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Abstract - With the advent of heterogeneous systems it is 

evident that achieving high performance and better 

resource utilization is impossible without optimal 

scheduling of the tasks. Keeping in view the various issues in 

performance, previously many task scheduling algorithms 

have been proposed in order to achieve optimal scheduling 

of tasks. This paper makes an effort in list scheduling 

heuristics by proposing an algorithm called level based 

scheduling. Simulated results of proposed algorithm have 

been analyzed and compared with existing list based 

scheduling heuristics in terms of speedup, efficiency and 

schedule length. 
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1.  INTRODUCTION 

Heterogeneous distributed computing includes resources 
of varying capacity forming a fast system to execute 
computationally intensive, parallel and simultaneous 
applications. One of the major issues in heterogeneous 
distributed computing is to schedule the tasks of requests 
such that the general running time is minimized. Task 
scheduling problem has been known to be NP-complete [1, 
2]. Many heuristics have been planned in the literature for 
task scheduling problem as there is no accurate solution 
for NP-completeness. Task scheduling is broadly classified 
into static scheduling and dynamic scheduling. In static 
scheduling [1, 2, 4, 14] all the data associated with a 
parallel program, for example: task managing time, 
communication time and data dependency are already 
available. In dynamic scheduling [8, 15] the choices of task 
scheduling is done at run time. Hence the target of 
dynamic scheduling is to schedule tasks and minimize the 
scheduling overhead. Static task scheduling have been 
based on various scheduling heuristics namely: List 
scheduling algorithms [1-4, 6, 12, 14], Duplication based 
algorithms [7, 10], Cluster based algorithms [13] and 
Random guided search algorithms [4]. In list based 
heuristics, tasks are placed in a priority list with every task 
having a unique and special priority. A task with highest 
priority from the priority list is scheduled onto a suitable 
processor by using task’s LBT (Least Beginning Time) and 

LCT (Least Completion Time). Clustering heuristics were 
mostly planned for standardized frameworks and the 
point is to frame clusters of tasks and then scheduled onto 
processors. Clustering is the best way to minimize the 
communication delay within DAG’s (directed acyclic 
graph) by grouping closely related tasks within a cluster 
on the same processor. Duplication is very useful strategy 
in parallel processing to reduce the communication 
overhead by duplicating some task on more than one 
processor. The duplication heuristics deliver the shortest 
make-span in all the heuristics, yet they have a 
disadvantage i.e. the higher time complexity. Guided 
random scheduling techniques [16] make use of the theory 
of evolution and ordinary genetics to produce near 
optimal task schedules. 
 

2. RELATED WORK 

List based scheduling has been used by number of 
researchers for scheduling purposes. Some well known 
scheduling algorithms are Critical Path on Processor 
(CPOP) [1], Heterogeneous Earliest Finish Time (HEFT) [1, 
9], Expected Completion Time Based Scheduling (ECTS) 
[14] and Performance Effective Task Scheduling (PETS) 
[3]. Eswri et al. [14] Expected Completion Time Based 
Scheduling is a static task scheduling algorithm. It is used 
to effectively schedule application tasks on to 
heterogeneous processor. The algorithm finds the 
sequence of execution by calculating the priorities of tasks 
on each level, then assign these tasks onto appropriate 
processors. The priority of each task is calculated with the 
help of expected completion time (ECT), which is 
calculated by using the average computation time and 
maximum communication cost. Haluk et al. [1] presented 
two novel algorithms dealing with bounded number of 
heterogeneous processors having a high performance and 
low scheduling overhead. The algorithms proposed were 
critical path on processor (CPOP) and heterogeneous 
earliest finish time (HEFT). The HEFT algorithm used 
upward rank method for generating a priority list and 
assigned these tasks onto suitable processors in a way that 
the earliest finish time is minimized. On the other hand the 
second algorithm proposed CPOP uses a summation of 
upward and downward ranks to estimate the priorities of 
the tasks. Mohammad et al. [5] betterment in the 
heterogeneous distributed computing system (HeDCS) has 



          International Research Journal of Engineering and Technology (IRJET)      e-ISSN: 2395 -0056 

               Volume: 03 Issue: 02 | Feb-2016                       www.irjet.net                                                              p-ISSN: 2395-0072 

 

© 2016, IRJET       |       Impact Factor value: 4.45          |        ISO 9001:2008 Certified Journal       |       Page 952 
 

been provide by the longest dynamic critical path 
algorithm,   with bounded number of processors. The 
LDCP is a list based scheduling algorithm it works on key 
tasks are identified and scheduled based on the minimum 
schedule length generated. The algorithm has three phases 
the task selection phase, processor selection phase and the 
status update phase. Time complexity of the LDCP 
algorithm is of O (m*n3) where m is number of processors 
and n is the number of tasks. The comparative study 
showed that the LDCP algorithm is better than the HEFT 
and LDS algorithm. Hamid et al. [16] proposed a novel list 
based scheduling algorithm for heterogeneous computing 
environment. The algorithm is called predict earliest finish 
time (PEFT). The algorithm has a complexity comparable 
to most of the existing state of art algorithms but offers a 
better makespan. This has been achieved by using a 
feature called lookahead which helps to calculate the 
optimistic cost table (OCT) without increasing the 
complexity. The algorithm is based on the OCT and is used 
for both task selection and processor assignment. There 
are three phases to it namely optimistic cost table 
calculation, task prioritization phase and processor 
selection phase. Remainder of the paper is organized as 
follows: Section 3 illustrates the Models to be followed. 
Section 4 describes the proposed algorithm. Section 5 
represents the simulation results and analysis Section 6 
shows the conclusion and future scope. 

3. Models 
3.1 Task model 

A parallel application can be broken into a number of tasks 
having data dependencies among them. This configuration 
can be represented using a directed acyclic graph (DAG), 
G= (X, Y), where X is the set of ‘n’ tasks and Y is the set of 
‘e’ edges representing relations between these tasks. Each 
edge y between task ti and tj є Y signifies a hierarchy of 
execution implying that task tj is executed after task ti. A 
parent-less task is referred as entry task (tentry) and a 
child-less task is called as exit task (texit). Each edge y 
between the tasks (ti,tj) has a value assigned to it 
representing the cost of communication. Execution of a 
particular task can start on a processor only when all the 
tasks above it in hierarchy have been executed and the 
data from them is available on the processor.  
In order to set an agreement a few assumptions are made: 
1. There are no conflicts between inter-processor 

communications. 
2. Communication can be parallel to the computation. 
3. The execution of tasks in an application is non- 

preemptive. 
The cost of communication ci,j is incurred when a task 
ti running on a processor pm needs to transfer βij units 
of data to a task tj running on a processor pn and can 
be defined as:  
ci j= Im + U(m,n) * βij                                                           (1) 

Where Im is the time taken by pm to start 
communication, βij is the amount of data transferred 
from tasks ti and tj also called bandwidth, Um,n is the 
time taken to transfer each unit of data from pm to pn. 

 
Fig -1: Directed Acyclic Graph 
 
Fig 1 shows the one instance of DAG with 10 tasks and 
dependency in the form of precedence constraints. The 
average communication cost of sending data from the task 
ti to tj can be defined as  
 
Cij=Ō+Ū*βij                                             (2) 
 
Where Ō is average communication startup time and Ū is 
the average transfer rate over all processors. If both the 
tasks are on the same processors then cij=0 as inter-
processor communication time is negligible. The least 
beginning time (LBT) is the earliest time at which the 
processing of a task can start and least completion time 
(LCT) is the least time at which the processing can be 
completed. They are represented as LBT (ti,pj) and LCT 
(ti,pj) representing the least beginning time and least 
completion time for processing of the task ti on the 
processor pj respectively.  
 
LBT (tentry,pj)=0;                                                              (3)          
LBT(ti,pj)=max{avail[j], maxtkЄpred(ti) (ACT(tk)+ck,i )}          (4) 
 
Where ACT is the actual completion time of a task tk on the 
processor pj, avail[j] is the time when processor pj 
becomes available and it is ready to execute task ti. In 
order to calculate LCT of a task ti, all the tasks above the 
current task ti must have been scheduled. 
 
LCT (ti,pj )=h (ti,tj)+LBT(ti,pj)                                                (5) 
 
Where h(ti, tj) is the computation cost of the task ti on 
processor pj. Once the all the tasks in the given graph are 
scheduled, the schedule length (total execution time) will 
be ACT of the exit task texit, the schedule length also called 
makespan is defined as 
makespan =max (ACT (texit ))                                                    (6) 
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3.2 MACHINE MODEL 
 

The machines which run in a heterogeneous environment 
consist of processing nodes. The computing system is 
represented by set P= {pi | pi є P, i = 1, 2, 3…, |P|} is the set 
of fully connected and bounded processors in 
heterogeneous environment, the computation cost of 
different tasks can vary among the processors due to 
heterogeneity as shown in Table 1. 
 
Table -1: Computation cost matrix 

 
 

Scheduling of tasks is considered to be non-pre-emptive 
and also the communication overhead on two tasks 
scheduled on same processor is considered zero. Once a 
task is scheduled then processor forwards its output data 
to its child tasks. The aim here is to provide a solution to 
the scheduling problem such that it produces minimum 
schedule length. 
 

4. PROPOSED ALGORITHM 
 
The proposed hierarchical expected completion time 
based scheduling (HECTS) algorithm is described in fig 2.  
The algorithm completes into two phases. First phase 
deals with the prioritization of the tasks based on levelized 
priority and the second phase deals with the processor 
selection i.e. task scheduling. 

4.1. Priority Based Task sequence 
generation. 

This phase generates a list of tasks ordered on the basis of 
the priorities assigned to them. The basis of an optimal 
solution is the sequence of tasks generated. The current 
phase is divided into two parts. 

A. Task prioritization: 
This stage deals with the priority computation to each task 
according to their level in the task graph. The priority of a 
task is based on the mean computation cost (MCC) and the 
maximum time taken for the data to arrive at that 
particular task (MDTC) i.e. Maximum Data Transfer cost. 
The MCC can be defined as follows: 
It is the sum of the computation costs of the tasks on each 
processor divided by the number of processors. 
MCC (ti) = ∑p

j=1 h(ti, tj)/P                                                       (7) 
 

Here h (ti, tj) is the estimated execution time to compute 
the task ti on the processor pj. In addition to this, there can 
be more than one parent to a task and the data from 
different parents might reach the current processor at 
different times. Thus the completion time for a task will 
also depend on the maximum cost of data arrival on the 
current processor from its parent task in addition to MCC. 
MDTC can be defined as follows. 
 
MDTC (tj)=maxti ϵpred(t_j ) (Ci,j)                                                     (8) 
  
(For a DAG having n tasks and e edge the MDTC of a task 
(tj) is the maximum time that a task spends to receive data 
from all its parents.) 
Here it is assumed that the data arrival cost for the first 
task at level one is ‘0’ because of the fact that it is an entry 
task. The tasks which have a single parent will have the 
MDTC equal to the time taken by the data to reach the 
current task from the parent task. Whereas, if the task has 
multiple parents the maximum of the data arrival costs 
from the parents is considered the MDTC of the task. A 
prioritization key value (PKV) is calculated to assign the 
priorities that will decide the task scheduling. PKV’s 
defined as time taken for a task to be ready for processing 
based on computed values of MCC and MDTC values. The 
PKV is calculated by adding the MCC of the parent task to 
the MDTC of the current task and MCC of current task.  
 

PKV(ti)=maxtjЄpred(ti){MCC(tj)}+MCC(ti)+MDTC(ti)            (9)    

                                  

B. Task Selection: 

This is the second step of task prioritization phase dealing 
with the setting of priorities for the different tasks. In this 
stage all tasks are sorted in a non-increasing order for the 
PKV values which were calculated in the previous stage 
and priorities are assigned to them. Thus the task with 
higher PKV is ranked higher in the priority list. 
 
Table -2: Priority computation for given application 

 
 
Table 2 shows the level wise computed PKV 
corresponding to different tasks and the priorities which 
have been assigned to the tasks. 
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Fig-2: HECTS algorithm 

 4.2. Processor selection 
Once the priorities for the different tasks are set, the focus 
can shift to the assignment of tasks to a certain processor 
based on insertion scheduling. The insertion based policy 
works by considering the time slots between two already 
assigned tasks and assigns the tasks in those slots if 
possible, without violating the precedence constraints of 
the tasks in the given graph. The ideal time slot can be 
calculated by subtracting the finish time from the starting 
time of the two tasks assigned. Thus a time slot is usable 
for current task if it satisfies the precedence constraints 
specified in the task graph and is greater or equal to the 
computation time required for the current task. Starting 
time for search can be set the time ti, i.e. when the current 
task is ready with all the data on the current processor. It 
continues till it finds a time slot long enough to 
accommodate the current task. In-case no ideal slot is 
found in-between, insertion based policy inserts the 
current task after the last task scheduled on that 
processor.  
Using above mentioned processor selection strategy all 
the tasks in the given graph are assigned to the respective 
processors. Table 3 shows the actual mapping of tasks to 
their corresponding processors.  
 

Table -3: Scheduled Processors 

 
 

 

 

5. Simulation results and Analysis: 

Using the experimental setup discussed earlier, a number 
of DAGs representing various task models were scheduled 
to test the proposed algorithm. The results were recorded 
and measured according to different matrices explained 
below: 

 5.1. Performance metrics: 
Speedup: The speedup value for a given graph is 
computed by dividing the sequential execution time by the 
parallel execution time. It is defined as: 
 
Speedup= (minpj∈P{∑ti∈X h(ti,tj)}/makespan 
 
Efficiency: It is defined as speedup divided with number 
of processors in each run. 
Schedule Length: It is the completion time of an exit task 
in the given DAG. It is also called overall makespan. 
makespan=max(ACT (texit)) 
 

 5.2. Comparative Analysis 
Schedule generated by the HECTS algorithm are compared 
against CPOP algorithm shown in fig 3. The DAG example 
as shown in fig 1 and its computation cost shown in Table-
1 is used for results. The makespan of HECTS algorithm is 
73, which is smaller than the makespan of CPOP algorithm 
which is 86.    

 
Fig -3: Schedules generated by (a) HECTS and (b) CPOP 
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5.3Performance comparison: 
The performance comparison of HECTS is done with CPOP 
on various performance matrices as described previously. 
Fifty different graphs are generated with varying number 
of task sizes from 8 to 26 in increments of 2 and CCR vary 
from 1to 2. The available processors in each case were 
taken to be three and can be applied to any number of 
processors. 
Chart 1 shows the comparison of HECTS with the CPOP 
algorithm based on average schedule length (ASL). The 
Chart shows how ASL varies for CPOP and HECTS as the 
number of tasks increases. It is observed that schedule 
length increases as number of tasks increases in term of 
ASL. HECTS algorithm is better than CPOP algorithm by 
7.36% and 5.28% when number of tasks is 8 and 26. 
 

 
Chart -1: Average schedule length for varying task sizes. 
 
 Chart 2 shows the variation of average speedup with the 
increase in number of tasks. HECTS is observed to be 
better than that of CPOP algorithm by 5% and 5.75% when 
number of tasks is 8 and 26. Chart 3 shows the 
comparison of HECTS with CPOP algorithm based on 
average efficiency. HECTS algorithm is better than CPOP 
algorithm by 2.69% and 5.85% when number of tasks is 8 
and 26. 
 

 
Chart -2: Average speedup for varying task sizes. 
 

 
Chart -3: Average efficiency for varying task sizes. 
 
Chart 4 shows how the ASL changes when CCR is varied 
from 1 to 2. It shows the HECTS algorithm is better than 
CPOP algorithm by 5.91% and 9.22% when CCR value is 1 
and 2. Chart 5 shows how the average speedup changes 
when CCR is varied from 1 to 2. It shows the HECTS 
algorithm is better than CPOP algorithm by 3.64% and 
6.63% when CCR value is 1 and 2. 
 

 
Chart -4: Average schedule length for varying CCR values. 
 

 
Chart -5: Average speedup for varying CCR values. 
 
Chart 6 shows how the average efficiency changes. It 
shows the HECTS algorithm is better than CPOP algorithm 
by 1.92% and 5.59% when CCR value is 1 and 2. 
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Chart -6: Average efficiency for varying CCR values. 
 

6. Conclusion 
The paper presents a new scheduling technique for the 
non-preemptive heterogeneous systems. The algorithm 
tries to minimize the schedule length for a given 
application. For the purpose of empirical evaluation three 
parameters are used namely: schedule length, speedup 
and efficiency. The comparative study shows HECTS 
algorithm is better than CPOP algorithm. 
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