
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 03 | Mar-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET ISO 9001:2008 Certified Journal Page 735

AN EFFICIENT DESIGN OF PARALLEL PIPELINED ENCODER
ARCHITECTURE FOR LONG POLAR CODES

MONISHA.D1, ARUL KARTHICK.V.J2

1PG scholar, Department of ECE, SNS college of technology ,coimbatore , India,

2Assistant professor, Department of ECE, SNS college of technology ,coimbatore , India.

---***---

Abstract - Polar codes represent an emerging class of error-
correcting codes with power to approach the capacity of a
discrete memory less channel.The main objective is to perform
error correction and detection. The proposed new efficient
encoder allows high-throughput encoding with small
hardware complexity,it can be systematically applied to the
design of any polar code and to any level of parallelism.The
delay elements can be reduced by new parallel pipelined
architecture.This particular architecture uses folding
transformation technique as well as register
minimization.Pipelining and parallel processing is used to
reduce the power consumption.

Key Words: Polar codes, polar encoder,polar
decoder,pipelining,very-large-scale integration
(VLSI)optimization.

1.INTRODUCTION

Approaching capacity with a practical en/decoding
complexity is a central challenge in coding theory.“turbo-
like” code families,such as turbo codes and low-density
parity-check(LDPC) codes, have been found to achieve this
goal. The key issue is how to practically implement the ideas
used in the proof of the channel coding theorem. Coding
randomness is introduced by interleavers in turbo codes or
by pseudo-random connections between the variable and
check nodes in LDPC codes. Among a few manuscripts
dealing with hardware implementation, presented a
straightforward encoding architecture that processes all the
message bits in a fully parallel manner. The fully parallel
architecture is intuitive and easy to implement, but it is not
suitable for long polar codes due to excessive hardware
complexity. For the first time, this brief analyzes the
encoding process in the viewpoint of VLSI implementation
and proposes a partially parallel architecture.The proposed
encoder is highly attractive in implementing a long polar
encoder as it can achieve a high throughput with small
hardware complexity.polar code is a linear block error
correcting code developed by Erdal Arıkan. It is the first code
to provably achieve the channel capacity for symmetric
binary-input, discrete, memoryless channels.polar codes
were constructed using a generator matrix created using the
Kronecker power of the base matrix .This paper is organised
into V sections where section III represents the proposed

folding transformation IV section represents register
allocation.

 2.EXISTING METHOD

Arıkan showed that SC decoding can be efficiently
implemented by the factor graph of the code which has a
structure that of the Fast Fourier transform. Fast Fourier
Transform (FFT) is a commonly used technique for the
computation of Discrete Fourier Transform (DFT). DFT
computations are required in the fields like filtering,spectral
analysis etc. to calculate the frequency spectrum or to
identify a system’s frequency response from its impulse
response and vice versa. FFT is used in digital video
broadcasting and OFDM systems. Much research has been
carried out to design pipelined architectures for
computation of FFT. The folding sets are designed in a way
to reduce the number of storage elements and also the
latency.The prior FFT architectures had no systematic way of
approach. This architecture simplifies the design of FFT and
is a systematic approach towards the design of FFT with
arbitrary level of parallelism.

Fig- 1: DFG of 16-bit polar encoding

http://en.wikipedia.org/wiki/Linear_block_code
http://en.wikipedia.org/wiki/Error_correcting_code
http://en.wikipedia.org/wiki/Error_correcting_code
http://en.wikipedia.org/wiki/Erdal_Ar%C4%B1kan
http://en.wikipedia.org/wiki/Noisy-channel_coding_theorem
http://en.wikipedia.org/wiki/Generator_matrix
http://en.wikipedia.org/wiki/Kronecker_product

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 03 | Mar-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET ISO 9001:2008 Certified Journal Page 736

Fully parallel architecture for encoding a 16-bit polar
code.The fully parallel encoder is designed based on the
generator matrix, but implementing such an encoder
becomes a significant burden when a long polar code is used
to achieve a good error-correcting performance. In practical
implementations, the memory size and the number of XOR
gates increase as the code length increases. None of the
previous works has deeply studied how to encode the polar
code efficiently, although various tradeoffs are possible
between the latency and the hardware complexity.

3.PROPOSED METHOD

The folding transformation is widely used to save hardware
resources by time-multiplexing several operations on a
functional unit. A data flow graph (DFG) corresponding to
the fully parallel encoding process for 16-bit polar codes is
shown in Fig. 1 where a node represents the kernel matrix
operation F, and wij denotes the jth edge at the ith stage.
Note that the DFG of the fully parallel polar encoder is
similar to that of the fast Fourier transform except that the
polar encoder employs the kernel matrix instead of the
butterfly operation. Given the 16-bit DFG, the 4-parallel
folded architecture that processes 4 bits at a time can be
realized with placing two functional units in each stage since
the functional unit computes 2 bits at a time. In the folding
transformation, determining a folding set, which represents
the order of operations to be executed in a functional unit, is
the most important design factor. To construct efficient
folding sets, all operations in the fully parallel encoding are
first classified as separate folding sets. Since the input is in a
natural order, it is reasonable to alternatively distribute the
operations in the consecutive order.Thus each stage consists
of two folding sets, each of which contains only odd or even
operations to be performed by a separate unit. The folding
sets of stage 2 have the same order as those of stage 1, i.e.,
{B0,B2,B4,B6}and {B1,B3,B5,B7}, since the four-parallel
input sequence of stage 2 is equal to that of stage 1.
Furthermore, to determine the folding sets of another stage
s, the property that the functional unit processes a pair of
inputs whose indices differ by 2s−1 is exploited. In the case
of stage 3, two data whose indices differ by 4 are processed
together, which implies that the operational distance of the
corresponding data is two as the kernel functional unit
computes two data at a time. For instance, w2,0 and w2,4
that come from B0 and B2 are used as the inputs to C0. Since
both inputs should be valid to be processed in a functional
unit, the operations in stage 3 are aligned to the late input
data. Cyclic shifting the folding sets right by one,which can
be realized by inserting a delay of one time unit, is to enable
full utilization of the functional units by overlapping adjacent
iterations. As a result, the folding sets of stage 3 are
determined to {C6, C0, C2, C4} and {C7, C1, C3, C5},where C6
in the current iteration is overlapped with A0 andB0 in the
next iteration.

4.LIFETIME ANALYSIS AND REGISTER ALLOCATION

let us consider the delay elements required in the folded
architecture more precisely. When an edge wij from
functional unit S to functional unit T has a delay of d, the
delay requirements for wij in the F-folded architecture can
be calculated as

 D(wij) = Fd + t − s

where t and s denote the position in the folding set
corresponding to T and S, respectively. The delay
requirements of the 4-folded architecture, i.e., D(wij) for 1 ≤ i
≤ 3 and 0 ≤ j ≤ 15, are. For instance, w2,0 from B0 to C0
demands one delay since d = 0, t = 1, and s = 0. Note that
some edges indicated by circles have negative delays. For the
folded architecture to be feasible, the delay requirements
must be larger than or equal to zero for all the edges.
Pipelining or retiming techniques can be applied to the fully
parallel DFG in order to ensure that its folded hardware has
nonnegative delays.Every edge with a negative delay should
be compensated by inserting at least one delay element to
make the value of (1) not negative. The two inputs of an
operation pass through the same number of delay elements
from the starting points. If they are different, additional
delay elements are inserted to make the paths have the same
delay elements. Four edges with zero delaysare specially
marked with negative zeros since additional delays are
necessary due to the mismatch of the number of delay
elements. The delay requirements are recalculated based on
units and 48 delay elements in total are enough to
implement the 4-parallel 4-folded encoding architecture
based on the folding sets.

Fig- 2: Delay Requirement calculation for 16bit DFG

 The lifetime analysis is employed to find the minimum
number of delay elements required in implementing the
folded architecture[13]. The lifetime of every variable is
graphically represented in the linear lifetime chart
illustrated in Fig.3

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 03 | Mar-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET ISO 9001:2008 Certified Journal Page 737

Fig- 3:Lifetime chart analysis.

 Since all the edges starting from stage 1 demand no delay
elements, only w2j and w3j are presented in For instance,
w3,0 is alive for two cycles as it is produced at cycle 1 and
consumed at cycle 3. The number of variables alive in each
cycle is presented at the right side of the chart.The number
of live variables at the fourth or later clock cycles takes into
account the next iteration overlapped with the current
iteration. Consequently, the maximum number of live
variables is 12, which means that the folded architecture can
be implemented with 12 delay elements instead of 48.Once
the minimum number of delay elements has been
determined, each variable is allocated to a register.

Fig- 4:Register allocation.

The register allocation is tabularized in Fig.4. In the register
allocation table all the 12 registers are shown at the first
row, and every row describes how the registers are allocated
at the corresponding cycle. With taking into account the 4-
parallel processing, variables are carefully allocated to
registers in a forward manner. An arrow indicates that a
variable stored in a register is migrated to another
register,and a circle indicates that the variable is consumed
at the cycle.For example, w2,0 and w2,4 are consumed in a
functional unit to execute operation C0 that generates w3,0
and w3,4. At the same time, w2,1 and w2,5 are consumed in
another functional unit to execute operation C1 that
produces w3,1 and w3,5. The migration of the other
variables can be traced by following the register allocation
table.Finally, the resulting 4-parallel pipelined structure
proposed to encode the 16-bit polar code is illustrated in
Figure 5 which consists of 8 functional units and 12 delay

elements. A pair of two functional units takes in charge of
one stage, and the delay elements are to store variables
according to the register allocation table. The hardware
structures for stages 1 and 2 can be straightforwardly
realized as no delay elements are necessary in those stages,
whereas for stages 3 and 4, several multiplexers are placed
in front of some functional units to configure the inputs of
the functional units. The proposed architecture continuously
processes four samples per cycle according to the folding
sets and the register allocation table the proposed encoder
takes a pair of inputs in a natural order and generates a pair
of outputs in a bit-reversed order.

Fig- 5:4 parallel folded architecture

Input Stage 1 Stage 2 Stage 3 Stage 4 output

1 0 0 0 1 1

1 1 1 1 0 0

0 0 0 0 1 1

0 0 0 0 1 1

0 0 0 0 1 1

0 0 0 0 1 1

0 0 0 0 1 1

0 0 0 0 1 1

0 0 0 1 1 1

0 0 0 1 1 1

0 0 0 1 1 1

0 0 0 1 1 1

0 0 1 1 1 1

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 03 | Mar-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET ISO 9001:2008 Certified Journal Page 738

0 0 1 1 1 1

0 1 1 1 1 1

1 1 1 1 1 1

Table -1: 16 Bit polar encoded bits

Fig- 6:Simulated output

5.CONCLUSION

In the proposed architecture, the number of functional units
required in the implementation depends on the code length
N and the level of parallelism P. Since a functional unit can
save the hardware by up to 73% compared with that of the
fully parallel architecture. Finally, the relationship between
the hardware complexity and the throughputs is analyzed to
select the most suitable architecture for a given application.
Therefore, the proposed architecture provides a practical
solution for encoding a long polar code.

 REFERENCES

[1]Hoyoung yoo and in-cheol park,”partially parallel encoder
architcture for long polar codes,”IEEE transactions on
circuits.,vol.62,no.3,mar.2015.
 [2] R.Mori and T. Tanaka, “Performance of polar codes with
the construction using density evolution,” IEEE Commun.
Lett., vol. 13, no. 7, pp. 519–521, Jul. 2009.
[3] S. B. Korada, E. Sasoglu, and R. Urbanke, “Polar codes:
Characterization
of exponent, bounds, constructions,” IEEE Trans. Inf. Theory,
vol. 56,no. 12, pp. 6253–6264, Dec. 2010.
[4] I. Tal and A. Vardy, “List decoding of polar codes,” in Proc.
IEEE ISIT,2011, pp. 1–5.

[5] K. Chen, K. Niu, and J. Lin, “Improved successive
cancellation decoding of polar codes,” IEEE Trans. Commun.,
vol. 61, no. 8, pp. 3100–3107, Aug. 2013.
[6] G. Sarkis and W. J. Gross, “Polar codes for data storage
applications,” in Proc. ICNC, 2013, pp. 840–844.
[7] G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and W. J. Gross,
“Fast polar decoders: Algorithm and implementation,” IEEE J.
Sel. Areas Commun.,vol. 32, no. 5, pp. 946–957, May 2014.
[8] G. Berhault, C. Leroux, C. Jego, and D. Dallet, “Partial sums
generation architecture for successive cancellation decoding
of polar codes,” in Proc.IEEE Workshop SiPS, Oct. 2013, pp.
407–412.
[9] B. Yuan and K. K. Parhi, “Low-latency successive-
cancellation polar decoder architectures using 2-bit
decoding,” IEEE Trans. Circuits Syst.I, Reg. Papers, vol. 61,
no. 4, pp. 1241–1254, Apr. 2014.
[10] C. Leroux, A. J. Raymond, G. Sarkis, and W. J. Gross, “A
semi-parallel successive-cancellation decoder for polar
codes,” IEEE Trans. Signal Process., vol. 61, no. 2, pp. 289–
299, Jan. 2013.
[11] A. J. Raymond and W. J. Gross, “Scalable successive-
cancellation hardware
decoder for polar codes,” in Proc. IEEE GlobalSIP, Dec. 2013,
pp. 1282–1285.
[12] U. U. Fayyaz and J. R. Barry, “Low-complexity soft-
output decoding of polar codes,” IEEE J. Sel. Areas Commun.,
vol. 32, no. 5, pp. 958–9664.
[13] K. K. Parhi, VLSI Digital Signal Processing Systems:
Design and Implementation.Hoboken, NJ, USA: Wiley, 1999.

