
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 02 | Feb-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 424

Ginix Generalized Inverted Index for Keyword Search

Dr.D.Devakumari1, M.Shajitha Begum2

1 Assistant Professor, PG and Research Department of Computer Science,
 Government Arts College(Autonomous), Coimbatore, Tamil Nadu, India
2 Research Scholar ,Department of Computer Science , L.R.G Government Arts College For
Women , Tirupur, Tamil Nadu, India

---***--

Abstract: Keyword search has become a ubiquitous
method for users to access text data in the face of
information explosion. Inverted lists are usually used
to index underlying documents to retrieve
documents according to a set of keywords efficiently.
Since inverted lists are usually large, many
compression techniques have been proposed to
reduce the storage space and disk I/O time. However,
these techniques usually perform decompression
operations on the fly, which increases the CPU time.
This paper presents a more efficient index structure,
the Generalized INverted IndeX (Ginix), which
merges consecutive IDs in inverted lists into
intervals to save storage space. With this index
structure, more efficient algorithms can be devised to
perform basic keyword search operations, i.e., the
union and the intersection operations, by taking the
advantage of intervals. Specifically, these algorithms
do not require conversions from interval lists back to
ID lists. As a result, keyword search using Ginix can
be more efficient than those using traditional
inverted indices. The performance of Ginix is also
improved by reordering the documents in datasets
using two scalable algorithms. Experiments on the
performance and scalability of Ginix on real datasets
show that Ginix not only requires less storage space,
but also improves the keyword search performance,
compared with traditional inverted indexes.

Key Words: keyword search; index compression;
document reordering

1. Introduction

With the huge amount of new information, keyword
search is critical for users to access text datasets.
These datasets include textual documents. Users use
keyword search to retrieve documents by simply
typing in keywords as queries. Current keyword
search systems usually use an inverted index, a data
structure that maps each word in the dataset to a list

of IDs of documents in which the word appears to
efficiently retrieve documents.

To address this problem, this paper presents the
Generalized INverted IndeX (Ginix), which is an
extension of the traditional inverted index (denoted
by InvIndex), to support keyword search. Ginix
encodes consecutive IDs in each inverted list of
InvIndex into intervals, and adopts efficient
algorithms to support keyword search using these
interval lists. Ginix dramatically reduces the size of
the inverted index, while supporting keyword search
without list decompression. Ginix is also compatible
with existing d-gap-based compression techniques.
As a result, the index size can be further compressed
using these methods. Technique of
document reordering[3-7], which is to reorder the
documents in a dataset and reassign IDs to them
according to the new order to make the index
achieve better performance, is also used in this
paper.

The contributions of this paper are:

 This paper presents an index structure for
keyword search, Ginix, which converts
inverted lists into interval lists to save
storage space.

 Efficient algorithms are given to support
basic operations on interval lists, such as
union and intersection without
decompression.

 Extensive experiments that evaluate the
performance of Ginix are conducted. Results
show that Ginix not only reduces the index
size but also improves the search
performance on real datasets.

 The problem of enhancing the performance

of Ginix by document reordering is

investigated, and two scalable and effective

algorithms based on signature sorting and

greedy heuristic of Traveling Salesman

Problem (TSP)[3] are proposed.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 02 | Feb-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 425

2.Basic Concepts of Ginix

 Let D= {d1,d2,…. dN }be a set of documents.
Each document in D includes a set of words, and the

set of all distinct words in D is denoted by W . In the
inverted index of D, each word w 2 W has an inverted
list, denoted by Iw, which is an ordered list of IDs of
documents that contain the word with all lists (ID
lists and interval lists) sorted in ascending order. For
example, Table 1a shows a collection of titles of 7
papers and Table 1b gives its inverted index.

The inverted index of this sample dataset consists of
18 inverted lists, each of which corresponds to a
word. This example shows the lists of 4 most
frequent words

Table 1 A sample dataset of 7 paper titles.

(a) Dataset content

 ID Content

1 Keyword querying and ranking in databases
2 Keyword searching and browsing in database
3 Keyword search in relational database
4 Efficient fuzzy type-ahead search
5 Navigation system for product search
6 Keyword search on spatial databases
7 Searching for hidden-web databases

 (b) InvIndex (c)Ginix

Word IDs Word IDs

Keyword 1,2,3,6 Keyword [1,3],[6,6]

Databases 1,2,3,6,7 Databases [1,3],[6,7]

Searching 2,7 Searching [2,2],[7,7]

Search 3,4,5,6 Search [3,6]

i.e., ‘’keyword’’,’’database’ ’,’’searching’’,and ‘’search’’
(word steaming is not consider)

A straightforward way to store an interval in Ginix

is to explicitly store both its lower and upper bounds,

as is illustrated in Table 1c. However, if an interval

[I,u] is a single-element interval, i.e., l = u, two

integers are still needed to represent the interval.

Thus if there are many single-element intervals in

the interval list, the space cost will be expensive. The

extra overhead for storing the interval lists is

reduced by splitting each original interval list into 3

ID lists with one for single- element intervals and the

other two for the lower and upper bounds of multi-

element intervals. These three lists are denoted as S,

L, and U. For example, the interval list

{[1,1],[3,3],[6,7],[9,9][12,15]} can be split into 3 ID

lists with S ={1,3,9} and L={6,12} This reduces the

number of integers from 10 to 7. Efficient

sequential/sorted access is a basic requirement of

keyword search based on the interval lists. Two

position indicators, p and q, are used here to indicate

the current positions in S and L/U . At the beginning,

p and q are all set to 0, indicating that they are all

pointing to the first elements in S and L/U . The

current interval is found by comparing the two

elements Sp and Lq. If Sp is smaller, we return the

single- element interval [Sp,Sp] and increment p by

1; if Lq is smaller, return the multi-element interval

[Lq,Uq] and increment q by 1.

Given an ID list S containing n IDs and its
equivalent interval list R, the three lists, R.S, S.L, and
S.R, used to store R will contain no more than n
integers in total. This property of interval lists means
that Ginix can be regarded as a compression
technique, which is orthogonal to d-gap-
based techniques. Moreover, d- gap-based
compression algorithms, such as VBE and P For
Delta, can still be applied to Ginix, since all the lists in
Ginix are ordered lists of IDs.

3. Search Algorithms

A keyword search system usually supports union and

the intersection operations on inverted lists. The

union operation is a core operation to support OR

query semantics in which every document that

contains at least one of the query keywords is

returned as a result. The intersection operation is

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 02 | Feb-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 426

used to support AND query semantics, in which only

those documents that contain all the query keywords

are returned.
Traditional search algorithms are all based on ID
lists.
Specifically, a traditional keyword search system first
retrieves the compressed inverted list for each
keyword from the disk, then decompresses these
lists into ID lists, and then calculates the
intersections or unions of these lists in main
memory. This method introduces extra
computational costs for decompression, and ID list
based search methods can be very expensive because
ID lists are usually very long.

3.1 Union operation

As in set theory, the union (denoted by U of a set of
ID lists, denoted by S ={S1; S2;…..Sn}, is another ID
list, in which each ID is contained in at least one ID
list in S. Thus the union of a set of interval lists can be
defined as follows:

Definition 1 Union of Interval Lists Given a set of
interval lists, R= {R1; R2; ; Rn}, and their equivalent
ID lists, S={S1; S2; ; Sn}g, the union of R is the

equivalent R is the equivalent interval list of Unk=1Sk

For example, consider the following three interval
lists:{[2,7]},[11,13]},{[5,7],[12,14]},and{[1,3],[6,7],[9,
9][12,15]}.Their equivalent ID list are are {2; 3; 4; 5;
6; 7; 11; 12; 13}, {5; 6; 7; 12; 13; 14}, and {1; 2; 3; 6;
7; 9; 12; 13; 14; 15}. The union of these three ID lists
is {1; 2; 3; 4; 5; 6; 7; 9; 11; 12; 13; 14; 15}; thus, the
union of the three interval lists is the equivalent
interval list of this ID list, i.e., {[1, 7]•;{9, 9]•;{11, 15})

In this algorithm, the interval lists are first
converted into ID lists with the union calculated
using the well- known multi-way merge algorithm
and the result then converted back into an interval
list. This method is called the
NA¨IVEUNION algorithm. Since the goal is to design
an algorithm for calculating the union of interval lists
without list conversion, this method will be used as a
baseline for comparison.

3.2 Scan-line algorithm

 A union algorithm without ID-interval conversion
will only use the interval boundaries in the interval
lists. Inspired by the scan-line rendering algorithm in
computer graphics[9], the boundaries of all intervals

in the interval lists are first sorted into ascending
order, with a scan-line moves from the smallest
boundary to the largest boundary to calculate the
union list. The scan-line movement maintains a
reference counter to count the number of intervals
that the scan-line is currently hitting. The counter is
incremented by 1 when the scan-line hits a lower
bound and is decremented by 1 when it hits an upper
bound. If the counter increases from 0 to 1 (which
means that the scan-line is processing an interval),
the current boundary is saved in variable a. When the
counter decreases from 1 to 0 (which means that
the scan-line will not hit any interval before it hits
another lower-bound), the current boundary is saved
in variable b and [a,b] is returned as the resulting
interval.

The heap-based merge is used on all the interval lists
to enumerate all the lower bounds and upper bounds
in ascending order. This algorithm is called the
SCANLINEUNION algorithm and illustrated in
Algorithm 1

4.Document Reordering

 Document reordering also improves the

performance of Ginix. This section first explains the

necessity of document reordering. Then, since

finding the best order

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 02 | Feb-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 427

of documents is NP-hard, a sorting-based method
and a sorting-TSP hybrid method are used to find
near- optimal solutions.

4.1 Necessity of document reordering

 The time complexities of the search
algorithms given in the previous section all depend
on the number of intervals in the interval lists
instead of the numbers of IDs. For example, the time
complexity of the PROBEISECT algorithm is O(.m. n
log m)where n denotes the number of interval lists
and m denotes the number of intervals in each
interval list. Thus, if the interval lists in Ginix contain
fewer intervals, the search algorithms will be faster.
On the other hand, interval lists containing fewer
intervals will require less storage space. Therefore,
the search speed and the space cost are both
improved by reducing the number of intervals in
Ginix.

Suppose that A and B are two ID lists with the same
number of IDs. A’s equivalent interval list will have
less intervals than that of B’s if A contains more
consecutive IDs than B. Thus the order of the
documents should be rearranged (or the IDs to the
documents should be reassigned) so that the
inverted lists contain as many consecutive IDs as
possible. For example, if the 4th and 6th records in
the dataset in Table 1a are switched, the interval lists
for “keyword” and “databases” will become {[1,4}]
and {[1,4},[7,7]},This will save two integers storage
space for the interval lists.

There have been many efforts on finding the
optimal document ordering that maximizes the
frequencies of d-gaps in inverted lists to enhance the
performance of existing inverted list
compression techniques[3-7]. current problem is a
special case of this problem (i.e., to maximize the
frequencies of 1-gap). Previous studies of document
reordering have all been designed for unstructured
long documents (e.g., news and web pages), so
methods are needed for structured or short
documents, which are the focus of this study.

4.2 SIGSORT: Signature sorting method

 The problem of document reordering is
equivalent to making similar documents stay near to
each other. Silvestri[5] proposed a simple method
that sorts web pages in lexicographical order based
on their URLs as an acceptable solution to the
problem. This method is reasonable because the
URLs are usually good indicates of the web page
content. However, this method is not applicable to
datasets whose URLs do not represent meaningful
content (e.g., Wikipedia pages), or even do not have a
URL field.

Other fields can also be used to represent the
documents. For example, the reordering can use the
Conf field (i.e., conference name) in the DBLP dataset.
Sorting the documents by this field can also give
acceptable results as well. However, a more flexible
method is to generate a summary for each document
and then sort the documents according to these
summaries. Summaries can be generated as follows.
First, all the words are sorted in descending order of
their frequencies. Then, the top n (e.g., n = 1000)
most frequent words are chosen as signature
vocabulary. For each document, a string, called a
signature, is generated by choosing those words
belong to the signature vocabulary and sorting them
in descending order of their frequencies. The
document sorting compares each pair of signatures
word-wise instead of comparing them letter-
wise. This sort-based algorithm is called the
SIGSORT algorithm.

Sorting documents by their signatures is effective
because more frequent words are more likely to have
consecutive IDs in its inverted list. In addition, since
SIGSORT is very simple, it can easily handle large
datasets.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 02 | Feb-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 428

SIGSORT is more effective for structured and short

text data. Such data has more representative words

since more records share the same words than

general text data such as long web pages. As a result,

each word in the signature vocabulary has a higher

clustering power and the signatures are more

effective. For general text data, a more effective

method should consider more sophisticated

summaries based on features other than words, such

as categories and statistical topics

4.3 Scale TSP-based method using SIGSORT

Shieh et al.[3] transformed the problem of finding the
optimal ordering to the Traveling Salesman Problem
(TSP). They built an undirected graph based on the
underlying dataset by considering each document as
a vertex and the number of words shared by the two
documents as the weight of each edge. Finding an
optimal ordering of documents is equivalent to
solving the traveling salesman problem on this graph
(i.e., to find a cycle on this graph that maximizes the
sum of the weights of involved edges).

Finding an optimal cycle for TSP is NP-hard. Shieh
et al[3] used the Greedy-Nearest-Neighbor (GNN)
heuristic, which expands the path by adding a vertex

that is closest to the current path, to find near-

optimal solutions. The TSP-based method can

provide good results for document reordering, but it

can not scale to large datasets since solving the TSP

using GNN heuristic on a complete graph with n

vertexes has a time complexity of O.n2/.

SIGSORT can be used to scale the TSP-
based method to larger datasets, such as DBLP and
PubMed datasets. First, all the documents are sorted
according to their signatures using SIGSORT. Then,
when the current path is expanded, the nearest
vertex (document) is found within only a small set of
candidates. Instead of the entire datasets, the
candidate set for each document is the k consequent
documents in the order obtained by SIGSORT. This
method is called the SIGSORTTSP algorithm, which is
more efficient than traditional TSP methods and
which can be slightly better than pure SIGSORT for
finding near-optimal solutions for the document
reordering problem.

5.Experiments

 The performance and scalability of Ginix was

evaluated by experiments on a Linux server with an

Intel Xeon 2.50 GHz CPU and 16 GB RAM. Two

datasets were used in the experiments, DBLP[10] and

PubMed[11]. The DBLP dataset is a bibliography

database on computer science that contains more

than 1.4 million publications. The Title, Authors,

Year, Conf (i.e., conference name), and URL of each

publication were concatenated as a document with

indexes built for these documents. PubMed is an

extension of the MEDLINE database that contains

citations, abstracts, and some full text articles on life

sciences and biomedical topics. This study used 1.4

million articles with the Title, Journal Issue, and

Journal Title attributes as the dataset. Ginix was

implemented in C++ using the gcc compiler and /O3

flag.

5.1 Index size

 Figure 1 shows the index sizes using different
compression techniques. The widely-adopted VBE is
used to evaluate the present technique of converting
consecutive IDs to intervals in Ginix. Figure 1
compares the original inverted index (denoted by
InvIndex), the inverted index compressed by VBE
(denoted by InvIndex+VBE), the present inverted
index (denoted by Ginix), and the present inverted
index compressed by VBE (denoted by Ginix+VBE)
for both the DBLP and PubMed datasets. The results
show that the Ginix

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 02 | Feb-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 429

(a) DBLP Data set

(b) PubMed Set

compression is much better than that of VBE. The
Ginix+VBE result has the smallest index size.

5.2 Search performance

 The performance of keyword search algorithms
was compared using synthetic queries. Each dataset
had 9 query workloads, each containing 1000 k-word
queries, where k = 2, 3,….. 10. The keywords in each
query were drawn according to their frequencies, in
other words, if a keyword appears more frequently
in the dataset, it is more likely to be drawn as a query
keyword. The memory-based algorithms have their
indexes in main memory without VBE compression.

IDUNION,IDISECT-HEAP and IDISECT PROBE denote
the three algorithms for union and intersection
operations on InvIndex.

The results show that:

 SCANLINEUNION and TWINHEAPISECT, the
two merge-based algorithms, are 30% and
20% faster than IDUNION and IDHEAPISECT.

 PROBEISECT runs 2 times faster than

IDPROBESET, so interval list intersection is

more efficient than ID list intersection.

 PROBEISECT+, the improved probe-

based interval list intersection algorithm,

runs faster than

PROBEISECT since many unnecessary probe
operations are avoided. However, when there are
many keywords in the query, the computation
savings are not significant since the result list is
already short.

Note that the naıve probe-based intersection
algorithm is very in efficient compared with the
other probe-based intersection methods. As a result,
it was omitted in these two figures for clarity.

Disk-based search algorithms introduce additional
time to load the lists of inverted index (or Ginix) into
main memory during query processing. In addition, if
VBE is used on indexes, additional de-
compression operations must be performed, thus the
overall query time gets longer compared
with memory-based algorithms. Figure 4 shows the
query processing times for probe-based intersections
of InvIndex, InvIndex+VBE, Ginix, and Ginix+VBE on
the DBLP and PubMed datasets. These four indexes
are denoted as “I”, “IV”, “G”, and “GV” in the figure
 The results show that:

 IO time: The IO time of Ginix is
approximately 30% shorter than that of
InvIndex because the interval lists are
shorter than the ID lists.

 Decompression time: Since the

computational cost of VBE is proportional to
the list length, the decompression time of
Ginix+VBE is also approximately 30% shorter
than that of InvIndex+VBE.

 Search time: Since the current algorithms

take advantage of the intervals, the search
time of Ginix is nearly 2x faster than that of
InvIndex.

In summary, the overall performance of Ginix is
much higher than that of InvIndex, with or without
VBE compression.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 02 | Feb-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 430

5.3 Impact of document reordering

The impact of document reordering was evaluated
for the DBLP dataset. The experiments considered
four reordering methods: (1) RAND, which randomly
shuffles the dataset; (2) CONF, which sorts the
records according to the values of the Conf attribute;

(3) SIGSORT, which uses the top 1000 most
frequently occurring words as signature words; and
(4) SIGSORTTSP, which uses 100 consequent records
in the sorted list obtained by SIGSORT as the
candidate set for each record (k = 100) and uses GNN
heuristics to solve the TSP. The original InvIndex is
used as a baseline. The method in Shieh et al.[3] was
not evaluated because it can not scale to handle large
datasets like DBLP. The index sizes and average
query times are illustrated in Table 2.
The results in Table 2 show that:

 The size of Ginix is smaller than that of
InvIndex, even when the records are ordered
randomly.

 Sorting records according to their Conf values
provides a good ordering, with which the
index size is 128.9 MB and the average query
time is 0.88 ms.

 Ginix can achieve the best performance in
terms of both the index size and the average
query time when reordering the records
using SIGSORTTSP. Similar results were
found for the PubMed dataset.

5.4 Scalability

The scalability of Ginix was evaluated using different
numbers of reocrds in the DBLP dataset. The index
sizes for InvIndex and Ginix without VBE and the
search speeds of the SCANLINEUNION+,
TWINHEAPISECT, PROBEISECT, and PROBEISECT+

Table 2 Impact of document reordering (DBLP).

 Size (MB) Time (ms)
BASELINE 200.30 1.47
RAND 172.90 1.80
CONF 128.90 0.88
SIGSORT 130.30 0.68
SIGSORTTSP 124.80 0.62

Overall query processing time of performing probe-
based intersections.

6 Related Work

Keyword search is widely used by users to access

text data with many studies in recent years. Keyword

search is not only convenient for document

collections but also for accessing structured or semi-

structured data, such as relational databases and

XML documents[12-19].

Inverted indexes are widely used to efficiently

answer keyword queries in most modern keyword
search systems, with techniques designed to
compress the inverted indexes[20]. Most techniques
first convert each ID in an inverted list to the
difference between it and the preceding ID, called
the d-gaps, and then encode the list using integer
compression algorithms[1, 20-24]. Variable- Byte
Encoding is widely used in systems since it is simple
and provides fast decoding[1].

Other studies have focused on how to improve the

compression ratio of inverted index using document
reordering[4, 6, 7]. Here, if the document IDs are
reassigned so that similar documents are close to
each other, then there are more small d-gaps in the
converted lists and the overall compression ratio is
improved.

The interval tree[25] is widely used to directly
Scalability for DBLP. calculate the unions and
intersections of sets of intervals. However, interval
trees are not good for keyword search because: (1)
an interval tree is needed for each word, which
increases the index size; (2) interval trees can not be
easily compressed; and (3) interval trees can not
support multi-waymerging and probing, which are
important for accelerating calculations.

7. SCOPE FOR FUTURE ENHANCEMENT

Users can use any information system continuously if
it is evaluating continuously time to time. For this
reason this system is designed as flexible as possible
to future enhancements. In future, well defined
project metrics and statistical methods to evaluate

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 02 | Feb-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 431

staff performance and to do better scheduling of
project can be included.

In future , I will study how to incrementally Update
mined TARs when the original XML datasets
change and how to further optimize our mining
algorithm. Moreover for the moment I deal with a
(substantial) fragment of XQuery , I would like to find
the exact fragment of XQuery which lends itself to
translation into intentional queries.

8. CONCLUSION

Mine all frequent association rules without imposing
any a-priori restriction on the structure and the
content of the rules. Store mined information in
XML format. Use extracted knowledge to gain
information about the original datasets. We have
developed a C++ prototype that has been used to
test the effectiveness of our proposal. We have not
discussed the updatability Of both the document
storing TARs and their index.

Reference Books

1. R.Agrawal and R.Srikant. Fast, “Algorithms
for mining association rules in large databases”
.In Proc. of the 20th Int. Conf. on Very Large
Databases’, Morgan Kaufmann Publishers Inc.,
1994.

2. T. Asai, K. Abe, S. Kawasoe, H. Arimura, H.
Sakamoto, and S. Arikawa,“Efficient
substructure discovery from large semi-
structured data”. In Proc. of the SIAM Int. Conf.
on Data Mining, 2002.

3. T. Asai, H. Arimura, T. Uno, and S.
Nakano,”Discovering frequent substructures
in large unordered trees”. In Technical Report
DOI-TR216, Department of Informatics, Kyushu
University, 2003.

4. E. Baralis, P. Garza, E. Quintarelli, and L.
Tanca, “Answering xml queries by means of
data summaries”. ACM Transactions on
Information Systems, 25(3):10, 2007.

5. D. Barbosa, L. Mignet, and P. Veltri. Studying
the xml web, “Gathering statistics from an xml
sample”. World Wide Web, 8(4):413–438,
2005.

6.Ding, J. Attenberg, and T. Suel, Scalable
techniques for document identifier assignment
ininverted indexes. in Proc. of the 19th
International Conference on World Wide Web,
Raleigh, North Carolina, USA, 2010, pp. 311-
320. Hao Wu et al.: Ginix: Generalized Inverted
Index for Keyword Search 87 [8]

7. http://www.i.kyushuu.ac

8. http://www.ieee.org

9. http://www.computer.org/publications/dlib

Dr. D. Devakumari has

received M. Phil degree

from Manonmaniam

Sundaranar University in

2003 and Ph.D from

Mother Teresa Womens’

University in 2013.

Currently she is working as

Assistant Professor in the PG and Research

Department of Computer Science, Government Arts

College (Autonomous), Coimbatore, India. Her

research papers have been published in

International journals including Inderscience,

Springer etc. She has presented papers in National

and International Conferences. Her research

interests include Data Pre-processing and Pattern

Recognition.

Mrs. M.Shajitha begum has

received B.SC(IT) degree

from Cheran’s Womens

College and M.SC(IT) from

K.S.G Arts and Science

College .Pursuing her M.Phil

degree from L.R.G

Government College for

Women.

