
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 03 | Mar-2016 www.irjet.net p-ISSN: 2395-0072

 © 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1107

IMPROVED APPROACH FOR PREDICTING THE BUG TRIAGE USING DATA

REDUCTION METHODS

S. Suganya 1, R. Venkadesh 2

1PG Scholar, Department of Computer Science and Engineering, Mahendra Engineering College, Namakkal, India
Sugu.charming@gmail.com

2Assistant Professor, Department of Computer Science and Engineering, Mahendra Engineering College,
Namakkal, India

venkadeshr@mahendra.info

---***---

Abstract - Most of the software companies need to deal with
vast number of software bugs day to day. This paper can be
viewed as an application of instance selection and feature
selection in bug repositories. The aim is to address the problem
of data reduction for bug triage, and to reduce the scale and
improve the quality of bug data. This can be achieved by
combining instance selection with feature selection to
simultaneously reduce data scale on the bug dimension and
the word dimension. Data reduction can be addressed by
combining instance selection and feature selection
approaches.The reduced data set contains lesser bug data with
fewer bug reports and fewer words than the original bug data
and provide similar information over the original bug data
and build a binary classifier to predict the order of applying
instance selection and feature selection. Determine the order
of applying instance selection and feature selection, to extract
attributes from historical bug data sets and build a predictive
model for a new bug data set. Empirically investigate the
performance of data reduction on bug reports of two large
open source projects, namely Eclipse and Mozilla.

Key Words: Bug, Bug data reduction, Feature Selection,
Instance Selection, Bug Triage, Data Mining

1. INTRODUCTION
Data mining, or knowledge discovery, is the computer-
assisted process of scrutinizing and analyzing
enormous sets of data and then extracting the
knowledge from the data. The tools that focus in the
Data mining process are called Data mining tools.
These tools can be employed to visualize behaviors and
future trends, allowing businesses to take proactive,
knowledge-driven decisions. Data mining tools can
answer business questions intelligently that
traditionally were time consuming to resolve. They
examine the databases for hidden patterns, finding
predictive information that experts may miss because
it may lies outside their expectations. The gradual

increase in the amount of digital stored data was
further enhanced by the success of the relational model
for storing data and the development and maturing of
data retrieval and manipulation technologies [2]. While
technology for storing the data was developed swiftly
to keep up with the demand, very little attention was
paid to develop software for analyzing the data, until
recently when companies realized that hidden within
these masses of data was a resource that was being
ignored. The huge amounts of stored data contain
knowledge about a number of aspects of their business
waiting to be harnessed and utilized for more effective
business decision support. Database Management
Systems, which are used to manage these data’s at
present, allow the user to retrieve only the information
present explicitly in the databases. The data mining
process is to extract information from the data base
data and remodel it into an understandable structure
for further decision making, a suitable example is the
Stock market data. This extraction of knowledge from
large data sets is called Data mining or Knowledge
Discovery in Databases and is defined as the non-trivial
extraction of implicit, previously unknown and
potentially useful information from database data.
A bug tracking system or defect tracking system is
a software application that keeps track of
reported software bugs in software development
projects for further analysis [3]. It can also be referred
to as issue tracking system. Many bug tracking systems,
such as those used by most open source software
projects, allow end-users to enter bug reports directly.
Other systems are used only internally in a company or
organization for doing software development. Typically
bug tracking systems are integrated with other
software project management applications. A bug
tracking system is usually a necessary component of a
good software development infrastructure, and
continuous use of a bug or issue tracking is considered

http://www.laits.utexas.edu/~anorman/BUS.FOR/course.mat/Alex/dm.gif
https://en.wikipedia.org/wiki/Software_application
https://en.wikipedia.org/wiki/Software_bug
https://en.wikipedia.org/wiki/Issue_tracking_system
https://en.wikipedia.org/wiki/Open_source
https://en.wikipedia.org/wiki/Software_development
https://en.wikipedia.org/wiki/Infrastructure
https://en.wikipedia.org/wiki/Issue_tracking_system

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 03 | Mar-2016 www.irjet.net p-ISSN: 2395-0072

 © 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1108

as one of the "hallmarks of a good software team".
Software bugs can be managed effectively using Bug
repositories. Many open source software projects have
an open bug repository that allows both developers
and users to submit defects or issues in the software,
suggest possible enhancements, and comment on
existing bug reports. For open source large-scale
software projects, the number of daily bugs is
humongous which makes the triaging process very
tedious and challenging. The process of fixing bugs is of
utmost importance. This theory is supported by the
fact that the majority of the software companies spend
about 40 percent of their estimated expenditure in
tracking down and eliminating bugs. The two factors
that serve as a hindrance to the use of bug repositories
in software development tasks were large scale and
low quality. In a bug repository, a bug is maintained as
a bug report [3], which records the textual description
on the cause of the bug and also updates according to
the status of bug to be fixed.

 A major component of a bug tracking system is
a database that maintains facts about known bugs.
Facts may include the time a bug was reported, its
severity, the erroneous program behavior, and details
on how to reproduce the bug; as well as the identity of
the person who reported it and any programmers who
may be working on fixing it.
Typical bug tracking systems support the concept of
the life cycle for a bug which is tracked through the
status assigned to the bug. A bug tracking system
should allow administrators to configure permissions
based on status, move the bug to another status, or
delete the bug. The system should also allow
administrators to configure the bug statuses and to
what extent a bug in a particular status can be moved.
Some systems will e-mail interested parties, such as the
bug reporter and assigned programmers, when new
records are added or the status changes.
In the experiments, evaluation on the reduction of data
for bug triage on bug reports were applied over two
large open source projects, namely Eclipse and Mozilla.
Experimental results show that applying the instance
selection technique to the data set can reduce bug
reports but the accuracy of bug triage may be
decreased; applying the feature selection technique can
reduce words in the bug data and the accuracy can be
increased. Thus if both the preprocessing techniques
are combined, can increase in the accuracy, as well as
reduction in the size of the bug reports and words can
be easily obtained. For example, when 60 percent of
bugs and 80 percent of words are removed, the

accuracy of Naive Bayes on Eclipse improves by 3 to 15
percent and the accuracy on Mozilla improves by 2 to 7
percent. Based on the attributes from historical bug
data sets, constructed predictive model can provide
accuracy of 80.8 percent for predicting the reduction
order. Based on top node analysis of the attributes,
results show that all attributes are essential for
prediction and an individual attribute cannot predict
this without other attributes [9].
Bug triage is an age-old technique that is used to
handle the software bugs, whose utilization can often
be time consuming. Bug triage aims to assign a correct
developer to fix a new bug. In traditional software
development, new bugs are manually triaged by an
expert developer, i.e., a human triage. Due to the large
number of daily reported bugs and the lack of
knowledge of all the bugs, manual bug triage is
expensive in time cost and also results in low accuracy
[4]. In manual bug triage in Eclipse, percent of bugs are
assigned by mistake while the time cost between
opening one bug and its first triaging is 19.3 days on
average.

To avoid such expensive cost of manual bug triage,
proposals have been made to automate the bug triage
approach. In this method, text classification techniques
are applied to predict developers for bug reports. In
this approach, a bug report is mapped to a document
and a related developer is mapped as the label of the
document. Then, bug triage is converted into a problem
of text classification and is automatically solved with
mature text classification techniques, e.g., Naive Bayes.
Based on the results of text classification, a human
triager may assign new bugs by incorporating their
expertise [7]. The accuracy of text classification

Figure : 1 Architecture of Bug Triage

https://en.wikipedia.org/wiki/Database

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 03 | Mar-2016 www.irjet.net p-ISSN: 2395-0072

 © 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1109

techniques for bug triage can further be improved.
Some techniques are: a tossing graph approach and a
collaborative filtering approach [1]. However, large-
scale and low-quality bug data in bug repositories
block the techniques of automatic bug triage [4]. Since
software bug data are a kind of free-form text data
(generated by developers), it is necessary to generate
well-processed bug data to serve the application. To
address the problem of data reduction for bug triage,
i.e., how to reduce the bug data to save the labour cost
of developers and improve the quality to facilitate the
process of bug triage. Pre –processing the text data is to
be done. A small-scale and high-quality set of bug data
can be obtained by removing bug reports and words,
which are redundant or non-informative. This is called
the Data reduction in Bug triage. In this work, existing
techniques of instance selection and feature selection
can be combined simultaneously to reduce the bug
dimension. The reduced bug data contain fewer bug
reports and fewer words than the original bug data and
provide similar information over the original bug data.
The reduced bug data is evaluated according to two
criteria: the scale of a data set and the accuracy of bug
triage. To avoid the bias of a single algorithm, the
results of four instance selection algorithms and four
feature selection algorithms were deployed to
empirically examine the bug reports.

Disadvantages
Data reduction in bug triages is a tenacious process.
This problem aims to augment the data set of bug
triage in two aspects. They are as follows:
Simultaneously reducing the scales of the bug
dimension and the word dimension, to improve the
accuracy of bug triage, which can be viewed as an
application of instance selection and feature selection
in bug repositories. Secondly,building a binary
classifier to predict the order of applying instance
selection and feature selection. The order of applying
instance selection and feature selection has not been
investigated in related domains.
Enhanced Instance Selection Algorithm
Instance selection and feature selection are widely
used techniques as data processing. For a given data
set in a certain application, instance selection is used to
obtain a subset of relevant instances, while feature
selection aims to obtain a subset of relevant features.
The quality of bug triage can be measured with the
accuracy of bug triage. To avoid the bias from a single
algorithm, results of four typical algorithms of instance
selection and feature selection, are examined.

Bug Repository
A bug repository is a typical software repository which
is used to store the details of bugs, e.g., Bugzilla. Large
software projects deploy bug repositories, which are
used to support information collection and to assist
developers or end users to handle bugs. Each bug is
maintained as a bug report, which records the textual
description of reproducing the bug and updates
according to the status of bug fixing. The use of bug
repository can improve the development process and
quality of software produced. It provides a data
platform to support many types of tasks on bugs, e.g.,
fault prediction, bug localization and reopened bug
analysis [9].
A bug repository is a typical software repository, for
storing details of bugs. Large software projects that
deploy bug repositories can also be called as bug
tracking systems, which is used to support information
collection and to assist developers or end users to
handle bugs. A bug is maintained as a bug report, which
records the textual description of reproducing the bug
and updates according to the status of bug fixing. It
provides a data platform to support many types of
tasks on bugs, e.g., fault prediction, bug localization and
reopened bug analysis. A bug report is also called as
bug data [9]. Software bugs are inevitable and fixing
bugs is expensive in software development [10].
Software companies spend over 45 percent of cost in
fixing bugs. Large software projects deploy bug
repositories to support information collection and to
assist developers to handle bugs. A bug repository
provides a data platform to support many types of
tasks on bugs, e.g. Fault prediction, bug localization,
and reopened bug analysis [8]. There are two
challenges related to bug data that may affect the
effective use of bug repositories in software
development tasks, namely the huge quantity and the
decreased availability of data that makes actual sense.
On one hand, due to the daily-reported bugs, a large
number of new bugs are stored in bug repositories.
The process of assigning a correct developer for fixing
the bug is called bug triage. Once the bug report is
formed, a bug triager assigns the bug to a developer or
stakeholder who can fix this bug and developer or end
user is recorded in an item assigned-to without any
tossing.

Bug Data sets Bug reports
Bug report has multiple items for detailing the
information of reproducing the bug. In a bug report, the

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 03 | Mar-2016 www.irjet.net p-ISSN: 2395-0072

 © 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1110

summary and the description are two key items about
the information of the bug, which are recorded in
natural languages. A general statement for identifying a
bug is given by the summary while the description
gives the details for reproducing the bug. A bug report
is mapped to a document and a related developer is
mapped to the label of the document. Then, bug triage
is converted into a problem of text classification and is
automatically solved with mature text classification
techniques, e.g., Naive Bayes. To improve the accuracy
of text classification techniques for bug triage, some
further techniques are investigated, e.g., a tossing
graph approach and a collaborative filtering approach
[1].

Bug Data Reduction for Bug Triage
The process of assigning a correct developer for fixing
the bug is one of the important considerations of bug
triage. Once the bug report is formed, a bug triager
assigns the bug to a developer who can fix this bug and
developer is recorded in an item assigned-to without
any tossing.

Initially, bug reports needs to be preprocessed to
reduce the size of the data set. By combining existing
techniques of instance selection and feature selection
certain bug reports and words can be removed. A
problem for reducing the bug data is to determine the
order of applying instance selection and feature
selection [5], which is denoted as the prediction of
reduction orders, A new and reduced data set is
obtained from the given bug data set. Two algorithms
FS and IS are applied sequentially. FS Feature
selection is a pre-processing technique for selecting a
reduced set of features (i.e., words in bug report) for
large scale data sets. IS Instance selection is a
technique to reduce the number of instances by
removing noisy and redundant instances. Predictive
model is used to choose one between FSIS and
ISFS.

Figure : 2 Combine FS & IS

Algorithm: 1

Data reduction based on FSIS
Input: training set T with n words and m bug reports,
Reduction order FSIS
final number nF of words,
final number mI of bug reports,
Output: reduced data set T FI for bug triage
1) Apply FS to n words of T and calculate objective
values for all the words;
2) Select the top nF words of T and generate a training
set T F ;
3) Apply IS to mI bug reports of T F ;
4) Terminate IS when the number of bug reports is
equal to or less than mI and generate the final training
set T FI .

New Bug Data set
The reduced bug data set contains fewer bug reports
and words than the original bug data and provides
similar information over the original bug data. To apply
the data reduction to each new bug data set, need to
check the accuracy of both two orders (FS IS and
ISFS) and choose a better one. To avoid the time cost
of manually checking both reduction orders, consider
predicting the reduction order for a new bug data set
based on historical data sets. To avoid the time cost of
manually checking both reduction orders, predicting
the reduction order for a new bug data set is
considered based on historical data sets.
Classifier (Text Classification Techniques)
A classifier can be applied to the new bug data sets. The
input of classifier is the summary and the description is
converted into the vector space model. Two steps to
form the word vector space, namely tokenization and
stop word removal. First, tokenize the summary and
the description of bug reports into word vectors.
The text classification techniques are used to predict
the developers for bug reports are,

 Extracting attributes for historical bug data
sets and training a classifier.

 Predicting the reduction order for a new bug
data set.

 Applying the predicted reduction order to the
new bug data set.

 Triaging bug reports on the reduced data set.
A classifier can be trained only once with training
(reduced) data set in order to face many new bug data
set i.e., training such a classifier once can predict the
reduction orders for all the new data sets without
checking both reduction orders. In proposed system,

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 03 | Mar-2016 www.irjet.net p-ISSN: 2395-0072

 © 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1111

Naive Bayes classifier is used to predict the developers
for new bug reports. Naïve Bayes is based on Bayesian
classification Performs probabilistic prediction, i.e.,
predicts class membership probabilities.

Instance Selection and Feature Selection
Instance selection is a technique to reduce the number
of instances by removing noisy and redundant
instances. An instance selection algorithm can provide
a reduced data set by removing non-representative
instances. In proposed system, Iterative Case Filter
(ICF) is used to reduce the bug reports. ICF defines
local set L(X) which contains all cases inside largest
hypersphere centred in X such that the hypersphere
contains only cases of the same class a instance X. The
properties of ICF are reachability and coverage is used
to remove the noisy and redundant instances.
Feature selection is a pre-processing technique for
selecting a reduced set of features for large-scale data
sets. The pre processing techniques are tokenization,
stop word removal, stemming process and vector space
model. In proposed system, χ2 statistic (CH) is used to
reduce the bug word dimension. The chi-squared
distribution also known as chi-square or χ² distribution
with k degrees of freedom is the distribution of a sum
of the squares of k independent standard normal
random variables. Based on feature selection, words in
bug reports are sorted according to their feature values
and a given number of words with large values are
selected as representative features.Instance selection
and feature selection are widely used techniques in
data processing. For a given data set, instance selection
is used to obtain a subset of relevant instances while
feature selection aims to obtain a subset of relevant
features. In this work, the combination of instance
selection and feature selection were used to distinguish
the orders of applying instance selection and feature
selection, to give the following denotation. Given an
instance selection algorithm IS and a feature selection
algorithm FS, we use FSIS to denote the bug data
reduction, which first applies FS and then IS; on the
other hand, ISFS denotes first applying IS and then
FS.

2. Experiments on Bug Data Reduction

Data Sets and Evaluation

To examine the results of bug data reduction on bug
repositories of two projects Eclipse and Mozilla. For
each project, the evaluate results on five data sets and
each data set is over 38 bug reports, which are fixed or

duplicate bug reports [6]. We check bug reports in the
two projects and find out that 40 percent of bug
reports in Eclipse and 28.23 percent of bug reports in
Mozilla are fixed or duplicate. Thus, to obtain over 50
fixed or duplicate bug reports, each data set in Eclipse
is collected from continuous 35 bug reports while each
bug set in Mozilla is collected from continuous 32 bug
reports.

Figure 3: Training Bug Data Set

The results of data reduction for bug triage can be
measured in two aspects, namely the scales of data sets
and the quality of bug triage. Based on Algorithm, the
scales of data sets are configured as input parameters.
The quality of bug triage can be measured with the
accuracy of bug triage. The first 80 percent of bug
reports are used as a training set and the left 20
percent of bug reports are as a test set. The data
reduction on a data set is used to denote the data
reduction on the training set of this data set since we
cannot change the test set.

Result Discussion

1) First, it will show how many bugs are not assigned
to any developer.
2) Second, it will give complete status about the bugs to
the admin so that he will come to know which bugs are
assigned.
 3) Third, it will show how many bugs are rectified by
the developer’s. It will give complete status about the
bugs to the admin so that he will come to know which
bugs are handled completely.
 4) Fourth, it will show how many bugs are not rectified
by the developer’s. It will give complete status about
the bugs to the admin so that he will come to know
which bugs are not rectified yet.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 03 | Mar-2016 www.irjet.net p-ISSN: 2395-0072

 © 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1112

Figure 4: Performance Measure

3. CONCLUSION

Bug triage is an expensive step of software
maintenance in both labor cost and time cost. The
combine feature selection with instance selection to
reduce the scale of bug data sets as well as improve the
data quality. To determine the order of applying
instance selection and feature selection for a new bug
data set, we extract attributes of each bug data set and
train a predictive model based on historical data sets.
The empirical investigation on the data reduction for
bug triage in bug repositories was done on two large
open source projects, namely Eclipse and Mozilla. This
work provides an approach to leveraging techniques
on data processing to form reduced and high-quality
bug data in software development and maintenance.

FEATURE ENHANCEMENT

In future enhancement of the proposed system is to
improve the results of data reduction in bug triage to
explore how to prepare a high quality bug data set and
tackle a domain-specific software task. For predicting
reduction orders, plan to pay efforts to find out the
potential relationship between the attributes of bug
data sets and the reduction orders.

REFERENCES

[1] G. Jeong, S. Kim, and T. Zimmermann, “Improving bug
triage with tossing graphs,” in Proc. Joint Meeting 12th Eur.
Softw. Eng. Conf. 17th ACM SIGSOFT Symp. Found. Softw.
Eng., Aug. 2009, pp. 111–120.
[2] S. Breu, R. Premraj, J. Sillito, and T. Zimmermann,
“Information needs in bug reports: Improving cooperation

between developers and users,” in Proc. ACM Conf. Comput.
Supported Cooperative Work, Feb. 2010, pp. 301–310.
[3] A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals,
“Predicting the severity of a reported bug,” in Proc. 7th IEEE
Working Conf. Mining Softw. Repositories, May 2010, pp. –
10.
[4] W. Zou, Y. Hu, J. Xuan, and H. Jiang, “Towards training set
reduction for bug triage,” in Proc. 35th Annu. IEEE Int.
Comput. Soft. Appl. Conf., Jul. 2011, pp. 576–581.
[5] J. Anvik and G. C. Murphy, “Reducing the effort of bug
report triage:Recommenders for development-oriented
decisions,” ACM Trans. Soft. Eng. Methodol., vol. 20, no. 3,
article 10, Aug. 2011.
[6] C. Sun, D. Lo, S. C. Khoo, and J. Jiang, “Towards more
accurate retrieval of duplicate bug reports,” in Proc. 26th
IEEE/ACM Int.Conf. Automated Softw. Eng., 2011, pp. 253–
262.
[7] Kalyanasundaram Somasundaram and Gail C. Murphy,
“Automatic Categorization of Bug Reports Using Latent
Dirichlet Allocation,” in Proc. ISEC., Feb. 2012, pp. 125–130.
[8] T. Zimmermann, N. Nagappan, P. J. Guo, and B. Murphy,
“Characterizing and predicting which bugs get reopened,”
in Proc. 34th Int. Conf. Softw. Eng., Jun. 2012, pp. 1074–
1083.
[9] S. Shivaji, E. J. Whitehead, Jr., R. Akella, and S. Kim,
“Reducing features to improve code change based bug
prediction,” IEEE Trans. Soft. Eng., vol. 39, no. 4, pp. 552–
569, Apr. 2013.
[10] H. Zhang, L. Gong, and S. Versteeg, “Predicting bug-fixing
time: An empirical study of commercial software projects,” in
Proc. 35thInt. Conf. Softw. Eng., May 2013, pp.1042–1051.
[11] Tihana galinac grbac and goran mausa, “Stability of
Software Defect Prediction in Relation to Levels of Data
Imbalance,”Proceedings of the 2ndWorkshop of Software
Quality Analysis, Monitoring, Improvement, and Applications
(SQAMIA), Novi Sad, Serbia, September 2013.
[12] C. C. Aggarwal and P. Zhao, “Towards graphical models
for text processing,” Knowl. Inform. Syst., vol. 36, no. 1, pp.
1–21, 2013.

