
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 03 | Mar-2016 www.irjet.net p-ISSN: 2395-0072

 © 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1243

AFT Scheduling Algorithm for Multicore Architecture:

A Novel Approach

S.Priyadarsani1, V.Rajalakshmi2, Dr.G.Muneeswari3

1Student, Department of Information Technology, SSN college of engineering, Chennai

2Student, Department of Information Technology, SSN college of engineering, Chennai

3Associate Professor, Department of Information Technology, SSN college of engineering, Chennai

---***---
Abstract - In this period of modern technology, the

speed and efficiency of computing systems have become

inevitable. This scenario has led us to adapt to multicore

systems over multi-processor units. Multicore systems

aids in achieving an enormous increase in throughput

and faster execution. In the ever growing energy

demands, hardware failure poses a threat to the

continuous computing environment. Although various

scheduling algorithms have been implemented to

improve performance achievement over processor

execution, fault tolerance during process execution, is the

major challenges faced by the real time systems. In the

paper, AFT (Agent Based Fault Tolerance) scheduling for

multicore architecture, we propose a new agent based

fault tolerant scheduling algorithm which enhances the

performance of the overall system by 60% when

compared to the traditional system.

Key words: Fault-tolerant, Multicore, Agent,
Scheduling, Throughput

1. INTRODUCTION

Multiple Independent processing units built on a single

chip constitutes a Multi-core processing system. These

multi-core systems provide greater efficiency over

single processor running on a single chip. All the cores

share a common memory in which the tasks, that are to

be assigned, are stored. The scheduler is responsible

for assigning the tasks to the individual processors. The

tasks are allocated in such a way that none of the

processing unit remains idle. This increases the

processor utilization and hence the throughput. It is

ensured that every core runs some process from the

memory.

Fig-1: Multicore Architecture

Agent based models, often referred as ABMs,

are actively evolving in various phases of technology.

These agents are usually software programs or

computer simulation, which are embedded in a system

to perform a specialized task. A Multi-agent system

consists of several agents which are used to test how a

change or fault occurrence is likely to affect the overall

behavior of the system. Various scheduling algorithm

have been incorporated in real time multi-core

systems. However, problem such as hardware failure of

a processor leads to a drop in efficiency levels. In order

to overcome this, fault tolerance mechanisms are being

implemented.

In this paper, Section II discusses the Literature Review and
Section III elaborates on the working of agent based fault
tolerance algorithm .The results are discussed in Section IV
and Section V concludes the paper.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 03 | Mar-2016 www.irjet.net p-ISSN: 2395-0072

 © 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1244

2. LITRATURE REVIEW

 The research on primary-backup scheduling in

real-time systems [1] proposes techniques such as

dynamic grouping and PB overloading to increase the

scheduling efficiency and reliability. In dynamic

grouping, the processors are dynamically grouped into

logical groups in order to achieve efficient overloading

of tasks on resources. In PB overloading, the primary

task can overlap in time with the backup of another

task on a processor. Grid Scheduling Algorithm with

Load Balancing and Fault Tolerance [2] discusses the

Multi constrained Load Balancing Fault Tolerant

algorithm (MLFT) which reduces the schedule make

span, schedule cost, and task failure rate and improves

resource utilization.

 The algorithm is evaluated using grid sim

toolkit. In Fault-tolerant Scheduling Algorithm for

Precedence Constrained Tasks, [3] failure in a

heterogeneous system is discussed. For non-

preemptive tasks, each task has two copies that are

scheduled on different processors and mutually

excluded in time. For tasks with precedence

constraints, an overlapping scheme allows the backup

copy of a task to overlap with its successors’ primary

copies. The paper on Fault Tolerant Scheduling in

Multicore Systems, [4] presents a hardware based

algorithm which uses triple and double modulo

redundancy. Redundant multi-threaded processes are

used which helps in soft errors detection and recovery.

In Energy Minimization for Fault Tolerant Scheduling

of Periodic Fixed-Priority Applications [5] the problem

of energy minimization for scheduling periodic fixed-

priority applications on multiprocessor platforms with

fault tolerance requirements is discussed. Check points

are introduced to allow scheduling of an application

which tolerates up to k faults on a single processor. The

Fault Tolerant Global Scheduling [6] is a backup based

algorithm which uses resource reclaiming fault tolerant

global scheduling (RRFGTS). This algorithm delays the

execution of backup and rescues the resource

distributed to backups after the execution. The

dynamic fault tolerant scheduling (DFTS) algorithm in

multicore systems [7] is designed to tolerate single or

multiple transient faults. In case of multiple faults, the

feasibility rate is considerably higher. It is used to

dynamically select fault recovery method to overcome

the faults occurring in the system. This method makes

use of the task utilization for the critical and non-

critical tasks. The paper on Tolerance to multiple

transient faults [8], it is noted that all the methods

proposed in this paper are used to sense only some

special types of faults, and therefore there is no

appropriate method to detect arbitrary faults that

occur in real-time systems.

 In this paper [9], sanity and consistency checks

are performed at checkpoints and faults are detected at

the end of each task. The paper on fault recovery in

embedded systems [10] uses check pointing, rollback

and re-execution are used to increase execution time

and cope with transient faults. The EFRD algorithm is

proposed [11] in which the efficiency is improved by

prohibiting the overlapping of backup copies and also

by assigning the tasks to highly reliable processors. The

Fault-tolerant Reliability Cost Driven algorithm is

extended by relaxing the requirement that backup

copies of tasks are forbidden to overlap with each

other. A feasibility check algorithm is introduced in the

paper [12] for the fault tolerant scheduling. This

algorithm is designed for homogenous systems where

tasks are considered independent from one another.

The paper on proposing a fault tolerant scheduling

algorithm for real time periodic tasks [13] uses the rate

monotonic scheduling in which the priority of the task

is defined based on the time required. A real-time

scheduling algorithm called fault-tolerant static

scheduling for heterogeneous systems and for

multipoint links [14] [15] considering fault tolerance

and tasks with precedence is established here. In order

to handle both the processor and communication link

failures, the paper on Off-Line Real-Time Fault-

Tolerant Scheduling [16], suggests an efficient offline

scheduling algorithm which are of good use in real time

systems.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 03 | Mar-2016 www.irjet.net p-ISSN: 2395-0072

 © 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1245

3. AGENT BASED SCHEDULING WITH FAULT
TOLERANCE

Before starting the execution of a process, the

scheduler selects the process from the memory and

assigns it to the middle agent(Fig.2). There is also a

dedicated Fault-tolerance Agent for each processor

which continuously monitors its corresponding

processor. It also checks the status of the processor to

avoid allocating a task to that core in case of any

hardware malfunction. Each processor is checked

periodically with a time period of t (ms), in which ‘t’ is

less than the burst time of the process with the

smallest burst time. The value of ‘t’ gets dynamically

updated for each set of process’ running on the cores at

one particular interval.

Fig-2: Process Allocation Method

The agent updates the status of the processor

as failed, busy or idle to the middle agent. In case of

failure, the middle agent informs the scheduler which

in turn assigns the task to a different processor. Now, it

is again the responsibility of the middle agent to

allocate the process to the respective new processor.

3.1. AFT SCHEDULING ALGORITHM

The tasks are selected from the main memory and

stored in the ready-queue. The scheduler selects and

assigns a process to the middle agent in a round-robin

fashion. The middle agent allocates the processes to an

independent processor. It checks the burst time of all

the processes in the round-robin queue.

The fault tolerant agent then monitors each processor

periodically with a time period t (ms), where t is less

than the burst time of the process with the shortest

burst time. The status of the processor after every t ms

is noted as busy, idle or failed by the fault tolerant

agent. The middle agent is informed in case of a failure

status. The middle agent in turn allocates the set of

processes to a different processor.

For every new workload i to n perform the following

operation:

Begin

Step 1: Middle Agent (MA) sets the window

size as α in the ready queue depends

on the number of cores.

Step 2: MA gets the number of process Pi to

Pn from the ready queue

Step 3: MA obtains the burst time Bi and

arrival time Ai for all the processes Pi

to Pn.

Step 4: MA calculates the minimum burst time

by calling the function

min(BT(Pi..Pn))

Step 5: MA assigns processes Pi to Pn to the

processor whenever it becomes ready.

Step 6: The Fault Tolerant Agent (FTA)

monitors the processor periodically

with a time period t<min(BT(Pi..Pn).

Step 7: The status of the processor after every

t ms is noted as busy, idle or failed and

the FTA informs the MA in case of

failure.

Step 8: After the first level of execution, MA

again calculates the minimum burst

time by calling the function

min(BT(Pi..Pn))with the remaining

time tasks.

Step 9: Repeat steps 6 through 8 until no tasks

in ready queue.

Step 10: Repeat steps 1 through 9 for all the

tasks in the ready queue

End

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 03 | Mar-2016 www.irjet.net p-ISSN: 2395-0072

 © 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1246

Fig-3: Agent based fault tolerance system

implementation middle agent. The burst time of

tasks P0-P(n-1) is calculated by the middle agent

itself(Fig.3). Each processor executes an individual

task and is constantly monitored by a fault tolerant

agent (FTA). Each dedicated FTA checks its core

periodically with a period t (ms).

4. EXPERIMENTAL RESULTS

The Proposed algorithm was implemented and

tested in the GEMS simulator and also in the

hardware With respect to operating system

simulation for our algorithm, we used a gcc compiler

and linux kernal. Agent scheduler is simulated and

executed with the help of Flame tool. For our

simulation we have taken 1000 processes and sample

SPEC2000 benchmark programs and tested against

25, 50, 75, 100, 125, 150, 175, 200, 225, 250, 300

cores. Table 1. describes the sample average waiting

time for 150 to 250 cores.

Number of Cores

AWT of Sample

processes(in ps)

150 5.2

175 4.2

200 3

225 2.4

250 1.2

Table- 1: Sample Average Waiting Time for cores

In Fig.4, the average waiting time of the process

along with the number of cores is shown.

Fig-4: AWT vs No.of Cores

5. CONCLUSION

Fault detection and tolerance have always been a

challenge in multi-core systems when compared to

uniprocessor systems. In this paper, special fault

tolerance agents are used to achieve a fault tolerant

environment and to handle unexpected hardware or

software failure of the processor. Each agent monitors

its respective processor periodically to check for the

proper functioning of the core. The status is updated to

the middle agent in case of failure. Reallocation of tasks

to a different processor is then done by the middle

agent. This method helps in achieving an efficient fault

tolerant environment and timely completion of

tasks/processes, thereby providing increased

throughput.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 03 | Mar-2016 www.irjet.net p-ISSN: 2395-0072

 © 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1247

6. REFERENCES

[1] R. Al-Omari,a,1 Arun K. Somani,b and G. Manimaran,

Efficient overloading techniques for primary-backup

scheduling in real-time systems, J. Parallel Distributed

Computing 64 (2004) 629–648

[2] P. Keerthika, P.Suresh, A Multiconstrained Grid

Scheduling Algorithm with Load Balancing and Fault

Tolerance, Hindawi Publishing Corporation, the

Scientific World Journal, Volume 2015, Article ID

349576.

[3] Xiao Qin, Hong Jiang, A Novel Fault-tolerant

Scheduling Algorithm for Precedence Constrained

Tasks in Real-Time Heterogeneous Systems, Parallel

Computing, vol. 32, no. 5-6, pp. 331-356, June 2006.

[4] ShefaliMalhotra, ParagNarkhede, Kush Shah,

SamanthMakaraju, M. Shanmugasundaram, A Review

Of Fault Tolerant Scheduling In Multicore Systems,

International Journal Of Scientific & Technology

Research Volume 4, Issue 05, May 2015.

[5] Qiushi Han, Ming Fan, LinweiNiu, Gang Quan,Energy

Minimization for Fault Tolerant Scheduling of Periodic

Fixed-Priority Applications on Multiprocessor

Platforms, 2015 Design, Automation & Test in Europe

Conference & Exhibition.

[6] HaoPeng, Fan Yang, Fault Tolerant Global

Scheduling for Multiprocessor Hard Real Time Systems,

International Conference on Information Sciences,

Machinery, Materials and Energy (ICISMME 2015).

[7] .Mohammad H. Mottaghi, Hamid R. Zarandi, DFTS: A

dynamic fault-tolerant scheduling for real-time tasks in

multicore processors, Microprocessors and

Microsystems 38 (2014) 88–97.

[8] F. Liberato, R. Melhem, D. Mosse, Tolerance to

multiple transient faults foraperiodic tasks in hard

real-time systems, IEEE Trans. Computing. 49 (9)

(2000)906–914.

[9] H. Aydin, Exact fault-sensitive feasibility analysis of

real-time tasks, IEEE Trans. Computing. 56 (10) (2007)

1372–1386.

[10] Y. Zhang, K. Chakrabarty, Fault recovery based on

check pointing for hard real time embedded systems,

in: 18th IEEE International Symposium on Defect and

Fault Tolerance in VLSI Systems (DFT), 2003, pp. 320–

327.

[11] X. Qin, H. Jiang, and D. R. Swanson, “A Fault-

tolerant Real-time Scheduling Algorithm for

Precedence-Constrained Tasks in Heterogeneous

Systems,” Technical Report TR-UNL-CSE 2001-1003,

Department of Computer Science and Engineering,

University of Nebraska-Lincoln, September 2001.

[12] F. Liberato, R. Melhem, and D. Mossé, “Tolerance

to Multiple Transient Faults for Aperiodic Tasks in

Hard Real-Time Systems,” IEEE Transactions on

Computers, Vol. 49, No. 9, September 2000.

[13] Ching-Chih Han, K.G. Shin and J. Wu, ―A fault-

tolerant scheduling algorithm for real-time periodic

tasks with possible software faults,‖ IEEE Transactions

on Computers, vol.52, no.3, pp.362,372, 2003

[14] A. Girault, C. Lavarenne, M. Sighireanu and Y.

Sorel, “Fault-Tolerant Static Scheduling for Real-Time

Embedded Systems,” Proc. Int’l Conf. Computing

Systems, April 2001.

[15] A. Girault, C. Lavarenne, M. Sighireanu, and Y.

Sorel, “Generation of Fault-Tolerant Static Scheduling

for Real-Time Embedded Systems with Multi-Point

Links”, IEEE Workshop on Fault-Tolerant Parallel and

Systems, San Francisco, USA, April 2001.

[16] C. Dima, A. Girault, C. Lavarenne, and Y. Sorel, “Off-

Line Real-Time Fault-Tolerant Scheduling,”

Proc.Euromicro Workshop on Parallel and Processing,

pp. 410-417, Mantova, Italy, Feb. 2001.

