \in R } and also let C = A \cap B = { (x, $\mu_C(x)$, $\nu_C(x)$) / x \in R }, where min { $\mu_A(x)$, $\mu_B(x)$ } = $\mu_C(x)$ and max { $\nu_A(x)$, $\nu_B(x)$ } = $\nu_C(x)$. Now, $\mu_C(x+y)$ = min { $\mu_A(x+y)$, $\mu_B(x+y)$ } min{ T($\mu_A(x)$, $\mu_A(y)$), T($\mu_B(x)$, $\mu_B(y)$ } T(min{ $\mu_A(x)$, $\mu_B(x)$ }, min { $\mu_A(y)$, $\mu_B(y)$ } = T($\mu_C(x)$, $\mu_C(y)$). Therefore, $\mu_C(x+y) \ge$ T($\mu_C(x)$, $\mu_C(y)$), for all x and y in R. And, $\mu_C(xy)$ = min { $\mu_A(xy)$, $\mu_B(xy)$ } \ge min {T ($\mu_A(x)$, $\mu_A(y)$), T($\mu_B(x)$, $\mu_B(y)$ } = T ($\mu_C(x)$, $\mu_C(y)$). Therefore, $\mu_C(xy) \ge$ T($\mu_C(x)$, $\mu_C(y)$).

Now, $v_C(x+y) = \max \{ v_A(x+y), v_B(x+y) \} \le \max \{S(v_A(x), v_A(y)), S(v_B(x), v_B(y))\} \le S(\max\{v_A(x), v_B(x)\}, \max\{v_A(y), v_B(y)\}) = S(v_C(x), v_C(y))$. Therefore, $v_C(x+y) \le S(v_C(x), v_C(y))$, for all x and y in R. And, $v_C(xy) = \max\{v_A(xy), v_B(xy)\} \le \max\{S(v_A(x), v_A(y)), S(v_B(x), v_B(y))\} \le S(\max\{v_A(x), v_B(x)\}, \max\{v_A(y), v_B(y)\}) \le S(v_C(x), v_C(y))$. Therefore, $v_C(xy) \le S(v_C(x), v_C(y))$, for all x and y in R. Therefore C is an (T, S)-intuitionistic fuzzy subhemiring of a hemiring R.

3.2 Theorem

The intersection of a family of (T, S)-intuitionistic fuzzy subhemirings of hemiring R is an (T, S)-intuitionistic fuzzy subhemiring of a hemiring R.

Proof: It is trivial.

2.3 Theorem

If A and B are any two (T, S)-intuitionistic fuzzy subhemirings of the hemirings R_1 and R_2 respectively, then A×B is an (T, S)-intuitionistic fuzzy subhemiring of $R_1 \times R_2$.

Proof: Let A and B be two (T, S)-intuitionistic fuzzy subhemirings of the hemirings R₁ and R₂ respectively. Let x_1 and x_2 be in R_1 , y_1 and y_2 be in R_2 . Then (x_1 , y_1) and (x_2, y_2) are in $R_1 \times R_2$. Now, $\mu_{A \times B} [(x_1, y_1) + (x_2, y_2)] =$ $\mu_{A \times B}(x_1 + x_2, y_1 + y_2) = \min$ { $\mu_A(x_1+x_2), \mu_B(y_1+y_2)$ } $\geq \min\{T(\mu_A(x_1), \mu_A(x_2)), T(\mu_B(y_1), \mu_B(y_2))\} \geq$ $T(\min\{\mu_A(x_1), \mu_B(y_1)\}, \min\{\mu_A(x_2), \mu_B(y_2)\}) = T(\mu_{A \times B}(x_1, \mu_B(y_2)))$ y_1), $\mu_{A \times B}(x_2, y_2)$). Therefore, $\mu_{A \times B}[(x_1, y_1) + (x_2, y_2)] \ge$ $T(\mu_{A\times B}(x_1, y_1), \mu_{A\times B}(x_2, y_2))$. Also, $\mu_{A\times B}[(x_1, y_1)(x_2, y_2)]$ $= \mu_{A \times B} (x_1 x_2, y_1 y_2) = \min \{ \mu_A (x_1 x_2), \mu_B (y_1 y_2) \} \ge \min \{ T \}$ $(\mu_A(x_1), \mu_A(x_2)), T (\mu_B(y_1), \mu_B(y_2)) \ge T(\min\{\mu_A(x_1), \mu_B(y_2)) \ge T(\min\{\mu_B(x_1), \mu_B(y_2), \mu_B(y_2$ $\mu_B(y_1)$, min { $\mu_A(x_2)$, $\mu_B(y_2)$ } = T($\mu_{A \times B}(x_1, y_1)$, $\mu_{A \times B}(x_2, y_2)$ y_2). Therefore, $\mu_{A\times B}[(x_1, y_1)(x_2, y_2)] \ge T(\mu_{A\times B}(x_1, y_1),$ $\mu_{A\times B}(x_2, y_2)$). Now, $\nu_{A\times B}[(x_1, y_1) + (x_2, y_2)] = \nu_{A\times B}(x_1+x_2, y_2)$ $y_1 + y_2$) = max { $v_A(x_1 + x_2)$, $v_B(y_1 + y_2)$ } \leq max { S ($v_A(x_1)$, $v_A(x_2)$), S ($v_B(y_1)$, $v_B(y_2)$) \leq S(max{ $v_A(x_1)$, $v_B(y_1)$ }, $\max\{v_A(x_2), v_B(y_2)\} = S(v_{A\times B} (x_1, y_1), v_{A\times B} (x_2, y_2)).$ Therefore, $v_{A \times B} [(x_1, y_1) + (x_2, y_2)] \le S (v_{A \times B} (x_1, y_1), v_{A \times B})$ (x_2, y_2)). Also, $v_{A \times B}[(x_1, y_1)(x_2, y_2)] = v_{A \times B}(x_1x_2, y_1y_2) =$ $\max \{ v_A(x_1x_2), v_B(y_1y_2) \} \le \max \{ S(v_A(x_1), v_A(x_2)), \}$ $S(v_B(y_1), v_B(y_2)) \ge S(\max \{v_A(x_1), v_B(y_1)\}, \max\{v_A(x_2), v_B(y_1)\}$ $v_B(y_2)$ = S($v_{A \times B}(x_1, y_1), v_{A \times B}(x_2, y_2)$).

Therefore, $v_{A\times B}[(x_1, y_1)(x_2, y_2)] \leq S(v_{A\times B}(x_1, y_1), v_{A\times B}(x_2, y_2))$. Hence $A\times B$ is an (T, S)-intuitionistic fuzzy subhemiring of hemiring of $R_1 \times R_2$.

3.4 Theorem

IRIET

If A is a (T, S)-intuitionistic fuzzy subhemiring of a hemiring (R, +, ·), then $\mu_A(x) \le \mu_A(0)$ and $\nu_A(x) \ge \nu_A(0)$, for x in R, the zero element 0 in R.

Proof: For x in R and 0 is the zero element of R. Now, $\mu_A(x) = \mu_A(x+0) \ge T(\mu_A(x), \mu_A(0))$, for all x in R. So, $\mu_A(x) \le \mu_A(0)$ is only possible. And $\nu_A(x) = \nu_A(x+0) \le S(\nu_A(x), \nu_A(0))$ for all x in R. So, $\nu_A(x) \ge \nu_A(0)$ is only possible.

3.5 Theorem

Let A and B be (T, S)-intuitionistic fuzzy subhemiring of the hemirings R_1 and R_2 respectively. Suppose that 0 and 0_1 are the zero element of R_1 and R_2 respectively. If A×B is an (T, S)-intuitionistic fuzzy subhemiring of $R_1 \times R_2$, then at least one of the following two statements must hold. (i) $\mu_B(0_1) \ge \mu_A(x)$ and $\nu_B(0_1) \le$ $\nu_A(x)$, for all x in R_1 , (ii) $\mu_A(0) \ge \mu_B(y)$ and $\nu_A(0_1) \le$ $\nu_B(y)$, for all y in R_2 .

Proof: Let A×B be an (T, S)-intuitionistic fuzzy subhemiring of R₁×R₂. By contraposition, suppose that none of the statements (i) and (ii) holds. Then we can find a in R₁ and b in R₂ such that $\mu_A(a) > \mu_B(0_1)$, $v_A(a) < v_B(0_1)$ and $\mu_B(b) > \mu_A(0)$, $v_B(b) < v_A(0)$. We have, $\mu_{A\times B}(a, b) = \min\{\mu_A(a), \mu_B(b)\}> \min\{\mu_B(0_1), \mu_A(0)\}=$ min { $\mu_A(0), \mu_B(0_1)$ }= $\mu_{A\times B}(0, 0_1)$. And, $v_{A\times B}(a, b) =$ max{ $v_A(a), v_B(b)$ }< max { $v_B(0_1), v_A(0)$ }= max{ $v_A(0), v_B(0_1)$ }= $v_{A\times B}(0, 0_1)$. Thus A×B is not an (T, S)intuitionistic fuzzy subhemiring of R₁×R₂. Hence either $\mu_B(0_1) \ge \mu_A(x)$ and $v_B(0_1) \le v_A(x)$, for all x in R₁ or $\mu_A(0) \ge \mu_B(y)$ and $v_A(0) \le v_B(y)$, for all y in R₂.

3.6 Theorem

Let A and B be two intuitionistic fuzzy subsets of the hemirings R_1 and R_2 respectively and $A \times B$ is an (T, S)intuitionistic fuzzy subhemiring of $R_1 \times R_2$. Then the following are true:

(i) if $\mu_A(x) \le \mu_B(0_1)$ and $\nu_A(x) \ge \nu_B(0_1)$, then A is an (T, S)-intuitionistic fuzzy subhemiring of R_1 .

(ii) if $\mu_B(x) \le \mu_A(0)$ and $\nu_B(x) \ge \nu_A(0)$, then B is an (T, S)-intuitionistic fuzzy subhemiring of R_2 .

(iii) either A is an (T, S)-intuitionistic fuzzy subhemiring of R_1 or B is an (T, S)-intuitionistic fuzzy subhemiring of R_2 .

Proof: Let A×B be an (T, S)-intuitionistic fuzzy subhemiring of $R_1 \times R_2$ and x and y in R_1 and 0_1 in R_2 . Then $(x, 0_1)$ and $(y, 0_1)$ are in $R_1 \times R_2$. Now, using the property that $\mu_A(x) \le \mu_B(0)$ and $\nu_A(x) \ge \nu_B(0)$, for all x in R₁. We get, $\mu_A(x+y) = \min\{ \mu_A(x+y), \mu_B(0+0) \} =$ $\mu_{A \times B}((x+y), (0_{|}+0_{|})) = \mu_{A \times B}[(x, 0_{|}) + (y, 0_{|})] \ge T(\mu_{A \times B}(x, 0_{|}))$ $0_{||}$, $\mu_{A\times B}(y, 0_{||}) = T(\min\{\mu_A(x), \mu_B(0_{||})\}, \min\{\mu_A(y), \mu_B(0_{||})\}$ $\mu_B(0_1)$ } = T($\mu_A(x)$, $\mu_A(y)$). Therefore, $\mu_A(x+y) \ge$ $T(\mu_A(x), \mu_A(y))$, for all x and y in R₁. Also, $\mu_A(xy) =$ $\min\{\mu_A(xy), \mu_B(0, 0,)\} = \mu_{A \times B}((xy), (0, 0,)) = \mu_{A \times B}[(x, 0, 0, 0, 0, 0)]$ $0_{|}(y, 0_{|})] \ge T(\mu_{A \times B}(x, 0_{|}), \mu_{A \times B}(y, 0_{|})) = T(\min\{ \mu_{A}(x), \mu_{A \times B}(y, 0_{|}) \}$ $\mu_B(0_1)$, min{ $\mu_A(y)$, $\mu_B(0_1)$ } = T($\mu_A(x)$, $\mu_A(y)$). Therefore, $\mu_A(xy) \ge T(\mu_A(x), \mu_A(y))$, for all x and y in R₁. And, $v_A(x+y) = \max\{v_A(x+y), v_B(0_1+0_1)\} = v_{A\times B}(x+y)$ $(x+y), (0_1+0_1) = v_{A\times B}[(x, 0_1)+(y, 0_1)] \le S(v_{A\times B}(x, 0_1)),$ $v_{A \times B}(y, 0|) = S(max\{v_A(x), v_B(0|)\}, max$ $\{v_A(y),$ $v_B(0|)$ = S($v_A(x)$, $v_A(y)$). Therefore, $v_A(x+y) \leq S$ $(v_A(x), v_A(y))$, for all x and y in R₁. Also, $v_A(xy)$ = $\max\{v_A(xy), v_B(0|0|)\} = v_{A \times B}((xy), (0|0|)) = v_{A \times B}[(x, 0|0|)] = v_{A \times B}[(x, 0|$

 0_1 (y, 0_1)] \leq S($v_{A \times B}(x, 0_1)$, $v_{A \times B}(y, 0_1)$) = S(max{ $v_A(x)$, $v_B(0_1)$ }, max{ $v_A(y)$, $v_B(0_1)$ } = S($v_A(x)$, $v_A(y)$). Therefore, $v_A(xy) \leq S(v_A(x), v_A(y))$, for all x and y in R₁. Hence A is an (T, S)-intuitionistic fuzzy subhemiring of R₁. Thus (i) is proved. Now, using the property that $\mu_B(x) \le \mu_A(0)$ and $\nu_B(x) \ge \nu_A(0)$, for all x in R_2 , let x and y in R_2 and 0 in R_1 . Then (0, x) and (0, y) are in $R_1 \times R_2$. We get, $\mu_B(x+y) = \min\{\mu_B(x+y), \mu_A(0+0)\} =$ $\min\{\mu_A(0+0), \mu_B(x+y)\} = \mu_{A\times B}((0+0), (x+y)) = \mu_{A\times B}[(0, x+y)]$ x)+(0, y)] $\geq T(\mu_{A \times B}(0, x), \mu_{A \times B}(0, y)) = T(\min\{\mu_A(0), x\})$ $\mu_B(x)$ }, min{ $\mu_A(0)$, $\mu_B(y)$ = T($\mu_B(x)$, $\mu_B(y)$). Therefore, $\mu_B(x+y) \ge S(\mu_B(x), \mu_B(y))$, for all x and y in R₂. Also, $\mu_B(xy) = \min\{\mu_B(xy), \mu_A(00)\} = \min\{\mu_A(00), \mu_B(xy)\} =$ $\mu_{A\times B}((00), (xy)) = \mu_{A\times B}[(0, x)(0, y)] \ge T(\mu_{A\times B}(0, x),$ $\mu_{A\times B}(0, y) = T(\min\{\mu_A(0), \mu_B(x)\}, \min\{\mu_A(0), \mu_B(y)\})$ = $T(\mu_B(x), \mu_B(y))$. Therefore, $\mu_B(xy) \ge T(\mu_B(x), \mu_B(y))$, for all x and y in R₂. And, $v_B(x+y) = \max\{v_B(x+y)\}$, $v_A(0+0) = \max\{v_A(0+0), v_B(x+y)\} = v_{A \times B}((0+0), (x+y))$ $= v_{A \times B}[(0, x)+(0, y)] \le S(v_{A \times B}(0, x), v_{A \times B}(0, y)) = S($ $\max\{v_A(0), v_B(x)\}, \max\{v_A(0), v_B(y)\}\} = S(v_B(x), v_B(y))$). Therefore, $v_B(x+y) \leq S(v_B(x), v_B(y))$, for all x and y in R₂. Also, $v_B(xy) = \max\{v_B(xy), v_A(00)\} = \max\{v_A(00), v_B(xy), v_B(xy$ $v_B(xy) = v_{A \times B}((00), (xy)) = v_{A \times B}[(0, x)(0, y)] \le S(v_{A \times B}(0, y))$ x), $v_{A\times B}(0, y)$ = S(max{ $v_A(0)$, $v_B(x)$ }, max{ $v_A(0)$, $v_B(y)$ = S($v_B(x)$, $v_B(y)$). Therefore, $v_B(xy) \leq S(v_B(x))$, $v_B(y)$), for all x and y in R₂. Hence B is an (T, S)intuitionistic fuzzy subhemiring of a hemiring R₂. Thus (ii) is proved. (iii) is clear.

3.7 Theorem

Let A be an intuitionistic fuzzy subset of a hemiring R and V be the strongest intuitionistic fuzzy relation of R. Then A is an (T, S)-intuitionistic fuzzy subhemiring

of R if and only if V is an (T, S)-intuitionistic fuzzy subhemiring of $R \times R$.

Proof: Suppose that A is an (T, S)-intuitionistic fuzzy subhemiring of a hemiring R. Then for any $x = (x_1, x_2)$ and $y = (y_1, y_2)$ are in R×R. We have, $\mu_V(x+y) = \mu_V[(x_1, y_2)]$ x_2 + (y_1 , y_2)] = $\mu_V(x_1+y_1, x_2+y_2)$ = min{ $\mu_A(x_1+y_1)$, $\mu_A(x_2+y_2) \ge \min \{T(\mu_A(x_1), \mu_A(y_1)), T(\mu_A(x_2), \mu_A(y_2))\} \ge$ $T(\min \{\mu_A(x_1), \mu_A(x_2)\}, \min \{\mu_A(y_1), \mu_A(y_2)\}) = T(\mu_V(x_1, \mu_A(y_2)))$ x_2), $\mu_V(y_1, y_2)$ = T($\mu_V(x)$, $\mu_V(y)$). Therefore, $\mu_V(x+y) \ge$ $T(\mu_V(x), \mu_V(y))$, for all x and y in R×R. And, $\mu_V(xy) = \mu_V[(x_1, x_2)(y_1, y_2)] = \mu_V(x_1y_1, x_2y_2) =$ $\min\{\mu_A(x_1y_1), \mu_A(x_2y_2)\}$ $\geq \min \{ T(\mu_A(x_1),$ $\mu_A(y_1)$, $T(\mu_A(x_2), \mu_A(y_2)) \geq T(\min\{ \mu_A(x_1), \mu_A(x_2)\},$ $\min\{\mu_A(y_1), \mu_A(y_2)\}) = T(\mu_V(x_1, x_2), \mu_V(y_1, y_2)) =$ $T(\mu_V(x), \mu_V(y))$. Therefore, $\mu_V(xy) \ge T(\mu_V(x), \mu_V(y))$, for all x and y in R×R. We have, $v_V(x+y) = v_V[(x_1, x_2) + (y_1, x_2)]$ y_2] = $v_V(x_1+y_1, x_2+y_2) = \max \{v_A(x_1+y_1), v_A(x_2+y_2)\} \le$ $\max \{ S(v_A(x_1), v_A(y_1)), S(v_A(x_2), v_A(y_2)) \} \le S(\max)$ $\{v_A(x_1), v_A(x_2)\}, \max \{v_A(y_1), v_A(y_2)\}\} = S(v_V(x_1, x_2), v_A(y_2))$ $v_V(y_1, y_2) = S(v_V(x), v_V(y))$. Therefore, $v_V(x+y) \le S(v_V(x+y))$ (x), $v_V(y)$), for all x and y in R×R. And, $v_V(xy) = v_V[(x_1, y_1)]$ x_2) (y_1, y_2)] = $v_V(x_1y_1, x_2y_2)$ = max { $v_A(x_1y_1), v_A(x_2y_2)$ $\leq \max \{ S(v_A(x_1), v_A(y_1)), S(v_A(x_2), v_A(y_2)) \} \leq S(\max \{$ $v_A(x_1), v_A(x_2)$ }, max{ $v_A(y_1), v_A(y_2)$ } = S($v_V(x_1, x_2),$ $v_V(y_1, y_2)$) = S(v_V (x), v_V (y)). Therefore, $v_V(xy) \leq$ $S(v_V(x), v_V(y))$, for all x and y in R×R. This proves that V is an (T, S)-intuitionistic fuzzy subhemiring of R×R. Conversely assume that V is an (T, S)-intuitionistic fuzzy subhemiring of R×R, then for any $x = (x_1, x_2)$ and $y = (y_1, y_2)$ are in R×R, we have min{ $\mu_A(x_1 + y_1), \mu_A(x_2 + y_1), \mu_B(x_2 + y_2)$ y_2 } = $\mu_V(x_1 + y_1, x_2 + y_2) = \mu_V[(x_1, x_2) + (y_1, y_2)] = \mu_V$ $(x+y) \ge T(\mu_V(x), \mu_V(y)) = T(\mu_V(x_1, x_2), \mu_V(y_1, y_2)) = T(y_1, y_2)$ $\min\{\mu_A(x_1), \mu_A(x_2)\}, \min\{\mu_A(y_1), \mu_A(y_2)\})$. If $x_2 = 0, y_2 = 0, y_2$

we get, $\mu_A(x_1+y_1) \ge T(\mu_A(x_1), \mu_A(y_1))$, for all x_1 and y_1 in R. And, min { $\mu_A(x_1y_1), \mu_A(x_2y_2)$ } = $\mu_V(x_1y_1, x_2y_2)$ = $\mu_V[(x_1, x_2)(y_1, y_2)] = \mu_V(xy) \ge T(\mu_V(x), \mu_V(y)) = T(\mu_V(x_1, x_2), \mu_V(y_1, y_2)) = T(min{<math>\mu_A(x_1), \mu_A(x_2)$ }, min { $\mu_A(y_1), \mu_A(y_2)$ }). If x_2 =0, y_2 =0, we get, $\mu_A(x_1y_1) \ge T(\mu_A(x_1), \mu_A(y_1))$, for all x_1 and y_1 in R.

We have, max { $v_A(x_1+y_1)$, $v_A(x_2+y_2)$ }= $v_V(x_1+y_1, x_2+y_2) = v_V[(x_1, x_2)+(y_1, y_2)] = v_V(x+y) \le S(v_V(x), v_V(y)) = S(v_V(x_1, x_2), v_V(y_1, y_2)) = S(max{ <math>v_A(x_1), v_A(x_2)$ }, max { $v_A(y_1), v_A(y_2)$ }). If $x_2 = 0$, $y_2 = 0$, we get, $v_A(x_1+y_1) \le S(v_A(x_1), v_A(y_1))$, for all x_1 and y_1 in R.

And, max $\{v_A(x_1y_1), v_A(x_2y_2)\} = v_V(x_1y_1, x_2y_2) = v_V[(x_1, x_2)(y_1, y_2)] = v_V(xy) \le S(v_V(x), v_V(y)) = S(v_V(x_1, x_2), v_V(y_1, y_2)) = S(max \{v_A(x_1), v_A(x_2)\}, max \{v_A(y_1), v_A(y_2)\})$. If $x_2 = 0$, $y_2 = 0$, we get $v_A(x_1y_1) \le S(v_A(x_1), v_A(y_1))$, for all x_1 and y_1 in R.

Therefore A is an (T, S)-intuitionistic fuzzy subhemiring of R.

3.8 Theorem

If A is an (T, S)-intuitionistic fuzzy subhemiring of a hemiring (R, +, .), then H = { $x / x \in \mathbb{R}$: $\mu_A(x) =$ 1, $v_A(x) = 0$ } is either empty or is a subhemiring of R.

Proof: It is trivial.

3.9 Theorem

If A be an (T, S)-intuitionistic fuzzy subhemiring of a hemiring (R, +, .), then (i) if $\mu_A(x+y)=0$, then either $\mu_A(x)=0$ or $\mu_A(y)=0$, for all x and y in R.

(ii) if $\mu_A(xy) = 0$, then either $\mu_A(x) = 0$ or $\mu_A(y) = 0$, for all x and y in R.

(iii) if $v_A(x+y)=1$, then either $v_A(x)=1$ or $v_A(y)=1$, for all x and y in R.

(iv) if $v_A(xy) = 1$, then either $v_A(x) = 1$ or $v_A(y) = 1$, for all x and y in R.

Proof: It is trivial.

3.10 Theorem

If A is an (T, S)-intuitionistic fuzzy subhemiring of a hemiring (R, +, .), then H = { $\langle x, \mu_A(x) \rangle : 0 < \mu_A(x) \le 1$ and $\nu_A(x) = 0$ } is either empty or a Tfuzzy subhemiring of R.

Proof: It is trivial.

3.11 Theorem

If A is an (T, S)-intuitionistic fuzzy subhemiring of a hemiring (R, +, .) then H = { $\langle x, \mu_A(x) \rangle : 0 < \mu_A(x) \le 1$ } is either empty or a T-fuzzy subhemiring of R.

Proof: It is trivial.

3.12 Theorem

If A is an (T, S)-intuitionistic fuzzy subhemiring of a hemiring (R, +, .), then H = { $\langle x, v_A(x) \rangle : 0 < v_A(x) \leq 1$ } is either empty or an anti S-fuzzy subhemiring of R.

Proof: It is trivial.

3.13 Theorem

If A is an (T, S)-intuitionistic fuzzy subhemiring of a hemiring (R,+, .), then $\Box A$ is an (T, S)-intuitionistic fuzzy subhemiring of R.

Proof: Let A be an (T, S)-intuitionistic fuzzy subhemiring of a hemiring R. Consider A = { $\langle x, \mu_A(x), \nu_A(x) \rangle$ }, for all x in R, we take $\Box A=B=\{ \langle x, \mu_B(x), \nu_B(x) \rangle$ }, where $\mu_B(x) = \mu_A(x), \nu_B(x) = 1 - \mu_A(x)$. Clearly, $\mu_B(x+y) \ge T(\mu_B(x), \mu_B(y))$, for all x and y in R and $\mu_B(xy) \ge T(\mu_B(x), \mu_B(y))$, for all x and y in R. Since A is an (T, S)-intuitionistic fuzzy subhemiring of R, we have $\mu_A(x+y) \ge T(\mu_A(x), \mu_A(y))$, for all x and y in R, which implies that $1 - \nu_B(x+y) \ge T((1 - \nu_B(x)), (1 - \nu_B(y)))$, which implies that $\nu_B(x+y) \le 1 - T((1 - \nu_B(x)), (1 - \nu_B(x))) \le S(\nu_B(x), \nu_B(y))$. Therefore, $\nu_B(x+y) \le S(\nu_B(x), \nu_B(y))$, for all x and y in R. And $\mu_A(xy) \ge T(\mu_A(x), \mu_A(y))$, for all x and y in R, which implies that $1 - \nu_B(xy) \ge T((1 - \nu_B(x)))$

which implies that $v_B(xy) \le 1-T$ ($(1-v_B(x))$, $(1-v_B(y)) \le S(v_B(x), v_B(y))$. Therefore, $v_B(xy) \le S(v_B(x), v_B(y))$, for all x and y in R. Hence $B = \Box A$ is an (T, S)-intuitionistic fuzzy subhemiring of a hemiring R.

3.14 Theorem

If A is an (T, S)-intuitionistic fuzzy subhemiring of a hemiring (R, +, .), then $\Diamond A$ is an (T, S)-intuitionistic fuzzy subhemiring of R.

Proof: Let A be an (T, S)-intuitionistic fuzzy subhemiring of a hemiring R.That is A = { $\langle x, \mu_A(x), \nu_A(x) \rangle$ }, for all x in R. Let $\Diamond A = B = \{ \langle x, \mu_B(x), \nu_B(x) \rangle \}$, where $\mu_B(x) = 1 - \nu_A(x), \nu_B(x) = \nu_A(x)$. Clearly, $\nu_B(x+y) \leq$ S ($\nu_B(x), \nu_B(y)$), for all x and y in R and $\nu_B(xy) \leq S(\nu_B(x), \nu_B(y))$, for all x and y in R. Since A is an (T, S)intuitionistic fuzzy subhemiring of R, we have $\nu_A(x+y) \leq$ S ($\nu_A(x), \nu_A(y)$), for all x and y in R, which implies that $1 - \mu_B(x+y) \leq S((1 - \mu_B(x)), (1 - \mu_B(y))) \geq$ T($\mu_B(x)$, $\mu_B(y)$). Therefore, $\mu_B(x+y) \ge T(\mu_B(x), \mu_B(y))$, for all x and y in R. And $\nu_A(xy) \le S(\nu_A(x), \nu_A(y))$, for all x and y in R, which implies that $1-\mu_B(xy) \le S((1-\mu_B(x)))$, $(1-\mu_B(y))$), which implies that $\mu_B(xy) \ge 1-S((1-\mu_B(x)))$, $(1-\mu_B(x)), (1-\mu_B(y))) \ge T(\mu_B(x), \mu_B(y))$. Therefore, $\mu_B(xy) \ge$ T($\mu_B(x), \mu_B(y)$), for all x and y in R. Hence B = $\Diamond A$ is an (T, S)-intuitionistic fuzzy subhemiring of a hemiring R.

3.15 Theorem

Let (R, +, .) be a hemiring and A be a non empty subset of R. Then A is a subhemiring of R if and only if B = $\langle \chi_A, \overline{\chi_A} \rangle$ is an (T, S)-intuitionistic fuzzy subhemiring of R, where χ_A is the characteristic function.

Proof: It is trivial.

3.16 Theorem

Let A be an (T, S)-intuitionistic fuzzy subhemiring of a hemiring H and f is an isomorphism from a hemiring R onto H. Then A°f is an (T, S)intuitionistic fuzzy subhemiring of R.

Proof: Let x and y in R and A be an (T, S)-intuitionistic fuzzy subhemiring of a hemiring H. Then we have, $(\mu_{A}\circ f)(x+y) = \mu_{A}(f(x+y)) = \mu_{A}(f(x)+f(y)) \ge T(\mu_{A}(f(x)),$ $\mu_{A}(f(y)) = T((\mu_{A}\circ f)(x), (\mu_{A}\circ f)(y)),$ which implies that $(\mu_{A}\circ f)(x+y) \ge T((\mu_{A}\circ f)(x), (\mu_{A}\circ f)(y)).$ And, $(\mu_{A}\circ f)(xy) =$ $\mu_{A}(f(xy)) = \mu_{A}(f(x)f(y)) \ge T(\mu_{A}(f(x)), \mu_{A}(f(y))) =$ $T((\mu_{A}\circ f)(x), (\mu_{A}\circ f)(y)),$ which implies that $(\mu_{A}\circ f)(xy) \ge$ $T((\mu_{A}\circ f)(x), (\mu_{A}\circ f)(y)).$ Then we have, $(v_{A}\circ f)(x+y) =$ $v_{A}(f(x+y)) = v_{A}(f(x)+f(y)) \le S(v_{A}(f(x)), v_{A}(f(y)))$ $= S((v_{A}\circ f)(x), (v_{A}\circ f)(y)),$ which implies that $(v_{A}\circ f)(x+y) =$ $\le S((v_{A}\circ f)(x), (v_{A}\circ f)(y)).$ And $(v_{A}\circ f)(xy) = v_{A}(f(xy)) =$ $v_A(f(x)f(y)) \le S(v_A(f(x)), v_A(f(y))) = S((v_A \circ f)(x), (v_A \circ f)(y)),$ which implies that $(v_A \circ f)(xy) \le S((v_A \circ f)(x), (v_A \circ f)(y))$. Therefore $(A \circ f)$ is an (T, S)-intuitionistic fuzzy subhemiring of a hemiring R.

3.17 Theorem

Let A be an (T, S)-intuitionistic fuzzy subhemiring of a hemiring H and f is an anti-isomorphism from a hemiring R onto H. Then Aof is an (T, S)-intuitionistic fuzzy subhemiring of R.

Proof: Let x and y in R and A be an (T, S)-intuitionistic fuzzy subhemiring of a hemiring H. Then we have, $(\mu_A \circ f)(x+y) = \mu_A(f(x+y)) = \mu_A(f(y)+f(x)) \ge T(\mu_A(f(x)),$ $\mu_A(f(y))) = T((\mu_A \circ f)(x), (\mu_A \circ f)(y))$, which implies that $(\mu_A \circ f)(x+y) \ge T(\mu_A \circ f)(x), (\mu_A \circ f)(y))$. And, $(\mu_A \circ f)(xy) =$ $\mu_A(f(xy)) = \mu_A(f(y)f(x)) \ge T(\mu_A(f(x)), \mu_A(f(y))) =$ $T((\mu_A \circ f)(x), (\mu_A \circ f)(y))$, which implies that $(\mu_A \circ f)(xy) \ge$ $T((\mu_A \circ f)(x), (\mu_A \circ f)(y))$. Then we have, $(v_A \circ f)(x+y) =$ $v_A(f(x+y)) = v_A(f(y)+f(x)) \le S(v_A(f(x)), v_A(f(y))) =$ $S((v_A \circ f)(x), (v_A \circ f)(y))$, which implies that $(v_A \circ f)(x+y) \le$ $S((v_A \circ f)(x), (v_A \circ f)(y))$.

And, $(v_{A^{\circ}}f)(xy) = v_{A}(f(xy)) = v_{A}(f(y)f(x)) \leq S(v_{A}(f(x)), v_{A}(f(y))) = S((v_{A^{\circ}}f)(x), (v_{A^{\circ}}f)(y))$, which implies that $(v_{A^{\circ}}f)(xy) \leq S((v_{A^{\circ}}f)(x), (v_{A^{\circ}}f)(y))$. Therefore $A^{\circ}f$ is an (T, S)-intuitionistic fuzzy subhemiring of the hemiring R.

3.18 Theorem

Let A be an (T, S)-intuitionistic fuzzy subhemiring of a					
hemiring	(R, +, .), then	the pseud	o (T,	S)-
intuitionistic	fuzzy	coset	(aA) ^p	is	an

(T, S)-intuitionistic fuzzy subhemiring of a hemiring R, for every a in R.

Proof: Let A be an (T, S)-intuitionistic fuzzy subhemiring of a hemiring R.

For every x and y in R, we have, $((a\mu_A)^p)(x + y) =$ $p(a)\mu_A(x+y) \ge p(a) T((\mu_A(x), \mu_A(y)) = T(p(a)\mu_A(x),$ $p(a)\mu_A(y) = T(((a\mu_A)^p)(x), ((a\mu_A)^p)(y))$. Therefore, $((a\mu_A)^p)(x+y) \ge T (((a\mu_A)^p)(x), ((a\mu_A)^p)(y))$. Now, ($(a\mu_A)^p(xy) = p(a)\mu_A(xy) \ge p(a) T(\mu_A(x), \mu_A(y)) = T(a)$ $p(a)\mu_A(x), p(a)\mu_A(y) = T ((a\mu_A)^p)(x), (a\mu_A)^p)(y).$ Therefore, $((a\mu_A)^p)(xy) \ge T(((a\mu_A)^p)(x), ((a\mu_A)^p)(y))$). For every x and y in R, we have, $((av_A)^p)(x+y) =$ $p(a)v_A(x+y) \le p(a) S((v_A(x), v_A(y)) = S(p(a)v_A(x),$ $p(a)v_A(y) = S((av_A)^p)(x), (av_A)^p)(y)$. Therefore, $(av_A)^p(x+y) \le a$ $S(((av_A)^p)(x),$ $((av_A)^p)(y)$. Now, $((av_A)^p)(xy) = p(a)v_A(xy) \le p(a)$ $S(v_A(x), v_A(y)) = S(p(a) v_A(x), p(a) v_A(y)) = S(($ $(av_A)^p$)(x), ($(av_A)^p$)(y)). Therefore, $((av_A)^p)(xy)$ \leq S (((av_A)^p)(x), ((av_A)^p)(y)). Hence (aA)^p is an (T, S)-intuitionistic fuzzy subhemiring of a hemiring R.

3.19 Theorem

Let (R, +, .) and (R^{1} , +, .) be any two hemirings. The homomorphic image of an (T, S)-intuitionistic fuzzy subhemiring of R is an (T, S)-intuitionistic fuzzy subhemiring of R^{1} .

Proof: Let (R, +, ...) and $(R^{i}, +, ...)$ be any two hemirings. Let $f : R \to R^{i}$ be a homomorphism. Then, f (x+y) = f(x) + f(y) and f(xy) = f(x) f(y), for all x and y in R. Let V = f(A), where A is an (T, S)-intuitionistic fuzzy subhemiring of R. We have to prove that V is an (T, S)-

intuitionistic fuzzy subhemiring of R¹. Now, for f(x), f(y) in R¹, $\mu_v(f(x) + f(y)) = \mu_v(f(x+y)) \ge \mu_A(x + y) \ge T$ ($\mu_A(x)$, $\mu_A(y)$) which implies that $\mu_v(f(x) + f(y)) \ge T$ ($\mu_v(f(x))$, $\mu_v(f(y))$). Again, $\mu_v(f(x)f(y)) = \mu_v(f(xy))$ $\ge \mu_A(xy) \ge T (\mu_A(x), \mu_A(y))$, which implies that $\mu_v(f(x)f(y)) \ge T (\mu_v(f(x)), \mu_v(f(y)))$.

Now, for f(x), f(y) in \mathbb{R}^{1} , $v_{v}(f(x)+f(y)) = v_{v}(f(x+y)) \le v_{A}(x+y) \le S (v_{A}(x), v_{A}(y)), v_{v}(f(x) + f(y)) \le S (v_{v}(f(x))), v_{v}(f(y))$.

Again, $v_v(f(x)f(y)) = v_v(f(xy)) \le v_A(xy) \le S(v_A(x), v_A(y))$, which implies that $v_v(f(x)f(y)) \le S(v_v(f(x)), v_v(f(y)))$. Hence V is an (T, S)-intuitionistic fuzzy subhemiring of \mathbb{R}^1 .

3.20 Theorem

Let (R, +, .) and (R^{I} , +, .) be any two hemirings. The homomorphic preimage of an (T, S)-intuitionistic fuzzy subhemiring of R^{I} is a (T, S)intuitionistic fuzzy subhemiring of R.

Proof: Let V = f(A), where V is an (T, S)-intuitionistic fuzzy subhemiring of R¹. We have to prove that A is an (T, S)-intuitionistic fuzzy subhemiring of R. Let x and y in R. Then, $\mu_A(x+y) = \mu_v(f(x+y)) = \mu_v(f(x)+f(y)) \ge T(\mu_v(f(x)))$, $\mu_v(f(y)) = T(\mu_A(x), \mu_A(y))$, since $\mu_v(f(x)) = \mu_A(x)$, which implies that $\mu_A(x+y) \ge T(\mu_A(x), \mu_A(y))$. Again, $\mu_A(xy) = \mu_v(f(xy)) = \mu_v(f(x)f(y)) \ge T(\mu_v(f(x)), \mu_v(f(y)))$ $) = T(\mu_A(x), \mu_A(y))$, since $\mu_v(f(x)) = \mu_A(x)$ which implies that $\mu_A(xy) \ge T(\mu_A(x), \mu_A(y))$. Let x and y in R. Then, $\nu_A(x+y) = \nu_v(f(x+y)) = \nu_v(f(x)+f(y)) \le S(\nu_v(f(x)), \nu_v(f(y)))) = S(\nu_A(x), \nu_A(y))$, since $\nu_v(f(x)) = \nu_A(x)$ which implies that $\nu_A(x+y) \le S(\nu_A(x), \nu_A(y))$. Again, $\nu_A(xy) = \nu_v(f(xy)) = \nu_v(f(x)f(y)) \le S(\nu_v(f(x)), \nu_v(f(y))) = S(\nu_A(x), \nu_A(x))$ $v_A(y)$), since $v_v(f(x)) = v_A(x)$ which implies that $v_A(xy) \le$ S ($v_A(x)$, $v_A(y)$). Hence A is an (T, S)intuitionistic fuzzy subhemiring of R.

3.21 Theorem

Let (R, +, .) and (R^{I} , +, .) be any two hemirings. The anti-homomorphic image of an (T, S)-intuitionistic fuzzy subhemiring of R is an (T, S)intuitionistic fuzzy subhemiring of R^{I} .

Proof: Let (R, +, .) and (R', +, .) be any two hemirings. Let $f : R \rightarrow R^{l}$ be an anti-homomorphism. Then, f(x+y) = f(y) + f(x) and f(xy) = f(y) f(x), for all x and y in R. Let V = f(A), where A is an (T, S)intuitionistic fuzzy subhemiring of R. We have to prove that V is an (T, S)-intuitionistic fuzzy of R^{\prime} . Now, for f(x), f(y) in R^{\prime} , subhemiring $\mu_v(f(x)+f(y)) = \mu_v(f(y+x)) \ge \mu_A(y+x) \ge T(\mu_A(y), \mu_A(x)) =$ $T(\mu_A(x), \mu_A(y))$, which implies that $\mu_v(f(x) + f(y)) \ge$ $T(\mu_v(f(x)), \mu_v(f(y)))$. Again, $\mu_v(f(x)f(y)) = \mu_v(f(yx)) \ge$ $\mu_A(yx) \ge T(\mu_A(y), \mu_A(x)) = T(\mu_A(x), \mu_A(y))$, which implies that $\mu_v(f(x)f(y)) \ge T(\mu_v(f(x)), \mu_v(f(y)))$. Now for $f(x), f(y) \text{ in } \mathbb{R}^{1}, v_{v}(f(x)+f(y)) = v_{v}(f(y+x)) \le v_{A}(y+x) \le S(x)$ $v_A(y)$, $v_A(x)$) = S($v_A(x)$, $v_A(y)$), which implies that $v_v(x)$ $f(x)+f(y) \le S(v_v(f(x)), v_v(f(y))).$

Again, $v_v(f(x)f(y)) = v_v(f(yx)) \le v_A(yx) \le S(v_A(y), v_A(x)) = S(v_A(x), v_A(y))$, which implies that $v_v(f(x)f(y)) \le S(v_v(f(x)), v_v(f(y)))$. Hence V is an (T, S)-intuitionistic fuzzy subhemiring of R¹.

3.22 Theorem

Let (R, +, .) and (R^1 , +, .) be any two hemirings. The anti-homomorphic preimage of an (T, S)-intuitionistic

fuzzy subhemiring of R¹ is an (T, S)intuitionistic fuzzy subhemiring of R.

Proof: Let V = f(A), where V is an (T, S)-intuitionistic fuzzy subhemiring of R^{\prime} . We have to prove that A is an (T, S)-intuitionistic fuzzy subhemiring of R. Let x and y in R. Then, $\mu_A(x+y) = \mu_V(f(x+y)) = \mu_V(f(y)+f(x)) \ge$ $T(\mu_v(f(y)), \mu_v(f(x))) = T(\mu_v(f(x)), \mu_v(f(y))) = T(\mu_A(x),$ $\mu_A(y)$, which implies that $\mu_A(x+y) \ge T(\mu_A(x), \mu_A(y))$. Again, $\mu_A(xy) = \mu_v(f(xy)) = \mu_v(f(y)f(x)) \ge T(\mu_v(f(y)))$ $\mu_v(f(x)) = T(\mu_v(f(x)), \mu_v(f(y))) = T(\mu_A(x), \mu_A(y)),$ since $\mu_v(f(x)) = \mu_A(x)$ which implies that $\mu_A(xy) \ge$ $T(\mu_A(x), \mu_A(y))$. Then, $\nu_A(x+y) = \nu_v(f(x+y)) =$ $v_v(f(y)+f(x)) \leq S(v_v(f(y)), v_v(f(x))) = S(v_v(f(x)),$ $v_v(f(y)) = S(v_A(x), v_A(y))$ which implies that $v_A(x+y) \le$ $S(v_A(x), v_A(y))$. Again, $v_A(xy) = v_v(f(xy)) = v_v(f(y)f(x)) \le$ $S(v_v(f(y)), v_v(f(x))) = S(v_v(f(x)), v_v(f(y))) = S(v_A(x),$ $v_A(y)$, which implies that $v_A(xy) \leq S(v_A(x), v_A(y))$. Hence A is an (T, S)-intuitionistic fuzzy subhemiring of R.

REFERENCES

- Akram . M and K.H.Dar , 2007. On Anti Fuzzy Left h- ideals in Hemirings , International Mathematical Forum, 2(46): 2295 - 2304.
- 2. Anthony.J.M. and H Sherwood, 1979. Fuzzy groups Redefined, Journal of mathematical analysis and applications, 69:124 -130.
- 3. Asok Kumer Ray, 1999. On product of fuzzy subgroups, fuzzy sets and sysrems, 105 : 181-183.
- 4. Atanassov.K.T.,1986. Intuitionistic fuzzy sets, fuzzy sets and systems, 20(1): 87-96.
- 5. Atanassov.K.T., 1999. Intuitionistic fuzzy sets theory and applications, Physica-Verlag, A Springer-Verlag company, Bulgaria.

- 6. Azriel Rosenfeld,1971. Fuzzy Groups, Journal of mathematical analysis and applications, 35 :512-517.
- 7. Banerjee.B and D.K.Basnet, 2003. Intuitionistic fuzzy subrings and ideals, J.Fuzzy Math.11(1): 139-155.
- Chakrabarty, K., Biswas and R., Nanda, 1997 . A note on union and intersection of Intuitionistic fuzzy sets , Notes on Intuitionistic Fuzzy Sets, 3(4).
- 9. Choudhury.F.P, A.B.Chakraborty and S.S.Khare , 1988 . A note on fuzzy subgroups and fuzzy homomorphism, Journal of mathematical analysis and applications, 131:537 -553.
- 10. De, K., R.Biswas and A.R.Roy,1997. On intuitionistic fuzzy sets, Notes on Intuitionistic Fuzzy Sets, 3(4).
- 11. Hur.K, H.W Kang and H.K.Song, 2003. Intuitionistic fuzzy subgroups and subrings, Honam Math. J. 25 (1) : 19-41.
- 12. Hur.K, S.Y Jang and H.W Kang, 2005. (T, S)-intuitionistic fuzzy ideals of a ring, J.Korea Soc. Math.Educ.Ser.B: pure Appl.Math. 12(3): 193-209.
- JIANMING ZHAN, 2005 .On Properties of Fuzzy Left h - Ideals in Hemiring With t - Norms , International Journal of Mathematical Sciences ,19 : 3127 – 3144.
- 14. Jun.Y.B, M.A Ozturk and C.H.Park, 2007. Intuitionistic nil radicals of (T, S)-intuitionistic fuzzy ideals and Euclidean (T, S)-intuitionistic fuzzy ideals in rings, Inform.Sci. 177 : 4662-4677.
- 15. Mustafa Akgul,1988. Some properties of fuzzy groups, Journal of mathematical analysis and applications, 133: 93-100.
- 16. Palaniappan. N & K. Arjunan, 2008. The homomorphism, anti homomorphism of a fuzzy and an anti fuzzy ideals of a ring, Varahmihir Journal of Mathematical Sciences, 6(1): 181-006.
- 17. Palaniappan. N & K. Arjunan, 2007. Operation on fuzzy and anti fuzzy ideals, Antartica J. Math., 4(1): 59-64.

Volume: 03 Issue: 02 | Feb-2016

www.irjet.net

- Palaniappan. N & K.Arjunan. 2007. Some properties of intuitionistic fuzzy subgroups , Acta Ciencia Indica , Vol.XXXIII (2) : 321-328.
- 19. Rajesh Kumar, 1991. Fuzzy irreducible ideals in rings, Fuzzy Sets and Systems, 42: 369-379.
- 20. Umadevi. K,Elango. C,Thankavelu. P.2013.AntiS-fuzzy Subhemirings of a Hemiring,International Journal of Scientific Research,vol 2(8).301-302
- 21. Sivaramakrishna das.P, 1981. Fuzzy groups and level subgroups, Journal of Mathematical Analysis and Applications, 84 : 264-269.
- 22. Vasantha kandasamy.W.B, 2003. Smarandache fuzzy algebra, American research press, Rehoboth.
- 23. Zadeh .L.A, Fuzzy sets, 1965. Information and control, 8 : 338-353.

