Existence result of solutions for a class of generalized p-laplacian systems

R.Sahandi Torogh
Department of Mathematics, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran

Abstract: In this paper, I study the existence of solutions to a class of nonlinear problem. I generalize the existence results of a class of pLaplacian equation and extend it to a (p,q)-Laplacian system. Using some theorems, I establish sufficient conditions under which, this problem can be solved.

Keywords: solution, non-linear equation, (p,q)-Laplacian system

1. INTRODUCTION

In recent years, BVP has received a lot of attention. In [1] the authors have studied the existence of solution to the nonlinear p Laplacian equation
$-\left(r^{n-1}\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{r}=r^{n-1} \psi(r) f(u)$,on $[0,1]$
$u^{\prime}(0)=0, u(1)=0$
when $r=|x|, x \in \Omega \subset \mathbb{R}^{n}, \psi \in C^{1}\left(\mathbb{R}^{+}\right)$.
We introduce the following eigenvalue problem
$-\left(r^{n-1}|u|^{p-2} u^{\prime}\right)^{\prime}=$
$\lambda r^{n-1} \psi(r)|u|^{p-2} u$,on $[0,1]$ (1.3)
$u^{\prime}(0)=0, u(1)=0$,
In [3] the authors proved that (1.3) has a countable number of eigenvalue $\left\{\lambda_{i}\right\}_{i \in \mathbb{N}}$ satisfying $\lambda_{i}<\lambda_{j}$, when $\quad i<j$, $\lim _{i \rightarrow+\infty} \lambda_{i}=\infty \quad$ and the corresponding eigenfunction $u_{k}(r)$ has exactly $k-1$ zero in $(0,1)$.

2. Preliminaries and Lemmas

In this section, we state some theorem according to the references.

Consider $u(0)=\alpha, u^{\prime \prime}(0)=0,(*)$
In this paper, I study the following system:
$\left\{\begin{array}{l}-\left(r^{n-1}\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{v}=r^{n-1} A(r) f(u, v) \\ -\left(r^{n-1}\left|v^{\prime}\right|^{p-2} v^{v}\right)^{\prime}=r^{n-1} B(r) g(u, v)\end{array}\right.$
$\left\{\begin{array}{l}u(1)=0, u^{\prime}(0)=0 \\ v(1)=0, v^{\prime}(0)=0\end{array}\right.$
Where
i) $A, B \in C^{1}\left(\mathbb{R}^{+}\right), A, B \geq \epsilon_{1}$ on $[0,+\infty]$; ii) $f, g \in C^{1}\left(\mathbb{R}^{2}\right), u f(u, v)>0, v g(u, v)>0$, when $u, v \neq 0, f, g \geq \epsilon_{2}>0$ on $(0,+\infty], r \geq 0$ then $f(0,0)=0, g(0,0)=0$.

Lemma (2.1) [1] Let $\left\{r_{i}\right\}_{i=1}^{k}$ be zeros of an eigenfunction y_{k} for (1.3) corresponding to λ_{k} satisfying
$0=r_{0}<r_{1}<r_{2}<\cdots<r_{k-1}<r_{k}=1$.
i) Assume $\lambda>\lambda_{k}$, for each $1 \leq i \leq k$, there exist a solution z_{i} of
$-\left(r^{n-1}\left|z^{\prime}\right|^{p-2} z^{v}\right)^{n}+\lambda r^{n-1} w(z)|z|^{p-2} z=$
$0,(2.3)$

Which has at least two zeros in (r_{i-1}, r_{i}).
ii) Assume $\lambda<\lambda_{k}$, for each $1 \leq i \leq k$, there exist a solution \bar{z}_{i} of (2.3) satisfying $\bar{z}_{i}(r)$ on $\left[r_{i-1}, r_{i}\right]$.

Lemma (2.2) [1] Let $M>0$,
$w^{*}=\max \{\psi(r) \mid r \in[0,1]\}$ and α satisfy
$k_{2}+k_{1} F(\alpha)>w^{*} F(M)$. We define
$\delta \equiv M p^{-\frac{1}{p}}\left(k_{2}+k_{1} F(\alpha)-w^{*} F(M)\right)^{-\frac{1}{p}}>$
0 , (2.4).
Then the solution $u(r, \alpha)$ of (1.1) , (*) has the following properties:
i) if $u(r, \alpha)$ has no zero in (r_{1}, r_{2}) and satisfies $\in|u(r, \alpha)| \leq M$ on $\left[r_{1}, r_{2}\right]$ for some $r_{1}, r_{2} \in[0,1]$, then we have $r_{2}-r_{1} \leq \delta$.
ii) if $u(r, \alpha)$ has no zero in (x, y) for some $x, y \in[0,1]$ satisfying $y-x>2 \delta$, then $|u(r, \alpha)|>M$ for $r \in(x+\delta, y-\delta)$.

In this paper, I extend the result of [1]. I am interested in investigating nonlinear the (p, q)Laplacian system (2.1) and (2.2).

3. MAIN RESULTS

In this section we state and prove some lemmas and then a theorem to prove the existence of positive solutions for system (2.1), (2.2).

We introduce substitution for the solution $u(r, \alpha)$ of (2.1) and (2.2) by using the generalized sine function $S_{p}(r)$ has been well studied by ([3], [4], [6], [7]).

The function S_{p}, S_{q} satisfies
$\left\{\begin{array}{l}\left|S_{p}(r)\right|^{p}+\frac{\left|s_{p}^{r}(r)\right|^{p}}{p-1}=1 \\ \left|S_{q}(r)\right|^{q}+\frac{\left|\left.\right|_{q} ^{s}(r)\right|^{q}}{q-1}=1\end{array}\right.$
And

$$
\left\{\begin{array}{l}
\left(\left|S_{p}^{\prime}\right|^{p-2} S_{p}^{\prime}\right)^{\prime}+\left|S_{p}\right|^{p-2} S_{p}=0 \tag{3.2}\\
\left(\left|S_{q}^{\prime}\right|^{q-2} S_{q}^{\prime}\right)^{\prime}+\left|S_{q}\right|^{q-2} S_{q}=0
\end{array}\right.
$$

In addition,

$$
\left\{\begin{array}{l}
\pi_{p} \equiv 2 \int_{0}^{(p-1)^{\frac{1}{p}}} \frac{d t}{\left(1-\frac{t^{p}}{p-1}\right)^{\frac{1}{p}}}=\frac{2(p-1)^{\frac{1}{p}}{ }^{\frac{1}{p}}}{p \sin \left(\frac{(1}{p}\right)} \\
\pi_{q} \equiv 2 \int_{0}^{(q-1)^{\frac{1}{q}}} \frac{d t}{\left(1-\frac{t^{q}}{q-1}\right)^{\frac{1}{q}}}=\frac{2(q-1)^{\frac{1}{q}}{ }^{\frac{1}{q}}}{p \sin \left(\frac{\pi}{q}\right)}
\end{array}\right.
$$

So, $S_{p}\left(\frac{\pi_{p}}{2}\right)=1, S_{p}^{\prime}(0)=1$,
$S_{q}\left(\frac{\pi_{q}}{2}\right)=1, S_{q}^{*}(0)=1$,
$S_{p}^{\prime}\left(\frac{\pi_{p}}{2}\right)=0, S_{q}^{\prime}\left(\frac{\pi_{q}}{2}\right)=0$
Now, I define phase-plane coordinates $\rho_{i}>0$ and θ_{i} for solutions $u(r, \alpha), v(r, \alpha)$ of (2.1) and (2.2) as following

$$
\left\{\begin{array}{l}
u(r, \alpha)^{p-2} u(r, \alpha)=p_{1}(r, \alpha)\left|S_{p}\left(\theta_{1}(r, \alpha)\right)\right|^{p-2} s_{p}\left(\theta_{1}(r, \alpha)\right), \\
v(r, \alpha)^{q-2} v(r, \alpha)=\rho_{2}(r, \alpha) \mid S_{q}\left(\left.\theta_{2}(r, \alpha)\right|^{q-2} S_{q}\left(\theta_{2}(r, \alpha)\right)\right.
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
r^{n-1}\left|u^{\prime}(r, \alpha)\right|^{p-2} u^{\prime \prime}(r, \alpha)=p_{1}(r, \alpha)\left|S_{p}^{\prime}\left(\theta_{1}(r, \alpha)\right)\right|^{p-2} s^{\prime}\left(\theta_{1}^{\prime}(r, \alpha)\right), \\
r^{n-1}\left|v^{\prime}(r, \alpha)\right|^{q-2} v^{\prime}(r, \alpha)=p_{2}(r, \alpha)\left|S_{q}^{\prime}\left(\theta_{2}(r, \alpha)\right)\right|^{q-2} S_{S^{\prime}}\left(\theta_{2}(r, \alpha)\right)
\end{array}\right.
$$

With $\theta_{1}(0, \alpha)=\frac{\pi_{p}}{2}, \theta_{2}(0, \alpha)=\frac{\pi_{q}}{2}$. Then

So, $\frac{\left.r^{n-1}|u|^{\prime p}\right|^{p-z} u^{\prime}}{\left.|u|\right|^{p-2} u}=\frac{\left|s_{p}^{\prime}\right|^{p-2} s^{p} s_{p}^{\prime}}{| | s_{p} p^{p-2} s_{p}}$,
$\frac{r^{n-1}\left|v^{\prime}\right|^{q-2} v^{\prime}}{\left|\mid v q^{q-2} v\right.}=\frac{\left.\left|s_{q}^{\prime}\right|^{q-z^{\prime}}\right|^{q-s_{q}^{\prime}}}{\left|s_{q}\right|^{q-2} s_{q}}$,

After differentiating with respect to r, we have $\theta_{1}^{\prime}(r, \alpha)=\frac{r^{n-1} A(r) f(u, v)}{(p-1)|u|^{p-2} u}\left|S_{p}\left(\theta_{1}(r, \alpha)\right)\right|^{p}+r^{\left.\frac{1-n}{p-1} \right\rvert\, S_{p}^{\prime}}$ $\frac{r^{n-1} A(r) f(u, v)}{(p-1) \rho_{1}(r, \alpha)} S_{p}\left(\theta_{1}(r, \alpha)\right)+r^{\frac{1-n}{p-1}\left|S_{p}^{\prime}\left(\theta_{1}(r, \alpha)\right)\right|^{p} \equiv C\left(r, \alpha, \theta_{1}\right) \quad \text { ii) Suppose } \lim \inf f_{|u| \rightarrow 0} \frac{f(u, v)}{\left.|u|\right|^{p-z_{u}}}>\lambda_{k}, \text {, } n(u, v)}>\lambda^{\prime} \quad$ for $k \in \mathbb{N}$, $\overline{(p-1) \rho_{1}(r, \alpha)} S_{p}\left(\theta_{1}(r, \alpha)\right)+r^{p-1}\left|S_{p}^{\prime}\left(\theta_{1}(r, \alpha)\right)\right|^{p} \equiv C\left(r, \alpha, \theta_{1}\right){ }_{\lim \inf }^{|v| \rightarrow 0} \frac{g(u, v)}{|v|^{q-2} v}>\lambda_{k}$, for $k \in \mathbb{N}$, then there

$\left.\frac{r^{n-1} B(r) g(u, v)}{(q-1) \rho_{2}(r, \alpha)}\left|S_{q}\left(\theta_{2}(r, \alpha)\right)\right|^{q}+r^{\frac{1-n}{q-1}}\left|S_{q}^{\prime}\left(\theta_{2}(r, \alpha)\right)\right|^{q}=r \rho \rho f, d\right) \theta_{2}$ ene assumption implies that, there Also we have $\frac{\rho_{2}^{\prime}(r, \alpha)}{\rho_{2}(r, \alpha)}=\left(r^{\frac{1-n}{q-1}}-\frac{r^{n-1} B(r) g(u, v)}{|v|^{q-2} v}\left|s_{q}\left(\theta_{2}(r, \alpha)\right)\right|^{q-2} s_{q}\left(\theta_{2}(r, \alpha)\right) s_{q}^{\prime}\left(\theta_{2}\left(\theta^{q}\right.\right.\right.$ The phase function for (2.1) and (2.2) with $\lambda=\lambda_{k}$, we conclude

$$
\begin{aligned}
& \phi_{1 k}^{\prime}\left(r, \lambda_{k}\right)=\frac{r^{n-1} \lambda_{k} A(r)}{(p-1)}\left|S_{p}\left(\phi_{1 k}\left(r, \lambda_{k}\right)\right)\right|^{p}+ \\
& r^{\frac{1-n}{p-1}}\left|S_{p}\left(\phi_{1 k}\left(r, \lambda_{k}\right)\right)\right|^{p} \\
& \equiv F\left(r, \lambda_{k}, \phi_{1}\right),(3.5) \\
& \phi_{2 k}^{\prime}\left(r, \lambda_{k}\right)=\frac{r^{n-1} \lambda_{k} B(r)}{(q-1)}\left|S_{q}\left(\phi_{2 k}\left(r, \lambda_{k}\right)\right)\right|^{q}+ \\
& r^{\frac{1-n}{q-1}}\left|S_{q}\left(\phi_{2 k}\left(r, \lambda_{k}\right)\right)\right|^{q} \\
& \equiv G\left(r, \lambda_{k}, \phi_{2}\right)
\end{aligned}
$$

$\theta_{2}(1, \alpha)>k \pi_{q}$, when $\alpha \in\left(0, \alpha_{*}\right]$. That is, the at least k-1 zeros in $(0,1)$ for $\alpha \in\left(0, \alpha_{8}\right]$. exists $\delta>0$ and $\lambda>0$ such that
$\phi_{1 k}\left(0, \lambda_{k}\right)=\frac{\pi_{p}}{2}, \phi_{1 k}\left(1, \lambda_{k}\right)=k \pi_{p}$,
$\phi_{2 k}\left(0, \lambda_{k}\right)=\frac{\pi_{q}}{2}, \phi_{2 k}\left(1, \lambda_{k}\right)=k \pi_{q}$,
In the rest of the paper, we consider
$|(u, v)|=|u|+|v|$.
Lemma (3.1) i) Suppose
$\lim \sup _{|u| \rightarrow 0} \frac{f(u, v)}{|u|^{p-v_{u}}}<\lambda_{k}$,
$\lim \sup _{|v| \rightarrow 0} \frac{g(u, v)}{|v|^{q-v_{v}}}<\lambda_{k}$, for $k \in \mathbb{N}$, then there exists $\alpha_{8}>0$ such that $\theta_{1}(1, \alpha)<k \pi_{p}$, $\theta_{2}(1, \alpha)<k \pi_{q^{1}}$ for all $\alpha \in\left(0, \alpha_{*}\right)$. That is the solution $(u(r, \alpha), v(r, \alpha))$ of (2.1) and (2.2)
 $\frac{f(u, v)}{|u|^{p-z_{u}}}<\lambda<\lambda_{k}, \frac{g(u, v)}{|v|^{q-z_{v}}}<\lambda<\lambda_{k}$ for $\left(\theta_{2}(\gamma, \alpha)|u|+|v|<\delta\right.$. Since $(u, v) \equiv 0$ is a solution of (2.1) and (2.2) , there exists $\alpha_{*}>0$ such that $|(u(r, \alpha), v(r, \alpha))|<\delta$ for $0<\alpha<\alpha_{*}$ and $r \in[0,1]$. From (3.3) , (3.4) we have

$$
\begin{aligned}
& \theta_{1}^{\prime}(r, \alpha)<\frac{r^{n-1} \lambda_{k} A(r)}{(p-1)}\left|S_{p}\left(\theta_{1}(r, \alpha)\right)\right|^{p}+ \\
& r^{\frac{1-n}{p-1}}\left|S_{p}\left(\theta_{1}(r, \alpha)\right)\right|^{p} \\
& =F\left(r, \lambda_{k}, \phi_{1}\right) \\
& \theta_{2}^{\prime}(r, \alpha)<\frac{r^{n-1} \lambda_{k} B(r)}{(q-1)}\left|S_{q}\left(\theta_{2}(r, \alpha)\right)\right|^{q}+ \\
& r^{\frac{1-n}{q-1}}\left|S_{q}\left(\theta_{2}(r, \alpha)\right)\right|^{q} \\
& \quad=G\left(r, \lambda_{k}, \phi_{2}\right) .
\end{aligned}
$$

Let u_{k}, v_{k} be the solution of (1.3) with $\lambda=\lambda_{k}$ and $\phi_{1 k}, \phi_{2 k}$ be its Prüfer angle, then u_{k}, v_{k} are eigenfunctions of (1.3). Thus $\phi_{1 k}\left(1, \lambda_{k}\right)=k \pi_{p,} \phi_{2 k}\left(1, \lambda_{k}\right)=k \pi_{q}$, The comparison theorem was studied by ([8], p.30), include that $\theta_{1}(1, \alpha)<\phi_{1 k}\left(1, \lambda_{k}\right)$,
$\theta_{2}(1, \alpha)<\phi_{2 k}\left(1, \lambda_{k}\right), 0<\alpha<\alpha_{*}$.
ii) By assumption, we have there exist exists $\delta>0$ and $\lambda>0$ such that $\frac{f(u, v)}{|u|^{p-2} u}>\lambda>\lambda_{k}$, $\frac{g(u, v)}{|v|^{q-x_{v}}}>\lambda>\lambda_{k}$ when $0<|u|+|v|<\delta$.

Similar to (i), we get, there exists $\alpha_{*}>0$ such that
$0<|(u(r, \alpha), v(r, \alpha))|<\delta$ for $0<\alpha<\alpha_{*}$ and $r \in[0,1]$. So,
$\frac{f(u(r, \alpha), v(r, \alpha))}{|u(r, \alpha)|^{p-2} u(r, \alpha)}>\lambda_{k}, \frac{g(u(r, \alpha), v(r, \alpha))}{|v(r, \alpha)|^{q-2} v(r, \alpha)}>\lambda_{k}$, by (3.3) and (3.4) we get

$$
\begin{aligned}
& \theta_{1}^{\prime}(r, \alpha)>\frac{r^{n-1} \lambda_{k} A(r)}{(p-1)}\left|S_{p}\left(\theta_{1}(r, \alpha)\right)\right|^{p}+ \\
& r^{\frac{1-n}{1-p}}\left|S_{p}\left(\theta_{1}(r, \alpha)\right)\right|^{p} \\
& =F\left(r, \lambda_{k}, \phi_{1}\right)
\end{aligned}
$$

$\theta_{2}^{\prime}(r, \alpha)>\frac{r^{n-1} \lambda_{k} B(r)}{(q-1)}\left|S_{q}\left(\theta_{2}(r, \alpha)\right)\right|^{q}+$
$r^{\frac{1-n}{1-q}}\left|S_{q}\left(\theta_{2}(r, \alpha)\right)\right|^{q}$
$=G\left(r, \lambda_{k}, \phi_{2}\right)$.
Similar as in (i), we have $\theta_{1}(1, \alpha)>k \pi_{p}$, $\theta_{2}(1, \alpha)>k \pi_{q}$.

Lemma (3.2) i) Assume that
$\lim \inf f_{|u| \rightarrow \infty} \frac{f(u, v)}{|u|^{p-s_{u}}}>\lambda_{k}$,
$\lim \inf f_{|v| \rightarrow \infty} \frac{g(u, v)}{|v|^{q-v_{v}}}>\lambda_{k}$, for $k \in \mathbb{N}$, then there exists $\alpha^{*}>0$ such that the solution $(u(r, \alpha), v(r, \alpha))$ has at least k zeros in $(0,1) \times(0,1)$ for $\alpha \in\left[\alpha^{*}, \infty\right)$.
ii) Assume that $\lim \sup _{|u| \rightarrow \infty} \frac{f(u, v)}{|u|^{p-z_{u}}}<\lambda_{k}$, $\lim \sup _{|v| \rightarrow \infty} \frac{g(u, v)}{|v|^{q-z_{v}}}<\lambda_{k}$, for $k \in \mathbb{N}$, then there exists $\alpha^{*}>0$ such that the solution ($u(r, \alpha), v(r, \alpha)$) has at most ($\mathrm{k}-1$) zeros in $(0,1) \times(0,1)$ for $\alpha^{*}<\alpha$.

Proof. i) by assumption, there exist $\lambda>\lambda_{k}$ and $M>0$ such that
$\frac{f(u, v)}{|u|^{p-z_{u}}}>\lambda>\lambda_{k}, \frac{g(u, v)}{|v|^{q-z_{v}}}>\lambda>\lambda_{k}$ when $|u|+|v| \geq M_{\text {, }}$ (3.6).

Let u_{k}, v_{k} be the k-th eigenfunction of (1.3) corresponding to λ_{k} and $\left\{r_{i}\right\}_{i=1}^{k}$ be zeros of u_{k}, v_{k} with $r_{0}=0$ and $r_{k}=1$. Lemma (2.1) implies that, there exists a solution $z_{1 i}, z_{2 i}$ of (2.3) having at least two zeros in (r_{i-1}, r_{i}). Now, fix $i \in\{1,2, \ldots, k\}$, let t_{1}, t_{2} be zeros of $z_{1 i}, z_{2 i}$ satisfying $r_{i-1}<t_{1}<t_{2}<r_{i}$. By (2.4) and remark that δ tends to zero as α tends to infinity. For this i, we can choose an $\alpha_{i}>0$ such that $r_{i}-r_{i-1}>2 \delta_{i}$ and
$\left[t_{1}, t_{2}\right] \subset\left(r_{i-1}+\delta_{i}, r_{i}-\delta_{i}\right)$, where α_{i} and δ_{i} are consistent with (2.4). Let $\alpha \geq \alpha_{i}$, we prove $u(r, \alpha), v(r, \alpha)$ have at least one zero in (r_{i-1}, r_{i}). Suppose that $u(r, \alpha), v(r, \alpha)$ have no zero in (r_{i-1}, r_{i}). Lemma (2.2) (ii) implies that $|u(r, \alpha)|>M,|v(r, \alpha)|>M$, when

$$
\begin{aligned}
& r \in\left(r_{i-1}+\delta_{i}, r_{i}-\delta_{i}\right) \text {. From (3.6), we } \\
& \text { have } \lambda A(r)<\frac{A(r) f(u(r, \alpha), v(r, \alpha))}{(u(u, \alpha))^{p-1}}, \\
& \lambda B(r)<\frac{B(r) g(u(r, \alpha), v(r, \alpha))}{(v(r, \alpha))^{q-1}} \text {, for } \\
& r \in\left[t_{1}, t_{2}\right] \subset\left(r_{i-1}+\delta_{i}, r_{i}-\delta_{i}\right) .
\end{aligned}
$$

Then (in [5],p. 182) implies that $u(r, \alpha), v(r, \alpha)$ have at least one zero in (t_{1}, t_{2}). This leads to a contradiction. Hence $u(r, \alpha), v(r, \alpha)$ with $\alpha \geq \alpha_{i}$ have at least one zero in (r_{i-1}, r_{i}).

Set $\alpha^{*}=\max \left\{\alpha_{i} \mid i=1,2, \ldots, k\right\}$. If $\alpha \geq \alpha^{*}$, then $u(r, \alpha), v(r, \alpha)$ have at least one zero in (r_{i-1}, r_{i}) for each $i=1,2, \ldots, k$. It means that $u(r, \alpha), v(r, \alpha)$ have at least k zeros in $(0,1)$ for $\alpha \in\left[\alpha^{*}, \infty\right)$.
ii) by assumption, there exist $\lambda<\lambda_{k}$ and $M>0$ such that
$\frac{f(u, v)}{|u|^{p-z_{u}}}<\lambda<\lambda_{k}, \frac{g(u, v)}{|v|^{q-z_{v}}}<\lambda<\lambda_{k}$ when $|u|+|v| \geq M_{\text {, }} \quad$ (3.7).

For every $\alpha>0$, let $\phi_{i}(r, \alpha)$ and $\phi_{i k}(r, \alpha)$ be the Prüfer angle of the solutions of (3) with λ and λ_{k}. So,
$\phi_{1 k}(1, \alpha)=k \pi_{p}, \phi_{2 k}(1, \alpha)=k \pi_{q}$, hence by the comparison theorem,
$\phi_{1}(1, \alpha)=k \pi_{p}-\varepsilon, \phi_{2}(1, \alpha)=k \pi_{q}-\varepsilon, \varepsilon>0$ and from (3.3) and (3.4) $\phi_{i}(r, \alpha)$ satisfying
$\phi_{1}^{r}(r, \alpha)=\frac{r^{n-1} \lambda A(r)}{(p-1)}\left|S_{p}\left(\phi_{1}(r, \alpha)\right)\right|^{p}+$
$r^{\frac{1-n}{p-1}}\left|S_{p}\left(\phi_{1}(r, \alpha)\right)\right|^{p}$
$\equiv F\left(r, \alpha, \phi_{1}\right)$,
$\phi_{2}^{\prime}(r, \alpha)=\frac{r^{n-1} \lambda B(r)}{(q-1)}\left|S_{q}\left(\phi_{2}(r, \alpha)\right)\right|^{q}+$
$r^{\frac{1-n}{q-1}}\left|S_{q}\left(\phi_{2}(r, \alpha)\right)\right|^{q}$
$\equiv G\left(r, \lambda_{k}, \phi_{2}\right),(3.8)$
Define:
$R(r, \alpha)= \begin{cases}\frac{f(u(r, \alpha), v(r, \alpha))}{|u(r, \alpha)|^{p-2} u(r, \alpha)} & ,|u(r, \alpha)|<M \\ \lambda & ,|u(r, \alpha)| \geq M\end{cases}$
$T(r, \alpha)= \begin{cases}\frac{g(u(r, \alpha), v(r, \alpha))}{|v(r, \alpha)|^{q-2} v(r, \alpha)} & ,|v(r, \alpha)|<M \\ \lambda & ,|v(r, \alpha)| \geq M\end{cases}$
By (3.3) and (3.4) and comparing with (3.8) there exists a sufficiently large α^{*},
$\left|\frac{f(u(r, \alpha), v(r, \alpha))}{\rho_{1}(r, \alpha)}\right|,\left|\frac{g(u(r, \alpha), v(r, \alpha))}{\rho_{2}(r, \alpha)}\right|$ can be small for $|u(r, \alpha)|<M,|v(r, \alpha)|<M$ and $\alpha \geq \alpha^{*}$. So $\theta_{1}(r, \alpha), \theta_{2}(r, \alpha)$ are uniformly bounded for $\alpha \geq \alpha^{*}$ and $r \in[0,1]$. The number of zeros of $u(r, \alpha), v(r, \alpha)$ of (1.1) and (${ }^{*}$) is uniformly bounded for $\alpha \geq \alpha^{*}$.

Also, we have $\lim _{\alpha \rightarrow \infty}\left\|I_{M, \alpha}\right\|=0$ (3.9) when $I_{M, \alpha}=\{r \in[0,1] \| u(r, \alpha) \mid<M\}$, now, let $\psi_{i}(r, \alpha)$ be the solution of the equation $\psi_{i}^{\prime \prime}(r, \alpha)=H_{i}\left(\left(r, \alpha, \psi_{i}\right), i=1,2, \quad(3.10)\right.$ satisfying $\psi_{1}(0, \alpha)=\frac{\pi_{p}}{2}, \psi_{2}(0, \alpha)=\frac{\pi_{q}}{2}$ and from (3.5) with $\lambda=\lambda_{k}$ and (3.9) we obtain (for $\alpha \geq \alpha^{*}$ and $r \in[0,1]$)
$\psi_{1}(r, \alpha)-\phi_{1}(r, \alpha)=\int_{0}^{r}\left(H\left(s, \alpha, \psi_{1}\right)-F\left(s, \alpha, \phi_{1}\right)\right) d s$
$=\int_{0}^{r}\left(H\left(s, \alpha, \psi_{1}\right)-F\left(s, \alpha, \psi_{1}\right)+F\left(s, \alpha, \psi_{1}\right)-F(s, \alpha, \phi\right.$
$\int_{0}^{r} \frac{s^{n-1}}{p-1} A(s)(R(s, \alpha)-\lambda)\left|S_{p}\left(\psi_{1}(s, \alpha)\right)\right|^{p} d s$
$+\int_{0}^{r} \frac{\partial}{\partial \phi_{1}} F\left(s, \alpha, \xi_{1}\right)\left(\psi_{1}(s, \alpha)-\phi_{1}(s, \alpha)\right) d s$,
And

$$
\begin{aligned}
& \psi_{2}(r, \alpha)-\phi_{2}(r, \alpha)= \\
& \int_{0}^{r} \frac{s^{n-1}}{q-1} B(s)(T(s, \alpha)-\lambda)\left|s_{q}\left(\psi_{2}(s, \alpha)\right)\right|^{q} d s \\
& +\int_{0}^{r} \frac{\partial}{\partial \phi_{2}} G\left(s, \alpha, \xi_{2}\right)\left(\psi_{2}(s, \alpha)-\phi_{2}(s, \alpha)\right) d s,
\end{aligned}
$$

Where $\xi_{i}(s, \alpha)$ is between $\psi_{i}(s, \alpha)$ and $\phi_{i}(s, \alpha)$. By (3.9) , we get

$$
\begin{aligned}
& \left.\left.\left|\int_{0}^{r} \frac{s^{n-1}}{p-1} A(s)(R(s, \alpha)-\lambda)\right| S_{p}\left(\psi_{1}(s, \alpha)\right)\right|^{p} d s \right\rvert\, \\
& \quad \leq \int_{I_{M_{, \alpha} \alpha}} \frac{s^{n-1}}{p-1} A(s)(R(s, \alpha)-\lambda) d s<\delta
\end{aligned}
$$

And also we have
$\left.\left.\left|\int_{0}^{r} \frac{s^{n-1}}{q-1} B(s)(T(s, \alpha)-\lambda)\right| S_{q}\left(\psi_{2}(s, \alpha)\right)\right|^{q} d s \right\rvert\,$
$\leq \int_{I_{M_{s} \alpha}} \frac{s^{n-1}}{q-1} B(s)(T(s, \alpha)-\lambda) d s<\delta$ when
$\alpha \geq \alpha^{*}, \delta>0$. Note that $\left|\frac{\partial}{\partial \phi_{1}} F\left(s, \alpha, \xi_{1}\right)\right|$ and $\left|\frac{\partial}{\partial \phi_{2}} G\left(s, \alpha, \xi_{2}\right)\right|$ are bounded by $k_{1}, k_{2}>0$.

So, we have
$\left|\psi_{1}(r, \alpha)-\phi_{1}(r, \alpha)\right|<\delta+\int_{0}^{r} k_{1} \mid \psi_{1}(s, \alpha)-$ $\phi_{1}(s, \alpha) \mid d s$
$\left|\psi_{2}(r, \alpha)-\phi_{2}(r, \alpha)\right|<\delta+\int_{0}^{r} k_{2} \mid \psi_{2}(s, \alpha)-$ $\phi_{2}(s, \alpha) \mid d s$

If $\delta<\varepsilon e^{-k_{1}}, \delta<\varepsilon e^{-k_{x_{2}}}$, By the Gronwell inequality, we obtain
$\left|\psi_{1}(r, \alpha)-\phi_{1}(r, \alpha)\right|<\delta e^{k_{1} r}<\varepsilon$,
$\left|\psi_{2}(r, \alpha)-\phi_{2}(r, \alpha)\right|<\delta e^{k_{2} r}<\varepsilon$.
Hence $\psi_{1}(r, \alpha)<\phi_{1}(r, \alpha)+\varepsilon$,
$\psi_{2}(r, \alpha)<\phi_{2}(r, \alpha)+\varepsilon$,
So,
$\theta_{1}(r, \alpha) \leq \psi_{1}(r, \alpha)<\phi_{1}(r, \alpha)+\varepsilon=k_{1} \pi_{p}$,
$\theta_{2}(r, \alpha) \leq \psi_{2}(r, \alpha)<\phi_{2}(r, \alpha)+\varepsilon=k_{2} \pi_{q}$
Now, the proof is completed.
Theorem (3.3) Suppose that there exists an integer $k \in \mathbb{N}$ such that
$\lim \sup _{|u| \rightarrow 0} \frac{f(u, v)}{|u|^{p-z_{u}}}<\lambda_{k}<\lim \inf f_{|u| \rightarrow \infty} \frac{f(u, v)}{|u|^{p-z_{u}}}$, (3.11)
$\lim \sup _{|v| \rightarrow 0} \frac{g(u, v)}{|v|^{q-v_{v}}}<\lambda_{k}<$
$\lim \inf \left||v| \rightarrow \infty \frac{g(u, v)}{|v|^{q-v_{v}}}\right.$, (3.12)

Then (2.1) and (2.2) have a solution with at most k-1 zeros in $(0,1)$.

Proof. By (3.11) and lemma (3.1) (i), there exits $\alpha_{*}>0$ such that

$$
\theta_{1}(1, \alpha)<k \pi_{p}, \theta_{2}(1, \alpha)<k \pi_{q} \text { for } \alpha \leq \alpha_{*} .
$$

Lemma (3.2) (i) implies that there exits $\alpha^{*}>0$ such that $\theta_{1}(1, \alpha)>k \pi_{p}, \theta_{2}(1, \alpha)>k \pi_{q}$ for $\alpha \geq \alpha^{*}$. Since
$\theta_{1}(1, \alpha)=k \pi_{p}, \theta_{2}(1, \alpha)=k \pi_{q}$. Similarly (3.12) can be proved. Now the proof is completed.

REFERENCES

[1] W-C. Wang, Y-H. Cheng, "On the existence of sign-changing radial solutions to nonlinear p-Laplacian equations in \mathbb{R}^{n}.", Nonlinear Analysis, 102, 14-22, 2014.
[2] W.Reichel, W, Walter, "Radial solutions of equations and inequalities involving the pLaplacian". J. Inequal.Appl, 1, 47-71,1997.
[3] P.Binding and P.,Drabek., "Sturm-Liouville theory for the p-Laplacian". Studia Sci : Math, Hungar, 40, 373-396, 2003.
[4] W.Reichel, W, Walter, "Sturm-Lioville type problems for the p-laplacian under asymptotic non-resonance conditions". J. Differential Equations, 156, 50-70, 1999.
[5] W. Walter, "Sturm-Liouville theory for the radial Δ_{p} - operator". Math, Z. 227, 175-185, 1998.
[6] P. Lindqvist, "Some remarkable sine and cosine functions". Ric, Mat, 44, 269-290, 1995.
[7] A.Elbert, "A half-linear second order differential equation. Colloqia Mathematica Societatis Jonos Bolyai", 30, Qualitiative Theory of Differential Equations, Szeged (Hungary), 153-180, 1979.
[8] G. Birkhoff, G.C. Rota, Ordinary Differential Equations, Fourth ed, Wiley, New York, 1989.

