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Abstract - Polar codes represent an emerging class of error-
correcting codes with power to approach the capacity of a 
discrete memory less channel.The main objective is to perform 
error correction and detection. The proposed new efficient 
encoder allows high-throughput encoding with small 
hardware complexity,it can be systematically applied to the 
design of any polar code and to any level of parallelism.The 
delay elements can be reduced by  new parallel pipelined 
architecture.This particular  architecture uses folding 
transformation technique as well as register 
minimization.Pipelining and parallel processing is used to 
reduce the power consumption.   

Key Words:  Polar codes, polar encoder,polar 
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1.INTRODUCTION  

Approaching capacity with a practical en/decoding 
complexity is a central challenge in coding theory.“turbo-
like” code families,such as turbo codes and low-density 
parity-check(LDPC) codes, have been found to achieve this 
goal. The key issue is how to practically implement the ideas 
used in the proof of the channel coding theorem. Coding 
randomness is introduced by interleavers in turbo codes or 
by pseudo-random connections between the variable and 
check nodes in LDPC codes. Among a few manuscripts 
dealing with hardware implementation, presented a 
straightforward encoding architecture that processes all the 
message bits in a fully parallel manner. The fully parallel 
architecture is intuitive and easy to implement, but it is not 
suitable for long polar codes due to excessive hardware 
complexity.  For the first time, this brief analyzes the 
encoding process in the viewpoint of VLSI implementation 
and proposes a partially parallel architecture.The proposed 
encoder is highly attractive in implementing a long polar 
encoder as it can achieve a high throughput with small 
hardware complexity.polar code is a linear block error 
correcting code developed by Erdal Arıkan. It is the first code 
to provably achieve the channel capacity for symmetric 
binary-input, discrete, memoryless channels.polar codes 
were constructed using a generator matrix created using the 
Kronecker power of the base matrix .This paper is organised 
into V sections where section III represents the proposed 

folding transformation  IV section  represents register 
allocation. 
 

 2.EXISTING METHOD 
 
Arıkan showed that SC decoding can be efficiently 
implemented by the factor graph of the code  which has a 
structure that of the Fast Fourier transform. Fast Fourier 
Transform (FFT) is a commonly used technique for the 
computation of Discrete Fourier Transform (DFT). DFT 
computations are required in the fields like filtering,spectral 
analysis etc. to calculate the frequency spectrum or to 
identify a system’s frequency response from its impulse 
response and vice versa. FFT is used in digital video 
broadcasting and OFDM systems. Much research has been 
carried out to design pipelined architectures for 
computation of FFT. The folding sets are designed in a way 
to reduce the number of storage elements and also the 
latency.The prior FFT architectures had no systematic way of  
approach. This architecture simplifies the design of FFT and 
is a systematic approach towards the design of FFT with 
arbitrary level of parallelism.  
 

 

Fig- 1:  DFG of 16-bit polar encoding 
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Fully parallel architecture for encoding a 16-bit polar 
code.The fully parallel encoder is  designed based on the 
generator matrix, but implementing such an encoder 
becomes a significant burden when a long polar code is used 
to achieve a good error-correcting performance. In practical 
implementations, the memory size and the number of XOR 
gates increase as the code length increases. None of the 
previous works has deeply studied how to encode the polar 
code efficiently, although various tradeoffs are possible 
between the latency and the hardware complexity. 

3.PROPOSED METHOD 

The folding transformation  is widely used to save hardware 
resources by time-multiplexing several operations on a 
functional unit. A data flow graph (DFG) corresponding to 
the fully parallel encoding process for 16-bit polar codes is 
shown in Fig. 1 where a node represents the kernel matrix 
operation F, and wij denotes the jth edge at the ith stage. 
Note that the DFG of the fully parallel polar encoder is 
similar to that of the fast Fourier transform except that the 
polar encoder employs the kernel matrix instead of the 
butterfly operation. Given the 16-bit DFG, the 4-parallel 
folded architecture that processes 4 bits at a time can be 
realized with placing two functional units in each stage since 
the functional unit computes 2 bits at a time. In the folding 
transformation, determining a folding set, which represents 
the order of operations to be executed in a functional unit, is 
the most important design factor. To construct efficient 
folding sets, all operations in the fully parallel encoding are 
first classified as separate folding sets. Since the input is in a 
natural order, it is reasonable to alternatively distribute the 
operations in the consecutive order.Thus each stage consists 
of two folding sets, each of which contains only odd or even 
operations to be performed by a separate unit. The folding 
sets of stage 2 have the same order as those of stage 1, i.e., 
{B0,B2,B4,B6}and {B1,B3,B5,B7}, since the four-parallel 
input sequence of stage 2 is equal to that of stage 1. 
Furthermore, to determine the folding sets of another stage 
s, the property that the functional unit processes a pair of 
inputs whose indices differ by 2s−1 is exploited. In the case 
of stage 3, two data whose indices differ by 4 are processed 
together, which implies that the operational distance of the 
corresponding data is two as the kernel functional unit 
computes two data at a time. For instance, w2,0 and w2,4 
that come from B0 and B2 are used as the inputs to C0. Since 
both inputs should be valid to be processed in a functional 
unit, the operations in stage 3 are aligned to the late input 
data. Cyclic shifting the folding sets right by one,which can 
be realized by inserting a delay of one time unit, is to enable 
full utilization of the functional units by overlapping adjacent 
iterations. As a result, the folding sets of stage 3 are 
determined to {C6, C0, C2, C4} and {C7, C1, C3, C5},where C6 
in the current iteration is overlapped with A0 andB0 in the 
next iteration.  

4.LIFETIME ANALYSIS AND REGISTER ALLOCATION 

let us consider the delay elements required in the folded 
architecture more precisely. When an edge wij from 
functional unit S to functional unit T has a delay of d, the 
delay requirements for wij in the F-folded architecture can 
be calculated as 

  D(wij) = Fd + t − s  

where t and s denote the position in the folding set 
corresponding to T and S, respectively. The delay 
requirements of the 4-folded architecture, i.e., D(wij) for 1 ≤ i 
≤ 3 and 0 ≤ j ≤ 15, are. For instance, w2,0 from B0 to C0 
demands one delay since d = 0, t = 1, and s = 0. Note that 
some edges indicated by circles have negative delays. For the 
folded architecture to be feasible, the delay requirements 
must be larger than or equal to zero for all the edges. 
Pipelining or retiming techniques can be applied to the fully 
parallel DFG in order to ensure that its folded hardware has 
nonnegative delays.Every edge with a negative delay should 
be compensated by inserting at least one delay element to 
make the value of (1) not negative. The two inputs of an 
operation pass through the same number of delay elements 
from the starting points. If they are different, additional 
delay elements are inserted to make the paths have the same 
delay elements.  Four edges with zero delaysare specially 
marked with negative zeros since additional delays are 
necessary due to the mismatch of the number of delay 
elements.  The delay requirements are recalculated based on 
units and 48 delay elements in total are enough to 
implement the 4-parallel 4-folded encoding architecture 
based on the folding sets. 

 
Fig- 2: Delay Requirement calculation for 16bit  DFG 
 
 The lifetime analysis is employed to find the minimum 
number of delay elements required in implementing the 
folded architecture[13]. The lifetime of every variable is 
graphically represented in the linear lifetime chart 
illustrated in Fig.3 
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Fig- 3:Lifetime chart analysis. 
 
 Since all the edges starting from stage 1 demand no delay 
elements, only w2j and w3j are presented in For instance, 
w3,0 is alive for two cycles as it is produced at cycle 1 and 
consumed at cycle 3. The number of variables alive in each 
cycle is presented at the right side of the chart.The number 
of live variables at the fourth or later clock cycles takes into 
account the next iteration overlapped with the current 
iteration. Consequently, the maximum number of live 
variables is 12, which means that the folded architecture can 
be implemented with 12 delay elements instead of 48.Once 
the minimum number of delay elements has been 
determined, each variable is allocated to a register. 

 
Fig- 4:Register allocation. 
 
The register allocation is tabularized in Fig.4. In the register 
allocation table  all the 12 registers are shown at the first 
row, and every row describes how the registers are allocated 
at the corresponding cycle. With taking into account the 4-
parallel processing, variables are carefully allocated to 
registers in a forward manner. An arrow indicates that a 
variable stored in a register is migrated to another 
register,and a circle indicates that the variable is consumed 
at the cycle.For example, w2,0 and w2,4 are consumed in a 
functional unit to execute operation C0 that generates w3,0 
and w3,4. At the same time, w2,1 and w2,5 are consumed in 
another functional unit to execute operation C1 that 
produces w3,1 and w3,5. The migration of the other 
variables can be traced by following the register allocation 
table.Finally, the resulting 4-parallel pipelined structure 
proposed to encode the 16-bit polar code is illustrated in 
Figure 5 which consists of 8 functional units and 12 delay 

elements. A pair of two functional units takes in charge of 
one stage, and the delay elements are to store variables 
according to the register allocation table. The hardware 
structures for stages 1 and 2 can be straightforwardly 
realized as no delay elements are necessary in those stages, 
whereas for stages 3 and 4, several multiplexers are placed 
in front of some functional units to configure the inputs of 
the functional units. The proposed architecture continuously 
processes four samples per cycle according to the folding 
sets and the register allocation table  the proposed encoder 
takes a pair of inputs in a natural order and generates a pair 
of outputs in a bit-reversed order. 
 

 
Fig- 5:4 parallel folded architecture 
 
   
Input Stage 1 Stage 2 Stage 3 Stage 4 output 

1 0 0 0 1 1 

1 1 1 1 0 0 

0 0 0 0 1 1 

0 0 0 0 1 1 

0 0 0 0 1 1 

0 0 0 0 1 1 

0 0 0 0 1 1 

0 0 0 0 1 1 

0 0 0 1 1 1 

0 0 0 1 1 1 

0 0 0 1 1 1 

0 0 0 1 1 1 

0 0 1 1 1 1 
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0 0 1 1 1 1 

0 1 1 1 1 1 

1 1 1 1 1 1 

 

Table -1: 16 Bit polar encoded  bits 

 
 
Fig- 6:Simulated output 
 

5.CONCLUSION 
 
In the proposed architecture, the number of functional units 
required in the implementation depends on the code length 
N and the level of parallelism P. Since a functional unit can 
save the hardware by up to 73% compared with that of the 
fully parallel architecture. Finally, the relationship between 
the hardware complexity and the throughputs is analyzed to 
select the most suitable architecture for a given application. 
Therefore, the proposed architecture provides a practical 
solution for encoding a long polar code.   
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