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Abstract: Keyword search has become a ubiquitous 
method for users to access text data in the face of 
information explosion. Inverted lists are usually used 
to index underlying documents to retrieve 
documents according to a set of keywords efficiently. 
Since inverted lists are usually large, many 
compression techniques have been proposed to 
reduce the storage space and disk I/O time. However, 
these techniques usually perform decompression 
operations on the fly, which increases the CPU time. 
This paper presents a more efficient index structure, 
the Generalized INverted IndeX (Ginix), which 
merges consecutive IDs in inverted lists into 
intervals to save storage space. With this index 
structure, more efficient algorithms can be devised to 
perform basic keyword search operations, i.e., the 
union and the intersection operations, by taking the 
advantage of intervals. Specifically, these algorithms 
do not require conversions from interval lists back to 
ID lists. As a result, keyword search using Ginix can 
be more efficient than those using traditional 
inverted indices. The performance of Ginix is also 
improved by reordering the documents in datasets 
using two scalable algorithms. Experiments on the 
performance and scalability of Ginix on real datasets 
show that Ginix not only requires less storage space, 
but also improves the keyword search performance, 
compared with traditional inverted indexes. 
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document reordering 
 

1. Introduction 

With the huge amount of new information, keyword  
search is critical for users to access text datasets. 
These datasets include textual documents. Users use 
keyword search to retrieve documents by simply 
typing in keywords as queries. Current keyword 
search systems usually use an inverted index, a data 
structure that maps each word in the dataset to a list 

of IDs of documents in which the word appears to 
efficiently retrieve documents. 

To address this problem, this paper presents the 
Generalized INverted IndeX (Ginix), which is an 
extension of the traditional inverted index (denoted 
by InvIndex), to support keyword search. Ginix 
encodes consecutive IDs in each inverted list of 
InvIndex into intervals, and adopts efficient 
algorithms to support keyword search using these 
interval lists. Ginix dramatically reduces the size of 
the inverted index, while supporting keyword search 
without list decompression. Ginix is also compatible 
with existing d-gap-based compression techniques. 
As a result, the index size can be further compressed 
using these methods. Technique of 
document reordering[3-7], which is to reorder the 
documents in a dataset and reassign IDs to them 
according to the new order to make the index 
achieve better performance, is also used in this 
paper.  
 
The contributions of this paper are: 
 

  This paper presents an index structure for  
keyword search, Ginix, which converts 
inverted lists into interval lists to save 
storage space. 

  Efficient algorithms are given to support 
basic operations on interval lists, such as 
union and intersection without 
decompression. 

  Extensive experiments that evaluate the 
performance of Ginix are conducted. Results 
show that Ginix not only reduces the index 
size but also improves the search 
performance on real datasets. 

 The problem of enhancing the performance 

of Ginix by document reordering is 

investigated, and two scalable and effective 

algorithms based on signature sorting and 

greedy heuristic of Traveling Salesman 

Problem (TSP)[3] are proposed. 
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2.Basic Concepts of Ginix 

         Let D= {d1,d2,…. dN }be a set of documents. 
Each document in D includes a set of words, and the  

set of all distinct words in D is denoted by W . In the 
inverted index of D, each word w 2 W has an inverted 
list, denoted by Iw, which is an ordered list of IDs of 
documents that contain the word with all lists (ID 
lists and interval lists) sorted in ascending order. For 
example, Table 1a shows a collection of titles of 7 
papers and Table 1b gives its inverted index. 

The inverted index of this sample dataset consists of 
18 inverted lists, each of which corresponds to a 
word. This example shows the lists of 4 most 
frequent words 

 
Table 1  A sample dataset of 7 paper titles. 

(a) Dataset content 
 

   ID                                         Content 

 
1     Keyword querying and ranking in databases 
2     Keyword searching and browsing in database 
3     Keyword search in relational database 
4     Efficient fuzzy type-ahead search 
5     Navigation system for product search 
6     Keyword search on spatial databases 
7     Searching for hidden-web databases 
 

 

 
 (b) InvIndex                                (c)Ginix 

Word           IDs                               Word              IDs 

 

Keyword      1,2,3,6                  Keyword      [1,3],[6,6] 

 . . .              . . .                                . . .                . . .  
Databases    1,2,3,6,7              Databases   [1,3],[6,7] 
 
Searching      2,7                      Searching      [2,2],[7,7] 
 
Search          3,4,5,6                 Search          [3,6] 
 . . .                . . .                             . . .                . . . 
 

i.e., ‘’keyword’’,’’database’ ’,’’searching’’,and ‘’search’’ 
(word steaming is not consider) 
 

A straightforward way to store an interval in Ginix 

is to explicitly store both its lower and upper bounds, 

as is illustrated in Table 1c. However, if an interval 

[I,u]  is a single-element interval, i.e., l = u, two 

integers are still needed to represent the interval. 

Thus if there are many single-element intervals in 

the interval list, the space cost will be expensive. The 

extra overhead for storing the interval lists is 

reduced by splitting each original interval list into 3 

ID lists with one for single- element intervals and the 

other two for the lower and upper bounds of multi-

element intervals. These three lists are denoted as S, 

L, and U. For example, the interval list 

{[1,1],[3,3],[6,7],[9,9][12,15]} can be split into 3 ID 

lists with S ={1,3,9} and L={6,12} This reduces the 

number of integers from 10 to 7. Efficient 

sequential/sorted access is a basic requirement of 

keyword search based on the interval lists. Two 

position indicators, p and q, are used here to indicate 

the current positions in S and L/U . At the beginning, 

p and q are all set to 0, indicating that they are all 

pointing to the first elements in S and L/U . The 

current interval is found by comparing the two 

elements Sp and Lq. If Sp is smaller, we return the 

single- element interval [Sp,Sp] and increment p by 

1; if Lq is smaller, return the multi-element interval 

[Lq,Uq] and increment q by 1. 

Given an ID list S containing n IDs and its 
equivalent interval list R, the three lists, R.S, S.L, and 
S.R, used to store R will contain no more than n 
integers in total. This property of interval lists means 
that Ginix can be regarded as a compression 
technique, which is orthogonal to d-gap-
based techniques. Moreover, d- gap-based 
compression algorithms, such as VBE and P For 
Delta, can still be applied to Ginix, since all the lists in 
Ginix are ordered lists of IDs.  

 

3. Search Algorithms 

A keyword search system usually supports union and 

the intersection operations on inverted lists. The 

union operation is a core operation to support OR 

query semantics in which every document that 

contains at least one of the query keywords is 

returned as a result. The intersection operation is 
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used to support AND query semantics, in which only 

those documents that contain all the query keywords 

are returned. 
Traditional search algorithms are all based on ID 
lists. 
Specifically, a traditional keyword search system first 
retrieves the compressed inverted list for each 
keyword from the disk, then decompresses these 
lists into ID lists, and then calculates the 
intersections or unions of these lists in main 
memory. This method introduces extra 
computational costs for decompression, and ID list 
based search methods can be very expensive because 
ID lists are usually very long. 

3.1 Union operation 

As in set theory, the union (denoted by U of a set of 
ID lists, denoted by S ={S1; S2;…..Sn}, is another ID 
list, in which each ID is contained in at least one ID 
list in S. Thus the union of a set of interval lists can be 
defined as follows: 

Definition 1 Union of Interval Lists  Given a set of 
interval lists, R= {R1; R2; ; Rn}, and their equivalent 
ID lists, S={S1; S2; ; Sn}g, the union of  R is the 

equivalent R is the equivalent interval list of Unk=1Sk 

For example, consider the following three interval 
lists:{[2,7]},[11,13]},{[5,7],[12,14]},and{[1,3],[6,7],[9,
9][12,15]}.Their equivalent  ID list are are  {2; 3; 4; 5; 
6; 7; 11; 12; 13}, {5; 6; 7; 12; 13; 14}, and {1; 2; 3; 6; 
7; 9; 12; 13; 14; 15}. The union of these three ID lists 
is {1; 2; 3; 4; 5; 6; 7; 9; 11; 12; 13; 14; 15}; thus, the 
union of the three interval lists is the equivalent 
interval list of this ID list, i.e., {[1, 7]•;{9, 9]•;{11, 15}) 

In this algorithm, the interval lists are first 
converted into ID lists with the union calculated 
using the well- known multi-way merge algorithm 
and the result then converted back into an interval 
list. This method is called the 
NA¨IVEUNION algorithm. Since the goal is to design 
an algorithm for calculating the union of interval lists 
without list conversion, this method will be used as a 
baseline for comparison. 

 

3.2 Scan-line algorithm 

 
   A union algorithm without ID-interval conversion 
will only use the interval boundaries in the interval 
lists. Inspired by the scan-line rendering algorithm in 
computer graphics[9], the boundaries of all intervals 

in the interval lists are first sorted into ascending 
order, with a scan-line moves from the smallest 
boundary to the largest boundary to calculate the 
union list. The scan-line movement maintains a 
reference counter to count the number of intervals 
that the scan-line is currently hitting. The counter is 
incremented by 1 when the scan-line hits a lower 
bound and is decremented by 1 when it hits an upper 
bound. If the counter increases from 0 to 1 (which 
means that the scan-line is processing an interval), 
the current boundary is saved in variable a. When the 
counter decreases from 1 to 0 (which means that 
the scan-line will not hit any interval before it hits 
another lower-bound), the current boundary is saved 
in variable b and [a,b] is returned as the resulting 
interval. 

The heap-based merge is used on all the interval lists 
to enumerate all the lower bounds and upper bounds 
in ascending order. This algorithm is called the 
SCANLINEUNION algorithm and illustrated in 
Algorithm 1 

4.Document Reordering 

      Document reordering also improves the 

performance of Ginix. This section first explains the 

necessity of document reordering. Then, since 

finding the best order 
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of documents is NP-hard, a sorting-based method 
and a sorting-TSP hybrid method are used to find 
near- optimal solutions. 

 

4.1 Necessity of document reordering 

               The time complexities of the search 
algorithms given in the previous section all depend 
on the number of intervals in the interval lists 
instead of the numbers of IDs. For example, the time 
complexity of the PROBEISECT algorithm is O(.m. n 
log m)where n denotes the number of interval lists 
and m denotes the number of intervals in each 
interval list. Thus, if the interval lists in Ginix contain 
fewer intervals, the search algorithms will be faster. 
On the other hand, interval lists containing fewer 
intervals will require less storage space. Therefore, 
the search speed and the space cost are both 
improved by reducing the number of intervals in 
Ginix. 

 

Suppose that A and B are two ID lists with the same 
number of IDs. A’s equivalent interval list will have 
less intervals than that of B’s if A contains more 
consecutive IDs than B. Thus the order of the 
documents should be rearranged (or the IDs to the 
documents should be reassigned) so that the 
inverted lists contain as many consecutive IDs as 
possible. For example, if the 4th and 6th records in 
the dataset in Table 1a are switched, the interval lists 
for “keyword” and “databases” will become {[1,4}] 
and {[1,4},[7,7]},This will save two integers storage 
space for the interval lists. 

There have been many efforts on finding the 
optimal document ordering that maximizes the 
frequencies of d-gaps in inverted lists to enhance the 
performance of existing inverted list 
compression techniques[3-7].  current problem is a 
special case of this problem (i.e., to maximize the 
frequencies of 1-gap). Previous studies of document 
reordering have all been designed for unstructured 
long documents (e.g., news and web pages), so 
methods are needed for structured or short 
documents, which are the focus of this study. 

 

4.2 SIGSORT: Signature sorting method 
 
               The problem of document reordering is 
equivalent to making similar documents stay near to 
each other. Silvestri[5] proposed a simple method 
that sorts web pages in lexicographical order based 
on their URLs as an acceptable solution to the 
problem. This method is reasonable because the 
URLs are usually good indicates of the web page 
content. However, this method is not applicable to 
datasets whose URLs do not represent meaningful 
content (e.g., Wikipedia pages), or even do not have a 
URL field. 

Other fields can also be used to represent the 
documents. For example, the reordering can use the 
Conf field (i.e., conference name) in the DBLP dataset. 
Sorting the documents by this field can also give 
acceptable results as well. However, a more flexible 
method is to generate a summary for each document 
and then sort the documents according to these 
summaries. Summaries can be generated as follows. 
First, all the words are sorted in descending order of 
their frequencies. Then, the top n (e.g., n = 1000) 
most frequent words are chosen as signature 
vocabulary. For each document, a string, called a 
signature, is generated by choosing those words 
belong to the signature vocabulary and sorting them 
in descending order of their frequencies. The 
document sorting compares each pair of signatures 
word-wise instead of comparing them letter-
wise. This sort-based algorithm is called the 
SIGSORT algorithm. 

Sorting documents by their signatures is effective 
because more frequent words are more likely to have 
consecutive IDs in its inverted list. In addition, since 
SIGSORT is very simple, it can easily handle large 
datasets. 
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SIGSORT is more effective for structured and short 

text data. Such data has more representative words 

since more records share the same words than 

general text data such as long web pages. As a result, 

each word in the signature vocabulary has a higher 

clustering power and the signatures are more 

effective. For general text data, a more effective 

method should consider more sophisticated 

summaries based on features other than words, such 

as categories and statistical topics 

4.3 Scale TSP-based method using SIGSORT 

Shieh et al.[3] transformed the problem of finding the 
optimal ordering to the Traveling Salesman Problem 
(TSP). They built an undirected graph based on the 
underlying dataset by considering each document as 
a vertex and the number of words shared by the two 
documents as the weight of each edge. Finding an 
optimal ordering of documents is equivalent to 
solving the traveling salesman problem on this graph 
(i.e., to find a cycle on this graph that maximizes the 
sum of the weights of involved edges). 

Finding an optimal cycle for TSP is NP-hard. Shieh 
et al[3] used the Greedy-Nearest-Neighbor (GNN) 
heuristic, which expands the path by adding a vertex 

that is closest to the current path, to find near-

optimal solutions. The TSP-based method can 

provide good results for document reordering, but it 

can not scale to large datasets since solving the TSP 

using GNN heuristic on a complete graph with n 

vertexes has a time complexity of O.n2/. 

SIGSORT can be used to scale the TSP-
based method to larger datasets, such as DBLP and 
PubMed datasets. First, all the documents are sorted 
according to their signatures using SIGSORT. Then, 
when the current path is expanded, the nearest 
vertex (document) is found within only a small set of 
candidates. Instead of the entire datasets, the 
candidate set for each document is the k consequent 
documents in the order obtained by SIGSORT. This 
method is called the SIGSORTTSP algorithm, which is 
more efficient than traditional TSP methods and 
which can be slightly better than pure SIGSORT for 
finding near-optimal solutions for the document 
reordering problem. 

 

5.Experiments 

   The performance and scalability of Ginix was 

evaluated by experiments on a Linux server with an 

Intel Xeon 2.50 GHz CPU and 16 GB RAM. Two 

datasets were used in the experiments, DBLP[10] and 

PubMed[11]. The DBLP dataset is a bibliography 

database on computer science that contains more 

than 1.4 million publications. The Title, Authors, 

Year, Conf (i.e., conference name), and URL of each 

publication were concatenated as a document with 

indexes built for these documents. PubMed is an 

extension of the MEDLINE database that contains 

citations, abstracts, and some full text articles on life 

sciences and biomedical topics. This study used 1.4 

million articles with the Title, Journal Issue, and 

Journal Title attributes as the dataset. Ginix was 

implemented in C++ using the gcc compiler and /O3 

flag. 

5.1 Index size 

      Figure 1 shows the index sizes using different 
compression techniques. The widely-adopted VBE is 
used to evaluate the present technique of converting 
consecutive IDs to intervals in Ginix. Figure 1 
compares the original inverted index (denoted by 
InvIndex), the inverted index compressed by VBE 
(denoted by InvIndex+VBE), the present inverted 
index (denoted by Ginix), and the present inverted 
index compressed by VBE (denoted by Ginix+VBE) 
for both the DBLP and PubMed datasets. The results 
show that the Ginix 
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(a) DBLP Data set 

 

(b) PubMed Set 

 
compression is much better than that of VBE. The 
Ginix+VBE result has the smallest index size. 

 

5.2  Search performance 

 

     The performance of keyword search algorithms 
was compared using synthetic queries. Each dataset 
had 9 query workloads, each containing 1000 k-word 
queries, where k = 2, 3,….. 10. The keywords in each 
query were drawn according to their frequencies, in 
other words, if a keyword appears more frequently 
in the dataset, it is more likely to be drawn as a query 
keyword. The memory-based algorithms have their 
indexes in main memory without VBE compression.  

IDUNION,IDISECT-HEAP and IDISECT  PROBE denote 
the three algorithms for union and intersection 
operations on InvIndex.  

 

The results show that: 

 SCANLINEUNION and TWINHEAPISECT, the 
two merge-based algorithms, are 30% and 
20% faster than IDUNION and IDHEAPISECT. 

   
    PROBEISECT runs 2 times faster than 

IDPROBESET, so interval list intersection is 

more efficient than ID list intersection. 

 

 PROBEISECT+, the improved probe-

based interval list intersection algorithm, 

runs faster than 

 

PROBEISECT since many unnecessary probe 
operations are avoided. However, when there are 
many keywords in the query, the computation 
savings are not significant since the result list is 
already short. 
 

Note that the naıve probe-based intersection 
algorithm is very in efficient compared with the 
other probe-based intersection methods. As a result, 
it was omitted in these two figures for clarity. 

Disk-based search algorithms introduce additional 
time to load the lists of inverted index (or Ginix) into 
main memory during query processing. In addition, if 
VBE is used on indexes, additional de-
compression operations must be performed, thus the 
overall query time gets longer compared 
with memory-based algorithms. Figure 4 shows the 
query processing times for probe-based intersections 
of InvIndex, InvIndex+VBE, Ginix, and Ginix+VBE on 
the DBLP and PubMed datasets. These four indexes 
are denoted as “I”, “IV”, “G”, and “GV” in the figure 
 The results show that: 
 

 IO time: The IO time of Ginix is 
approximately 30% shorter than that of 
InvIndex because the interval lists are 
shorter than the ID lists. 

 
 Decompression time: Since the 

computational cost of VBE is proportional to 
the list length, the decompression time of 
Ginix+VBE is also approximately 30% shorter 
than that of InvIndex+VBE. 

 
 Search time: Since the current algorithms 

take advantage of the intervals, the search 
time of Ginix is nearly 2x faster than that of 
InvIndex. 
 
 

In summary, the overall performance of Ginix is 
much higher than that of InvIndex, with or without 
VBE compression. 
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5.3 Impact of document reordering 

The impact of document reordering was evaluated 
for the DBLP dataset. The experiments considered 
four reordering methods: (1) RAND, which randomly 
shuffles the dataset; (2) CONF, which sorts the 
records according to the values of the Conf attribute; 

(3) SIGSORT, which uses the top 1000 most 
frequently occurring words as signature words; and 
(4) SIGSORTTSP, which uses 100 consequent records 
in the sorted list obtained by SIGSORT as the 
candidate set for each record (k = 100) and uses GNN 
heuristics to solve the TSP. The original InvIndex is 
used as a baseline. The method in Shieh et al.[3] was 
not evaluated because it can not scale to handle large 
datasets like DBLP. The index sizes and average 
query times are illustrated in Table 2. 
The results in Table 2 show that: 
 

 The size of Ginix is smaller than that of 
InvIndex, even when the records are ordered 
randomly. 
 

 Sorting records according to their Conf values 
provides a good ordering, with which the 
index size is 128.9 MB and the average query 
time is 0.88 ms. 
 
 

 Ginix can achieve the best performance in 
terms of both the index size and the average 
query time when reordering the records 
using SIGSORTTSP. Similar results were 
found for the PubMed dataset. 
 

5.4 Scalability 

The scalability of Ginix was evaluated using different 
numbers of reocrds in the DBLP dataset. The index 
sizes for InvIndex and Ginix without VBE and the 
search speeds of the SCANLINEUNION+, 
TWINHEAPISECT, PROBEISECT, and PROBEISECT+ 

Table 2 Impact of document reordering (DBLP). 

                        Size (MB)               Time (ms) 
BASELINE 200.30         1.47         
RAND 172.90         1.80         
CONF 128.90         0.88         
SIGSORT 130.30         0.68         
SIGSORTTSP 124.80         0.62         
                                                                              

 

Overall query processing time of performing probe-
based intersections. 

6 Related Work 

Keyword search is widely used by users to access 

text data with many studies in recent years. Keyword 

search is not only convenient for document 

collections but also for accessing structured or semi-

structured data, such as relational databases and 

XML documents[12-19]. 

 
Inverted indexes are widely used to efficiently 

answer keyword queries in most modern keyword 
search systems, with techniques designed to 
compress the inverted indexes[20]. Most techniques 
first convert each ID in an inverted list to the 
difference between it and the preceding ID, called 
the d-gaps, and then encode the list using integer 
compression algorithms[1, 20-24]. Variable- Byte 
Encoding is widely used in systems since it is simple 
and provides fast decoding[1]. 

 
Other studies have focused on how to improve the 

compression ratio of inverted index using document 
reordering[4, 6, 7]. Here, if the document IDs are 
reassigned so that similar documents are close to 
each other, then there are more small d-gaps in the 
converted lists and the overall compression ratio is 
improved. 

 
The interval tree[25] is widely used to directly 
Scalability for DBLP. calculate the unions and 
intersections of sets of intervals. However, interval 
trees are not good for keyword search because: (1) 
an interval tree is needed for each word, which 
increases the index size; (2) interval trees can not be 
easily compressed; and (3) interval trees can not 
support multi-waymerging and probing, which are 
important for accelerating calculations. 
 

7. SCOPE FOR FUTURE ENHANCEMENT 

Users can use any information system continuously if 
it is evaluating continuously time to time. For this 
reason this system is designed as flexible as possible 
to future enhancements. In future, well defined 
project metrics and statistical methods to evaluate 
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staff performance and to do better scheduling of 
project can be included. 

In future , I will  study  how  to  incrementally Update  
mined  TARs  when  the  original XML datasets 
change and how to further optimize our mining 
algorithm. Moreover for  the  moment  I  deal with a 
(substantial) fragment of XQuery , I would like to find 
the exact fragment of XQuery which lends itself to 
translation into intentional queries. 

8. CONCLUSION 

Mine all frequent association rules without  imposing  
any  a-priori restriction  on the  structure  and  the  
content  of  the  rules. Store mined information in 
XML format. Use extracted knowledge to gain 
information about the original datasets. We have  
developed  a C++ prototype that has been used to 
test the effectiveness of our proposal. We have not 
discussed the updatability Of both the document 
storing TARs and their index. 
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