

A Review article on some generalizations of Banach's contraction principle

Sujata Goyal

Assistant professor, Dept. Of Mathematics, A.S. College, Khanna, Punjab, India

Abstract:

Let (X,d) be a metric space. The well known Banach's Contraction Principle states that if $T: X \rightarrow X$ is a contraction on X(i.e.d) $(Tx,Ty) \leq c d(x,y)$ for some $0 \leq c < 1$ and for all x,y in X) and (X,d) is complete then T has a fixed point in X (i.e. Tx = x for some x in X) In this paper, a number of extensions of Banach contraction principle have been discussed.

Keywords:

Contraction , Multivalued contractions, quasi contraction, λ - generalized contraction , f-contraction and generalized fcontraction, ϕ -weak contraction, ω - distance, weakly uniform strict contraction

Introduction:

S.Nadler has extended the result to multivalued contractions:

Let (X,d) be a complete metric space

(a)CB(X)={C : C is closed and bounded subset of X}

(b)N(ε ,C)={ $x \in X:d(x,c) < \varepsilon$ for some $c \in C$ }

(c)H(A,B)=inf{ ε : A \subset N(ε ,B) or B \subset N(ε ,A)} where A, B \in CB(X)

The function H is a metric on CB(X) and is called Hausdorff metric.

Let (X,d_1) and (Y,d_2) be two metric spaces.

Definition : A function T: X \rightarrow CB(Y) is called multivalued contraction mapping of X into Y iff H(Tx,Ty) \leq cd₁(x,y) for some 0<c<1 and for all x,y in X

A point x is said to be fixed point of T if $x \in Tx$

Therom : Let (X,d) be a complete metric space. If $T : X \rightarrow CB(X)$ is a multivalued contraction mapping then T has a fixed point (i.e. there exists $x \in X$ such that $x \in Tx$).

Above theorem generalizes the Banach's Contraction Principle.(the map J: $X \rightarrow CB(X)$ defined by J(x)={x} is an isometry. T: X \rightarrow X be a contraction then J \circ T: X \rightarrow CB(X) is a multivalued contraction, thus there exists x \in X such that x \in J \circ T(x) i.e. $x \in J(T(x))$ which implies $x \in \{Tx\}$. Thus x=Tx

Lj.B.Ciric and S.B. Presic extended the result as follows:

Theorem : Let (X,d) be a complete metric space , k a positive integer and T: X $^{K} \rightarrow$ X a map satisfying the condition:

 $d(T(x_1, x_2, \dots, x_k), T(x_2, x_3, \dots, x_{k+1})) \le c \max\{d(x_i, x_{i+1}): 1 \le i \le k\}$

where $c \in [0,1)$ is a constant and x_1, x_2, \dots, x_{k+1} in X are arbitrary then there exists a point x in X such that $T(x, x, \dots, x) = x$ If in addition, on diagonal $\Delta \subset X^K$, $d(T(u, u, \dots, u), T(v, v, \dots, v)) < d(u, v)$ holds for all u,v in X with $u \neq v$ then x is the unique point in X with $T(x, x, \dots, x) = x$

For k=1 the above theorem gives Banach's contraction principle.

James Merryfield and James D. Stein gave the proof of generalized banach contraction conjecture :

Theorem : Let (X,d) be a complete metric space. T : $X \rightarrow X$ be a map and let $0 \le c < 1$. Let J be a positive integer . Assume for each pair x , y in X

Min{d(T^{*K*} x, T^{*K*} y):1 $\leq k \leq J$ } \leq c d(x,y) then T has a unique fixed point.

For J = 1, the above theorem gives Banach's contraction principle.

Lj.B.Ciric has extended the result to quasi contractions:

Definition : A mapping T : X \rightarrow X is said to be quasi-contraction if there exists a number $0 \le c < 1$ such that

 $d(Tx,Ty) \le c \max\{d(x,y), d(x,Ty), d(y,Tx), d(x,Tx), d(y,Ty)\}$ for all x, y in X

For $x \in X$, Let $O(x, \infty) = \{x, Tx, T^2 x, \ldots\}$

Definition : A space X said to be T-orbitally complete if every Cauchy sequence in $O(x, \infty)$ for some $x \in X$ is convergent in X.

Theorem : Let $T : X \rightarrow X$ be a quasi - contraction and X is T – orbitally complete. Then T has a unique fixed point in X.

Above theorem is clearly generalization of Banach's Contraction Principle as every contraction is quasi contraction.

M.S. Khan introduced altering distance function to generalize the result:

Definition : A function $\psi : [0, \infty) \rightarrow [0, \infty)$ is called an altering distance function if the following conditions are satisfied:

(a) ψ (0)=0 (b) ψ is continuous and monotonically non-decreasing.

Theorem : Let (X,d) be a complete metric space.Let ψ be an altering distance function and letT: X \rightarrow X be a map which satisfies the following inequality:

 ψ (d(Tx,Ty)) \leq c ψ d(x,y) for all x,y in X and for some 0 \leq c<1 then T has a unique fixed point.

Clearly for ψ (t)=t , above theorem gives Banach's Contraction Principle.

Lj.B. Ciric introduced λ – generalized contraction to extend the result:

Definition : A mapping T: $X \to X$ is said to be a λ – generalized contraction if for every x,y in X, there exist non negative numbers q(x,y), r(x,y), s(x,y), t(x,y) such that $\sup_{x,y\in X} \{q(x,y)+r(x,y)+s(x,y)+2t(x,y)\} = \lambda < 1$ and $d(Tx,Ty) \leq q(x,y)$

d(x,y)+r(x,y) d(x,Tx)+s(x,y) d(y,Ty)+t(x,y) (d(x,Ty)+d(y,Tx)) holds for all x,y in X

Theorem : Let T be λ - generalized contraction of T –orbitally complete metric space X into itself then T has a unique fixed point in X.

If we take r(x,y)=s(x,y)=t(x,y)=0 and q(x,y)=c for all x,y where 0 < c < 1 then above theorem gives Banach contraction principle.

Milan R.Tascovic

Theorem : Let $T : X \rightarrow X$ be a map and X be T – orbitally complete .If T satisfies the following condition:

There exist real numbers α_i , β for every x,y in X such that : $\alpha_1 + \alpha_2 + \alpha_3 > \beta$ and $\beta - \alpha_2 \ge 0 \lor \beta - \alpha_3 \ge 0$

and $\alpha_1 d(Tx,Ty) + \alpha_2 d(x,Tx) + \alpha_3 d(y,Ty) + \alpha_4 \min\{d(x,Ty),d(y,Tx)\} \le \beta d(x,y)$ then T has a fixed point.

Above theorem generalizes banach's contraction principle as every contraction satisfies the above condition.

Milan R.Tascovic also defined f-contraction and generalized f-contraction :

Definition : A mapping f: $\mathbf{R}_{+}^{k} \rightarrow \mathbf{R}_{+}$ is semihomogenous if f($\delta \mathbf{x}_{1}, \delta \mathbf{x}_{2}, \dots \delta \mathbf{x}_{k}$) $\leq \delta \mathbf{f}(\mathbf{x}_{1}, \mathbf{x}_{2}, \dots \mathbf{x}_{k}): \delta > 0$

A mapping $T: X \rightarrow X$ is said to be f- contraction if for every x,y in X there exist non negative real numbers α_i (x,y) i=1,2,...5 such that

 $d(Tx,Ty) \le f(\alpha_1(x,y)d(x,y), \alpha_2(x,y)d(x,Tx), \alpha_3(x,y)d(y,Ty), \alpha_4(x,y)d(x,Ty), \alpha_5(x,y)d(y,Tx))$

where sup{f($\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5$): x, y \in X}= λ <1and the existing mapping f:(\mathbf{R}_+^0)⁵ \rightarrow \mathbf{R}_+^0 is increasing and semihomogenous.

Theorem : Let T be a f-contraction on a metric space X and let X be T orbitally complete then T has a unique fixed point.

Every contraction mapping satisfies the above condition for f(s,t,u,v,w) = s and $\alpha_1 = c$, $\alpha_2 = \alpha_3 = \alpha_4 = \alpha_5 = 0$ where 0<c<1 , thus above theorem generalizes Banach's contraction principle.

Definition : A mapping f: $\mathbf{R}_{+}^{K} \rightarrow \mathbf{R}_{+}^{K}$ is semihomogenous of order $\alpha \geq 1$ iff f($\delta \mathbf{x}_{1}, \delta \mathbf{x}_{2}, \dots \delta \mathbf{x}_{k}$) $\leq \delta$ f($\mathbf{x}_{1}, \mathbf{x}_{2}, \dots \mathbf{x}_{k}$)

Where δ belongs to $[\alpha, \infty)$

Definition : A mapping $T : X \rightarrow X$ is said to be generalized f- contraction if for every x,y in X

 $d(Tx,Ty) \le f(d(x,y), d(x,Tx), d(y,Ty), d(x,Ty), d(y,Tx))$

where $f: (\mathbf{R}^{0}_{+})^{5} \rightarrow \mathbf{R}^{0}_{+}$ is increasing, semihomogenous of order $\alpha \geq 1$ and with the properties $f(t,t,...,t) < t \land$

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 643

 $\lim_{y\to t+0} \sup f(y,y,\ldots y) < t \text{ for all } t \in (0, \alpha]$

Theorem : Let T be a generalized f- contraction on a metric space X and let X be T orbitally complete then T has a unique fixed point.

Every contraction mapping satisfies the above condition for f(s,t,u,v,w) = c s, where 0 < c < 1, thus above theorem generalizes Banach's contraction principle.

A.Meir and Emmett Keeler gives an $\in -\delta$ condition to generalize the result:

Theorem : Let (X,d) be a complete metric space . T : $X \rightarrow X$ be a map satisfying the following weakly uniform strict contraction :

Given \in >0 there exists δ >0 such that

 $\in \leq d(x,y) \leq \epsilon + \delta \Longrightarrow d(Tx, Ty) \leq \epsilon$

Above theorem generalizes the Banach's contraction principle since every contractive mapping is uniformly continuous and every uniformly continuous map satisfies the above condition.

Chi Song Wong :

Theorem : Let S and T be self mappings of a complete metric space X. Suppose there exist functions α_i , i=1,2,5 from X×X into $[0, \infty)$ such that

(a) $r = \sup \{ \sum_{i=1}^{5} \alpha_i(x, y) : x, y \in X \} < 1$

(b)
$$\alpha_2 = \alpha_3, \alpha_4 = \alpha_5$$

(c) For any distinct point x, y in X d(Sx,Ty) $\leq \alpha_1(x,y) d(x,y) + \alpha_2(x,y) d(x,Ty) + \alpha_3(x,y) d(y,Sx) + \alpha_4(x,y) d(x,Sx) + \alpha_5(x,y) d(y,Ty)$

then S or T has a fixed point .If both S and T has fixed points then each of S and T has a unique fixed point and these two fixed ponts coincide

every contraction mapping T satisfies the above condition with S=T, $\alpha_1(x,y)=c$; 0<c<1, $\alpha_2(x,y)=c$

 $\alpha_3(x,y) = \alpha_4(x,y) = \alpha_5(x,y) = 0$, thus above theorem generalizes the Banach's contraction principle.

Theorem : T be a self mapping of a complete metric space (X,d). Suppose that there exist functions

 α_i , i=1,2,3,4,5 of $(0,\infty)$ into $[0,\infty)$ such that

Each α_i is upper semicontinuous from the right such that $\alpha_1(t) + \alpha_2(t) + \alpha_3(t) + \alpha_4(t) + \alpha_5(t) < t, t > 0$ and for any distint points x,y in X,

 $d(Tx,Ty) \le a_1 d(x,Tx) + a_2 d(y,Ty) + a_3 d(x,Ty) + a_4 d(y,Tx) + a_5 d(x,y)$ where $a_i = \alpha_i (d(x,y))/d(x,y)$

Then T has a unique fixed point.

Every contraction mapping satisfies the above condition for $\alpha_5(t) = c t$ where 0 < c < 1 and $\alpha_1(t) = \alpha_2(t) = \alpha_3(t) = \alpha_4(t) = 0$ for all t. Thus above theorem generalizes Banach's contraction principle.

B.E. Rhoades made use of ϕ –weak contraction to generalize the result:

Definition : let (X,d) be a metric space. T: X \rightarrow X be a map. T is said to be ϕ -weak contraction if

 $d(Tx,Ty) \le d(x,y) - \phi(d(x,y))$ where $\phi:[0,\infty) \to [0,\infty)$ is continuous and non decreasing function with

 ϕ (t)=0 iff t=0

Theorem : If (X,d) is complete metric space and T is a ϕ -weak contraction on X then T has a unique fixed point.

Taking ϕ (t)=(1-c)t, where 0<c<1, the above theorem gives Banach's contraction principle.

P.N. Dutta and B.S. Chaudhury:

Theorem : Let (X,d) be a complete metric space and let T: $X \rightarrow X$ be a map satisfying

 ψ (d(Tx,Ty)) $\leq \psi$ (d(x,y))- ϕ (d(x,y)) for all x,y in X where $\phi, \psi : [0, \infty) \rightarrow [0, \infty)$ are both continuous and monotonic decreasing with ψ (t)= ϕ (t)=0 iff t=0.Then T has a unique fixed point.

Taking ψ (t)=t and ϕ (t)=(1-c)t where 0<c<1 ,above theorem gives Banach's contraction principle.

Mark Voorneveld :

Definition : Let X be a metric space with metric d. We define an ω - distance on X to be a function ρ : X×X \rightarrow [0, ∞) such that

(a) $ho\,$ satisfies the triangle inequality

(b) $\rho(x_{.}): X \to [0,\infty)$ is lower semi continuous for every $x \in X$ i.e. if $y_m \to y$ then

 ρ (x,y) $\leq \lim \inf_{m \to \infty} \rho$ (x,y_m)

(c) for every \in > 0, there exists a δ > 0 such that for every x,y,z in X if $\rho(z,x) \leq \delta$ and $\rho(z,y) \leq \delta$ then $\rho(x,y) \leq \epsilon$

Definition : Let (X,d) be a metric space and ρ an ω - distance on X. Let F(ρ) denote the family of functions α on X×X satisfying the following conditions:

- (a) For each (x,y) in X×X, α (x,y) depends only on the ω distance ρ (x,y), this allows us to write α (ρ (x,y)) instead of α (x,y)
- (b) $0 \leq \alpha$ (d) < 1 for every d > 0

(c) α (d) is increasing function of d.

Theorem : Let (X,d) be a complete metric space, ρ an ω - distance on X and T : X \rightarrow X a map . If there exists $\alpha \in F(\rho)$ such that ρ (Tx,Ty) $\leq \alpha$ (x,y) ρ (x,y) then T has a unique fixed point x in X.

Above theorem gives banach's contraction principle for $\rho = d$ and α a constant in [0,1].

Maher Berzig :

Definition : let ψ , ϕ : $[0, \infty) \rightarrow \mathbf{R}$ be two functions . The pair of functions (ψ , ϕ) is said to be a pair of shifting distance function if the following conditions hold:

- a) For $u, v \in [0, \infty)$ if $\psi(u) \le \phi(v)$ then $u \le v$
- b) For $\{u_n\}, \{v_n\} \subset [0, \infty)$ with $\lim_{n \to \infty} u_n = \lim_{n \to \infty} v_n = w$ if $\psi(u_n) \le \phi(v_n)$ for all $n \ge 0$ then w = 0

Theorem : Let (X,d) be a complete metric space . T: $X \rightarrow X$ be a mapping .Suppose there exists a pair of shifting distance functions (ψ , ϕ) such that ψ (d(Tx,Ty)) $\leq \phi$ (d(x,y)) for all x, y in X then T has a unique fixed point in X.

Above theorem generalizes banach's contraction principle since for a contraction mapping , above conditions are satisfied with $\psi(x) = x$ and $\phi(x) = c x$ where 0 < c < 1

References :

1Nadler Jr, Sam B. "Multi-valued contraction mappings." Pacific J. Math 30.2 (1969): 475-488.

2. Ćirić LB, Prešić SB. On Prešić type generalization of the Banach contraction mapping principle. Acta Mathematica Universitatis Comenianae. New Series. 2007;76(2):143-7.

3. Merryfield J, Stein JD. A generalization of the Banach contraction principle. Journal of Mathematical Analysis and Applications. 2002;273(1):112-20.

4. Ćirić LB. A generalization of Banach's contraction principle. Proceedings of the American Mathematical Society. 1974;45(2):267-73.

5. Khan MS, Swaleh M, Sessa S. Fixed point theorems by altering distances between the points. Bulletin of the Australian Mathematical Society. 1984 ;30(01):1-9.

6. Ciric LB. Generalized contractions and fixed-point theorems. Publ. Inst. Math.(Beograd)(NS). 1971;12(26):19-26.

7. Taskovic MR. Some results in the fixed point theory. Publ. Inst. Math. 1976;20(34):231-42.

8. Taskovic M. A generalization of Banach's contraction principle. Publ. Inst. Math. (Beograd). 1978;23(37):179-91.

9. Meir A, Keeler E. A theorem on contraction mappings. Journal of Mathematical Analysis and Applications. 1969;28(2):326-9.

10.Wong CS. Fixed point theorems for generalized nonexpansive mappings. Journal of the Australian Mathematical Society. 1974;18(03):265-76.

11. Rhoades BE. Some theorems on weakly contractive maps. Nonlinear Analysis: Theory, Methods & Applications. 2001 ;47(4):2683-93.

12. Dutta PN, Choudhury BS. A generalisation of contraction principle in metric spaces. Fixed Point Theory and Applications. 2008 ;2008(1).

13. Voorneveld M. A Generalization of the Banach Contraction Principle. Faculty of Economics and Business Administration, Tilburg University; 2000.

14. Berzig M. Generalization of the Banach contraction principle. arXiv preprint arXiv:1310.0995. 2013.