
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 02 | Feb-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 951

A Heterogeneous Static Hierarchical Expected Completion Time Based

Scheduling Algorithm in Multiprocessor System

Sukhjit Singh, Nirmal Kaur

Sukhjit Singh, M.E. Student, UIET, Panjab University, Chandigarh, India
Nirmal Kaur, Assistant Professor, Dept. of Comp. Sc. & Engg, UIET, Panjab University, Chandigarh, India

---***---
Abstract - With the advent of heterogeneous systems it is

evident that achieving high performance and better

resource utilization is impossible without optimal

scheduling of the tasks. Keeping in view the various issues in

performance, previously many task scheduling algorithms

have been proposed in order to achieve optimal scheduling

of tasks. This paper makes an effort in list scheduling

heuristics by proposing an algorithm called level based

scheduling. Simulated results of proposed algorithm have

been analyzed and compared with existing list based

scheduling heuristics in terms of speedup, efficiency and

schedule length.

Key words: Directed acyclic graphs, List based scheduling,

Heterogeneous environment, Task scheduling.

1. INTRODUCTION

Heterogeneous distributed computing includes resources
of varying capacity forming a fast system to execute
computationally intensive, parallel and simultaneous
applications. One of the major issues in heterogeneous
distributed computing is to schedule the tasks of requests
such that the general running time is minimized. Task
scheduling problem has been known to be NP-complete [1,
2]. Many heuristics have been planned in the literature for
task scheduling problem as there is no accurate solution
for NP-completeness. Task scheduling is broadly classified
into static scheduling and dynamic scheduling. In static
scheduling [1, 2, 4, 14] all the data associated with a
parallel program, for example: task managing time,
communication time and data dependency are already
available. In dynamic scheduling [8, 15] the choices of task
scheduling is done at run time. Hence the target of
dynamic scheduling is to schedule tasks and minimize the
scheduling overhead. Static task scheduling have been
based on various scheduling heuristics namely: List
scheduling algorithms [1-4, 6, 12, 14], Duplication based
algorithms [7, 10], Cluster based algorithms [13] and
Random guided search algorithms [4]. In list based
heuristics, tasks are placed in a priority list with every task
having a unique and special priority. A task with highest
priority from the priority list is scheduled onto a suitable
processor by using task’s LBT (Least Beginning Time) and

LCT (Least Completion Time). Clustering heuristics were
mostly planned for standardized frameworks and the
point is to frame clusters of tasks and then scheduled onto
processors. Clustering is the best way to minimize the
communication delay within DAG’s (directed acyclic
graph) by grouping closely related tasks within a cluster
on the same processor. Duplication is very useful strategy
in parallel processing to reduce the communication
overhead by duplicating some task on more than one
processor. The duplication heuristics deliver the shortest
make-span in all the heuristics, yet they have a
disadvantage i.e. the higher time complexity. Guided
random scheduling techniques [16] make use of the theory
of evolution and ordinary genetics to produce near
optimal task schedules.

2. RELATED WORK

List based scheduling has been used by number of
researchers for scheduling purposes. Some well known
scheduling algorithms are Critical Path on Processor
(CPOP) [1], Heterogeneous Earliest Finish Time (HEFT) [1,
9], Expected Completion Time Based Scheduling (ECTS)
[14] and Performance Effective Task Scheduling (PETS)
[3]. Eswri et al. [14] Expected Completion Time Based
Scheduling is a static task scheduling algorithm. It is used
to effectively schedule application tasks on to
heterogeneous processor. The algorithm finds the
sequence of execution by calculating the priorities of tasks
on each level, then assign these tasks onto appropriate
processors. The priority of each task is calculated with the
help of expected completion time (ECT), which is
calculated by using the average computation time and
maximum communication cost. Haluk et al. [1] presented
two novel algorithms dealing with bounded number of
heterogeneous processors having a high performance and
low scheduling overhead. The algorithms proposed were
critical path on processor (CPOP) and heterogeneous
earliest finish time (HEFT). The HEFT algorithm used
upward rank method for generating a priority list and
assigned these tasks onto suitable processors in a way that
the earliest finish time is minimized. On the other hand the
second algorithm proposed CPOP uses a summation of
upward and downward ranks to estimate the priorities of
the tasks. Mohammad et al. [5] betterment in the
heterogeneous distributed computing system (HeDCS) has

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 02 | Feb-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 952

been provide by the longest dynamic critical path
algorithm, with bounded number of processors. The
LDCP is a list based scheduling algorithm it works on key
tasks are identified and scheduled based on the minimum
schedule length generated. The algorithm has three phases
the task selection phase, processor selection phase and the
status update phase. Time complexity of the LDCP
algorithm is of O (m*n3) where m is number of processors
and n is the number of tasks. The comparative study
showed that the LDCP algorithm is better than the HEFT
and LDS algorithm. Hamid et al. [16] proposed a novel list
based scheduling algorithm for heterogeneous computing
environment. The algorithm is called predict earliest finish
time (PEFT). The algorithm has a complexity comparable
to most of the existing state of art algorithms but offers a
better makespan. This has been achieved by using a
feature called lookahead which helps to calculate the
optimistic cost table (OCT) without increasing the
complexity. The algorithm is based on the OCT and is used
for both task selection and processor assignment. There
are three phases to it namely optimistic cost table
calculation, task prioritization phase and processor
selection phase. Remainder of the paper is organized as
follows: Section 3 illustrates the Models to be followed.
Section 4 describes the proposed algorithm. Section 5
represents the simulation results and analysis Section 6
shows the conclusion and future scope.

3. Models
3.1 Task model

A parallel application can be broken into a number of tasks
having data dependencies among them. This configuration
can be represented using a directed acyclic graph (DAG),
G= (X, Y), where X is the set of ‘n’ tasks and Y is the set of
‘e’ edges representing relations between these tasks. Each
edge y between task ti and tj є Y signifies a hierarchy of
execution implying that task tj is executed after task ti. A
parent-less task is referred as entry task (tentry) and a
child-less task is called as exit task (texit). Each edge y
between the tasks (ti,tj) has a value assigned to it
representing the cost of communication. Execution of a
particular task can start on a processor only when all the
tasks above it in hierarchy have been executed and the
data from them is available on the processor.
In order to set an agreement a few assumptions are made:
1. There are no conflicts between inter-processor

communications.
2. Communication can be parallel to the computation.
3. The execution of tasks in an application is non-

preemptive.
The cost of communication ci,j is incurred when a task
ti running on a processor pm needs to transfer βij units
of data to a task tj running on a processor pn and can
be defined as:
ci j= Im + U(m,n) * βij (1)

Where Im is the time taken by pm to start
communication, βij is the amount of data transferred
from tasks ti and tj also called bandwidth, Um,n is the
time taken to transfer each unit of data from pm to pn.

Fig -1: Directed Acyclic Graph

Fig 1 shows the one instance of DAG with 10 tasks and
dependency in the form of precedence constraints. The
average communication cost of sending data from the task
ti to tj can be defined as

Cij=Ō+Ū*βij (2)

Where Ō is average communication startup time and Ū is
the average transfer rate over all processors. If both the
tasks are on the same processors then cij=0 as inter-
processor communication time is negligible. The least
beginning time (LBT) is the earliest time at which the
processing of a task can start and least completion time
(LCT) is the least time at which the processing can be
completed. They are represented as LBT (ti,pj) and LCT
(ti,pj) representing the least beginning time and least
completion time for processing of the task ti on the
processor pj respectively.

LBT (tentry,pj)=0; (3)
LBT(ti,pj)=max{avail[j], maxtkЄpred(ti) (ACT(tk)+ck,i)} (4)

Where ACT is the actual completion time of a task tk on the
processor pj, avail[j] is the time when processor pj
becomes available and it is ready to execute task ti. In
order to calculate LCT of a task ti, all the tasks above the
current task ti must have been scheduled.

LCT (ti,pj)=h (ti,tj)+LBT(ti,pj) (5)

Where h(ti, tj) is the computation cost of the task ti on
processor pj. Once the all the tasks in the given graph are
scheduled, the schedule length (total execution time) will
be ACT of the exit task texit, the schedule length also called
makespan is defined as
makespan =max (ACT (texit)) (6)

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 02 | Feb-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 953

3.2 MACHINE MODEL

The machines which run in a heterogeneous environment
consist of processing nodes. The computing system is
represented by set P= {pi | pi є P, i = 1, 2, 3…, |P|} is the set
of fully connected and bounded processors in
heterogeneous environment, the computation cost of
different tasks can vary among the processors due to
heterogeneity as shown in Table 1.

Table -1: Computation cost matrix

Scheduling of tasks is considered to be non-pre-emptive
and also the communication overhead on two tasks
scheduled on same processor is considered zero. Once a
task is scheduled then processor forwards its output data
to its child tasks. The aim here is to provide a solution to
the scheduling problem such that it produces minimum
schedule length.

4. PROPOSED ALGORITHM

The proposed hierarchical expected completion time
based scheduling (HECTS) algorithm is described in fig 2.
The algorithm completes into two phases. First phase
deals with the prioritization of the tasks based on levelized
priority and the second phase deals with the processor
selection i.e. task scheduling.

4.1. Priority Based Task sequence
generation.

This phase generates a list of tasks ordered on the basis of
the priorities assigned to them. The basis of an optimal
solution is the sequence of tasks generated. The current
phase is divided into two parts.

A. Task prioritization:
This stage deals with the priority computation to each task
according to their level in the task graph. The priority of a
task is based on the mean computation cost (MCC) and the
maximum time taken for the data to arrive at that
particular task (MDTC) i.e. Maximum Data Transfer cost.
The MCC can be defined as follows:
It is the sum of the computation costs of the tasks on each
processor divided by the number of processors.
MCC (ti) = ∑p

j=1 h(ti, tj)/P (7)

Here h (ti, tj) is the estimated execution time to compute
the task ti on the processor pj. In addition to this, there can
be more than one parent to a task and the data from
different parents might reach the current processor at
different times. Thus the completion time for a task will
also depend on the maximum cost of data arrival on the
current processor from its parent task in addition to MCC.
MDTC can be defined as follows.

MDTC (tj)=maxti ϵpred(t_j) (Ci,j) (8)

(For a DAG having n tasks and e edge the MDTC of a task
(tj) is the maximum time that a task spends to receive data
from all its parents.)
Here it is assumed that the data arrival cost for the first
task at level one is ‘0’ because of the fact that it is an entry
task. The tasks which have a single parent will have the
MDTC equal to the time taken by the data to reach the
current task from the parent task. Whereas, if the task has
multiple parents the maximum of the data arrival costs
from the parents is considered the MDTC of the task. A
prioritization key value (PKV) is calculated to assign the
priorities that will decide the task scheduling. PKV’s
defined as time taken for a task to be ready for processing
based on computed values of MCC and MDTC values. The
PKV is calculated by adding the MCC of the parent task to
the MDTC of the current task and MCC of current task.

PKV(ti)=maxtjЄpred(ti){MCC(tj)}+MCC(ti)+MDTC(ti) (9)

B. Task Selection:

This is the second step of task prioritization phase dealing
with the setting of priorities for the different tasks. In this
stage all tasks are sorted in a non-increasing order for the
PKV values which were calculated in the previous stage
and priorities are assigned to them. Thus the task with
higher PKV is ranked higher in the priority list.

Table -2: Priority computation for given application

Table 2 shows the level wise computed PKV
corresponding to different tasks and the priorities which
have been assigned to the tasks.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 02 | Feb-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 954

Fig-2: HECTS algorithm

 4.2. Processor selection
Once the priorities for the different tasks are set, the focus
can shift to the assignment of tasks to a certain processor
based on insertion scheduling. The insertion based policy
works by considering the time slots between two already
assigned tasks and assigns the tasks in those slots if
possible, without violating the precedence constraints of
the tasks in the given graph. The ideal time slot can be
calculated by subtracting the finish time from the starting
time of the two tasks assigned. Thus a time slot is usable
for current task if it satisfies the precedence constraints
specified in the task graph and is greater or equal to the
computation time required for the current task. Starting
time for search can be set the time ti, i.e. when the current
task is ready with all the data on the current processor. It
continues till it finds a time slot long enough to
accommodate the current task. In-case no ideal slot is
found in-between, insertion based policy inserts the
current task after the last task scheduled on that
processor.
Using above mentioned processor selection strategy all
the tasks in the given graph are assigned to the respective
processors. Table 3 shows the actual mapping of tasks to
their corresponding processors.

Table -3: Scheduled Processors

5. Simulation results and Analysis:

Using the experimental setup discussed earlier, a number
of DAGs representing various task models were scheduled
to test the proposed algorithm. The results were recorded
and measured according to different matrices explained
below:

 5.1. Performance metrics:
Speedup: The speedup value for a given graph is
computed by dividing the sequential execution time by the
parallel execution time. It is defined as:

Speedup= (minpj∈P{∑ti∈X h(ti,tj)}/makespan

Efficiency: It is defined as speedup divided with number
of processors in each run.
Schedule Length: It is the completion time of an exit task
in the given DAG. It is also called overall makespan.
makespan=max(ACT (texit))

 5.2. Comparative Analysis
Schedule generated by the HECTS algorithm are compared
against CPOP algorithm shown in fig 3. The DAG example
as shown in fig 1 and its computation cost shown in Table-
1 is used for results. The makespan of HECTS algorithm is
73, which is smaller than the makespan of CPOP algorithm
which is 86.

Fig -3: Schedules generated by (a) HECTS and (b) CPOP

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 02 | Feb-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 955

5.3Performance comparison:
The performance comparison of HECTS is done with CPOP
on various performance matrices as described previously.
Fifty different graphs are generated with varying number
of task sizes from 8 to 26 in increments of 2 and CCR vary
from 1to 2. The available processors in each case were
taken to be three and can be applied to any number of
processors.
Chart 1 shows the comparison of HECTS with the CPOP
algorithm based on average schedule length (ASL). The
Chart shows how ASL varies for CPOP and HECTS as the
number of tasks increases. It is observed that schedule
length increases as number of tasks increases in term of
ASL. HECTS algorithm is better than CPOP algorithm by
7.36% and 5.28% when number of tasks is 8 and 26.

Chart -1: Average schedule length for varying task sizes.

 Chart 2 shows the variation of average speedup with the
increase in number of tasks. HECTS is observed to be
better than that of CPOP algorithm by 5% and 5.75% when
number of tasks is 8 and 26. Chart 3 shows the
comparison of HECTS with CPOP algorithm based on
average efficiency. HECTS algorithm is better than CPOP
algorithm by 2.69% and 5.85% when number of tasks is 8
and 26.

Chart -2: Average speedup for varying task sizes.

Chart -3: Average efficiency for varying task sizes.

Chart 4 shows how the ASL changes when CCR is varied
from 1 to 2. It shows the HECTS algorithm is better than
CPOP algorithm by 5.91% and 9.22% when CCR value is 1
and 2. Chart 5 shows how the average speedup changes
when CCR is varied from 1 to 2. It shows the HECTS
algorithm is better than CPOP algorithm by 3.64% and
6.63% when CCR value is 1 and 2.

Chart -4: Average schedule length for varying CCR values.

Chart -5: Average speedup for varying CCR values.

Chart 6 shows how the average efficiency changes. It
shows the HECTS algorithm is better than CPOP algorithm
by 1.92% and 5.59% when CCR value is 1 and 2.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 02 | Feb-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 956

Chart -6: Average efficiency for varying CCR values.

6. Conclusion
The paper presents a new scheduling technique for the
non-preemptive heterogeneous systems. The algorithm
tries to minimize the schedule length for a given
application. For the purpose of empirical evaluation three
parameters are used namely: schedule length, speedup
and efficiency. The comparative study shows HECTS
algorithm is better than CPOP algorithm.

REFERENCES

[1] Haluk Topcuoglu,Salim Hariri, “Performance Effective
and Low Complexity Task Scheduling for heterogeneous
Computing,” IEEE transactions and distributed systems,
Vol.13, No.3, pp:1045-9219 March2002.
[2] Hui, C.C. and S.T. Chanson, “Allocating task interaction
graphs to processors in heterogeneous networks” IEEE
Trans. Parallel and Distributed Systems, Vol. 8, pp: 908-
926, 1997.
[3] E. Illavarsan and P. Thambidurai, “Low complexity
performance effective task scheduling algorithm for
heterogeneous computing environment” Journal of
computer Sci. Vol. 3(2). pp: 94-103, February 2007.
[4] Bajaj, R and D.P. Agrawal, “Improving scheduling of
tasks in a heterogeneous environments” IEEE Trans. on
Parallel and Distributed Systems, vol.15 pp: 107-118,
2004.
[5] Mohammad I. Daoud, Nawwaf Kharma, “A high
performance algorithm for static task scheduling in
heterogeneous distributed computing system”, J. Parallel
Distrib. Comput., 68, pp: 399-409, 2008.
[6] Wahid Nasri and Wafa Nafti, “A New DAG Scheduling
Algorithm for Heterogeneous Platforms,” 2nd IEEE
International Conference on Parallel Distributed and Grid
Computing, 2012.
[7] S. Ranaweera and D.P. Agrawal, “task duplication based
scheduling algorithm for heterogeneous systems,” Proc.
International parallel and Distributed Processing
symposium, pp: 445-450, 2000.
[8] D.I. George and G.J. Joyce Mary, “A new DAG based
Dynamic Task Scheduling Algorithm (DYTAS) for

Multiprocessor Systems” International Journal of
Computer Applications, Vol.19, April 2011.
[9] Karan R. Shetti et.al, “Optimization of the HEFT
algorithm for a CPU-GPU environment,” International
Conference on Parallel and Distributed Computing,
Applications and Technologies, 2013.
[10] A. Agarwal and P. Kumar, “Ecnomical duplication
based task scheduling for heterogeneous computing
system,” IEEE International conf. in parallel Processing,
pp: 6-7, 2009.
[11] Guoqi Xie et.al, “A High-performance DAG Task
Scheduling Algorithm for Heterogeneous networked
Embedded Systems,” IEEE 28th International Conference
on Advanced Information Networking and Applications,
2014.
[12] Rashmi Bajaj and DP Agrawal “Improving scheduling
of tasks in a heterogeneous environment”, IEEE
Transactions on Parallel and Distributed Systems, vol.15
(2), pp: 107-118, 2004.
[13] S.C. Kim and S. Lee, “Push-pull Guided Search DAG
scheduling for heterogeneous clusters,” international conf.
on parallel processing. Pp:603-610, 2005.
[14] R. Eswari and S. Nikolas, “A Level-wise Priority Based
Task Scheduling for Heterogeneous System”, International
Journal of information and education technology, Vol. 1,
No. 5, December 2011.
[15] G.C. Sih and E.A. Lee, “A Compile-Time Scheduling
Heuristic for Interconnection-Constrained Heterogeneous
Processor Architecture”, IEEE Transactions on Parallel and
Distributed Systems, vol. 4, no. 2, pp: 175-187, 1993.
[16] Hamid Arabnejad and Jorge G. Barbosa, “List
scheduling algorithm for heterogeneous systems by an
optimistic cost table”, IEEE transaction on parallel and
distributed systems, pp: 1-13, 2013.

