
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 02 | Feb-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 811

Scalable scheduling of updates in streaming data warehouses

Mr. Nikhil Sangar1 , Mr. Abhijit Nikam2, Mr. Vikas Lokhande3, Mr. Pradip Chougule4

1 Dept. of Computer Engineering, Dr. J J Magdum College Of Engineering, jaysingpur
2 Dept. of Computer Engineering, Dr. J J Magdum College Of Engineering, jaysingpur
3 Dept. of Computer Engineering, Dr. J J Magdum College Of Engineering, jaysingpur

4 Assistant Professor, Dept. of Computer Engineering, Dr. J J Magdum College Of Engineering, jaysingpur

---***---

Abstract - We discuss update scheduling in streaming data
warehouses, which combine the features of traditional data
warehouses and data stream systems. In our setting, external
sources push append-only data streams into the warehouse
with a wide range of Inter arrival times. While traditional
data warehouses are typically refreshed during downtimes,
streaming warehouses are updated as new data arrive. We
model the streaming warehouse update problem as a
scheduling problem, where jobs correspond to processes that
load new data into tables, and whose objective is to minimize
data staleness over time (at time t, if a table has been updated
with information up to some earlier time r, its staleness is t
minus r). We then propose a scheduling framework that
handles the complications encountered by a stream
warehouse: view hierarchies and priorities, data consistency,
inability to preempt updates, heterogeneity of update jobs
caused by different inter arrival times and data volumes
among different sources, and transient overload. A novel
feature of our framework is that scheduling decisions do not
depend on properties of update jobs (such as deadlines), but
rather on the effect of update jobs on data staleness. Finally,
we present a suite of update scheduling algorithms and
extensive simulation experiments to map out factors which
affect their performance.

Key Words: (Size 10 & Bold) Key word1, Key word2, Key
word3, etc (Minimum 5 to 8 key words)…

1.INTRODUCTION

Traditional data warehouses are updated during
downtimes and store layers of complex materialized views
over terabytes of historical data. On the other hand, Data
Stream Management Systems (DSMS) support simple
analyses on recently arrived data in real time. Streaming
warehouses such as Data Depot combine the features of
these two systems by maintaining a unified view of current
and historical data. This enables a real-time decision support
for business-critical applications that receive streams of
append-only data from external sources.

The goal of a streaming warehouse is to propagate new

data across all the relevant tables and views as quickly as

possible. Once new data are loaded, the applications and triggers

defined on the warehouse can take immediate action. This

allows businesses to make decisions in nearly real time, which

may lead to increased profits, improved customer satisfaction,

and prevention of serious problems that could develop if no

action was taken.

1.1 Scheduling

The closest work to ours is, which finds the best way to
schedule updates of tables and views in order to maximize
data freshness. Aside from using a different definition of
staleness, our Max Benefit basic algorithm is analogous to
the max-impact algorithm from Labrinidis and
Roussopoulos, as is our “Sum” priority inheritance
technique. Our main innovation is the multi track
Proportional algorithm for scheduling the large and
heterogeneous job sets encountered by a Streaming
warehouse additionally, we propose an update chopping to
deal with transient overload. Another closely related work is
which studies the complexity of minimizing the staleness of a
set of base tables in a streaming warehouse. In general,
interesting scheduling problems are often NP hard in the
offline setting and hard to approximate offline. This
motivates the use of heuristics such as our greedy Max
Benefit algorithm. While we believe that update scheduling
in a streaming warehouse is novel, our solution draws from a
number of recent scheduling results. In particular, there has
been work on real-time scheduling of heterogeneous tasks
on a multiprocessor to address the tension between
partitioned scheduling and global scheduling. The Pair
algorithm and its variants have been proposed when tasks
are perceptible, however we must assume that data loading
tasks are non pre-emptable. Our Proportional algorithm
attempts to make a fair allocation of resources to non pre-
emptible tasks in a multi track setting, and is the first such
algorithm of which we are aware.

1.2 Data Warehousing

There has been some recent work on streaming data
warehousing, including system design, real-time ETL
Processing, and continuously inserting a streaming data feed
at bulk-load speed. These efforts are complementary to our
work they also aim to minimize data staleness, but they do
so by reducing the running time of update jobs once the jobs
are scheduled. A great deal of existing data warehousing

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 02 | Feb-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 812

research has focused on efficient maintenance of various
classes of materialized views, and is orthogonal to this paper.
In and discuss consistency issues under various view
maintenance policies. As discussed earlier, maintaining
consistency in a streaming data warehouse is simpler due to
the append-only nature of data streams. There has also been
work on scheduling when to pull data into a warehouse to
satisfy data freshness guarantees. This work does not apply
to the push based stream warehouses studied in this paper,
which do not have control over the data arrival patterns.
Quantifying the freshness of a data warehouse was
addressed in several works.

Table -1: Symbols Used In This Paper

Symbols Meaning
Ps Period of stream s
Ji Update job for table i
Ei(n) Execution time of Ji on data produced in

a time interval of length n
Ri Release time of Ji
Pi Priority of table i
Fi(r) Freshness of table i at time r
Si(r) Staleness of table I at time r
 F1 Freshness delta of table i
Ai Time to initialize the ETL process for

table i
Bi Data arrival rate to table i

Data Stream Management
One important difference between a DSMS and a data

stream warehouse is that the former only has a limited working

memory and does not store any part of the stream permanently.

Another difference is that a DSMS may drop a fraction of the

incoming elements during overload, whereas a streaming data

warehouse may defer some update jobs, but must eventually

execute them.

2. SCHEDULING ALGORITHMS

2.1. Basic Algorithms

The basic scheduling algorithms prioritize jobs to be

executed on individual tracks, and will serve as building blocks

of our multi track solutions. For example, the Earliest-Deadline-

First (EDF) algorithm orders released jobs by proximity to their

deadlines. EDF is known to be an optimal hard real-time

scheduling algorithm for a single track (w.r.t. maximizing the

number of jobs that meet their deadlines), if the jobs are pre

emptible. Since our jobs are prioritized, using EDF directly does

not result in the best performance. Instead we use one of the

following basic algorithms.

Prioritized EDF (EDF-P) orders jobs by their priorities, breaking

ties by deadlines. Our model does not directly have deadlines,

but they may be estimated as follows: For each job ,we define its

release time as the last time ’s freshness delta changed from zero

to nonzero (i.e., the last arrival of new data in case of base

tables, or, for derived tables, the last movement of the trailing

edge point of its source tables).

2.2. Job Partitioning
If a job set is heterogeneous with respect to the periods

and execution times (long execution times versus short periods),

scheduler performance is likely to benefit if some fraction of the

processing resources are guaranteed to short jobs (corresponding

to tables that are updated often, which generally have higher

priority). The traditional method for ensuring resource allocation

is to partition the job set and to schedule each partition

separately [7] (and to repartition the set whenever new tables or

sources are added or existing ones removed, or whenever the

parameters of existing jobs change significantly). However,

recent results indicate that global scheduling (i.e., using a single

track to schedule one or more jobs at a time) provides better

performance, especially in a soft real-time setting, where job

lateness needs to be minimized. In this section, we investigate

two methods for ensuring resources for short jobs while still

providing a degree of global scheduling:

EDF-Partitioned and Proportional.

EDF-Partitioned Strategy
The EDF-partitioned algorithm assigns jobs to tracks in

a way that ensures that each track has a feasible non-preemptive

EDF schedule. A feasible schedule means that if the local

scheduler were to use the EDF algorithm to decide which job to

schedule next, all jobs would meet their deadlines. In our setting,

we assume that the deadline of an update job is its release time

plus its period, i.e., for each table, we want to load every batch

of new data before the next batch arrives.

Proportional Partitioning Strategy
The EDF-partitioned algorithm has some weaknesses.

For one, a collection of jobs with identical periods (and perhaps

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 02 | Feb-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 813

Identical execution times) might be partitioned among several

tracks. The track promotion condition among these jobs and

tracks is the same as the condition which limits the initial track

packing—and therefore no track promotion will be done. We

can patch the EDF-partitioned algorithm by using multi track

schedulability conditions, but instead we move directly to a

more flexible algorithm.

3. CONCLUSIONS

In this paper, we motivated, formalized, and solved the
problem of nonpreemptively scheduling updates in a real-
time streaming warehouse. We proposed the notion of
average staleness as a scheduling metric and presented
scheduling algorithms designed to handle the complex
environment of a streaming data warehouse. We then
proposed a scheduling framework that assigns jobs to
processing tracks and uses basic algorithms to schedule jobs
within a track. The main feature of our framework is the
ability to reserve resources for short jobs that often
correspond to important frequently refreshed tables, while
avoiding the inefficiencies associated with partitioned
scheduling techniques. We have implemented some of the
proposed algorithmsin the Data Depot streaming warehouse,
which is currently used for several very large warehousing
projects within AT&T. As future work, we plan to extend our
framework with new basic algorithms. We also plan to fine-
tune the Proportional algorithm—in our experiments, even
the aggressive version with “all” allocation still exhibits signs
of multiple operating domains, and therefore can likely be
improved upon (however, it is the first algorithm of its class
that we are aware of). Another interesting problem for
future work involves choosing the right scheduling “gran-
ularity” when it is more efficient to update multiple tables
together, as mentioned. We intend to explore the tradeoffs
between update efficiency and minimizing staleness in this
context.

ACKNOWLEDGEMENT
The authors would like to thank Our Guide & HOD Madam

for their helpful discussions, and they thank the anonymous

reviewers for their helpful comments.

REFERENCES

[1] B. Adelberg, H. Garcia-Molina, and B. Kao, “Applying
Update Streams in a Soft Real-Time Database System,” Proc.
ACM SIGMOD Int’l Conf. Management of Data, pp. 245-256,
1995.

[2] B. Babcock, S. Babu, M. Datar, and R. Motwani, “Chain:
Operator Scheduling for Memory Minimization in Data
Stream Systems,” Proc. ACM SIGMOD Int’l Conf. Management
of Data, pp. 253-264, 2003.

[3] S. Babu, U. Srivastava, and J. Widom, “Exploiting K-
constraints to Reduce Memory Overhead in Continuous
Queries over Data Streams,” ACM Trans. Database Systems,
vol. 29, no. 3, pp. 545- 580, 2004.

[4] S. Baruah, “The Non-pre-emptive Scheduling of Periodic
Tasks upon Multiprocessors,” Real Time Systems, vol. 32,
nos. 1/2, pp. 9- 20, 2006.

[5] S. Baruah, N. Cohen, C. Plaxton, and D. Varvel,
“Proportionate Progress: A Notion of Fairness in Resource
Allocation,” Algorithmica, vol. 15, pp. 600-625, 1996.

