
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 03 | Mar-2016 www.irjet.net p-ISSN: 2395-0072

 © 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1248

Survey On Distributed Computing Platform

Ajit Sul1, Vishal Razdan2, Satyendra Tiwari 3, Rupali Pashte4

1B.E Student, Dept. of Computer Engineering, PVPP College Of Engineering, Maharashtra, India
2B.E Student, Dept. of Computer Engineering, PVPP College Of Engineering, Maharashtra, India
3B.E Student, Dept. of Computer Engineering, PVPP College Of Engineering, Maharashtra, India

4Asst. Professor, Dept. of Computer Engineering, PVPP College Of Engineering, Maharashtra, India

---***---
Abstract - The main goal of this paper is to extend our
learning and application on already available systems for
creating Distributed Computing Applications. Distributed
Computing Platforms give programmers an opportunity to
create applications that have overall execution time less than
their counterparts. There are various systems present in the
market that enable us to create applications running on
distributed system such as BOINC, WCG (WORLD COMMUNITY
GRID). These systems have certain limitations when used by
small projects which can be overcome. Limitations like
platform dependency, architecture complexity, and knowledge
about the platform are very challenging for the programmers.
These limitations don’t play a very crucial role if dealing with
the big projects but comes into picture if a project is small or
medium sized. Hence throughout the paper we will discuss
these systems and their limitations.

Key Words: platform, distributed, computing, application,
small, projects, limitations

1. INTRODUCTION

Distributed Computing is an environment in which a group
of independent and geographically dispersed computer
systems take part to solve a complex problem, each by
solving a part of solution and then combining the result from
all computers. These systems are loosely coupled systems
coordinately working for a common goal. The main aim of
distributed computing was to reduce the execution time of
the program without affecting the complexity of the
program. As the name suggests “Distributed Computing”
provides a platform through which different modules of the
program can be distributed over a network to different
processors thereby simultaneously executing all the modules
on the network. It can be defined as

1. A computing system in which services are provided
by a pool of computers collaborating over a
network.

2. A computing environment that may involve
computers of differing architecture and data
representation formats that share data and system
resources.

Key design issues that must be considered while designing
any distributed computing systems are

 Transparency
Overall system should look like a single coherent system to
its user.
 Scalability
Distributed system must be able to cop up with increase in
number of nodes.
 Heterogeneity
Distributed system should work with heterogeneous system
i.e. it should be platform independent.
 Fault – tolerance
Failure of individual node must be taken care of.
 Task scheduling
Policy for distribution of task to individual node should be
selected so as to maximize the performance.
 Security
Due to involvement of networks, network security is one of
the measure issues. Also, important data and other
confidential things should not get revealed to the user of
individual node.

Any Distributed system should take the above design issues
in consideration.

2. EXISTING SYSTEMS

The concept of Distributed computing was introduced long
ago and there are several systems that use this concept to
provide a platform to create applications that will run on
independent volunteer nodes. Some very powerful ones are
BOINC and WCG.

2.1 BOINC (Berkeley Open Infrastructure for
Network Computing)

The Berkeley Open Infrastructure for Network
Computing (BOINC), an open-source middleware system,
supports volunteer and grid computing. BOINC (Berkeley
Open Infrastructure for Network Computing) is a software

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 03 | Mar-2016 www.irjet.net p-ISSN: 2395-0072

 © 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1249

system that makes it easy for scientists to create and operate
public-resource computing projects. It supports diverse
applications, including those with large storage or
communication requirements. PC owners can participate in
multiple BOINC projects, and can specify how their resources
are allocated among these projects.[2]

Goals of BOINC: -

 Reduce the barriers of entry to public-resource
computing:- In order to provide a platform for the
programmers with the help of which publicly
available resources can be used by the program.[4]

 Share resources among autonomous projects: -
Willing resources can be assigned to the projects.

 Support diverse applications: -BOINC accommodates
a wide range of applications; it provides flexible and
scalable mechanism for distributing data, and its
scheduling algorithms intelligently match
requirements with resources.[5]

 Reward participants: -The BOINC platform rewards
its clients in order to attract participants. It assigns
each participant with a score-credit in order to show
how much they have contributed in the project.

Steps Followed By BOINC
 Subdividing long-running, variable-length analyses

into short, fixed-length BOINC work units: We
describe a scheme for subdividing long-running,
variable-length analyses into short, and fixed-length
BOINC work units using phylogenetic analyses as an
example. Fixed-length work units decrease variance
in analysis runtime, improve overall system
throughput, and make boinc a more useful resource
for analyses that require a relatively fast turnaround
time, such as the phylogenetic analyses submitted by
users of the garli web service at
molecularevolution.org [1] (This web site provides
web services for software commonly used in
molecular evolutionary analyses,
including GARLI and GSI. You can run these
programs on our grid resources using the web
services available on this site).

 Distributing The BOINC work units to different
clients:-

Distributing Boinc work units to clients

1. Client PC gets a set of tasks from the

project's scheduling server. The tasks depend on
client PC: for example, the server won't give it tasks
that require more RAM than client has. Projects can
support several applications, and the server may
send Client tasks from any of them.

2. Client PC downloads executable and input files from
the project's data server. If the project releases new
versions of its applications, the executable files are
downloaded automatically to Client PC.

3. Client PC runs the application programs, producing
output files.

4. Client PC uploads the output files to the data server.
5. Later (up to several days later, depending

on preferences) Client PC reports the completed
tasks to the scheduling server, and gets new tasks.

This cycle is repeated indefinitely. BOINC does this all
automatically; clients don't have to do anything.

 All the result is merged at the server as per the
merging logic and the output required from the
project. Once result of all the modules is submitted
to the servers, the output can be displayed to the end
user or to the stakeholders as per their interests.

 Limitations of BOINC
 Platform Dependent Architecture: BOINC has a

platform dependent architecture. As the servers set
up by BOINC for any project can run only on LINUX
servers. The BOINC client has been ported to
several platforms, but the BOINC server can only be
executed on Linux-based operating systems.[3] It
requires researchers to have experience with Linux
system administration in order to create a new
BOINC project.

 Complexity: The architecture of BOINC is very

Complex. The researchers creating BOINC projects
must learn the BOINC programming API and be
proficient in Linux system administration, MySQL15
relational database administration, the Extensible

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 03 | Mar-2016 www.irjet.net p-ISSN: 2395-0072

 © 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1250

Mark-up Language (XML), and the C++
programming language.[4]

 Lack of Documentation: This is the biggest barrier

faced by the programmers for developing BOINC
project. There are also very few tools to facilitate
the creation of new projects, resulting in a long,
manual process.

 Not Suitable for small and medium sized projects:

Due to large overhead task of understanding the
BOINC architecture which makes it unsuitable to be
used for small and medium size projects. The
complexities of BOINC can be prohibitive factors for
researchers interested in creating small to medium
size Public Resource Computing projects.

 BOINC provides a Grid Computing platform which is

not helpful in case of small and medium sized
projects. As Grid Computing consumes resources
which are not necessarily required for solving such
small and medium sized problems.

2.2 WCG (World Community Grid)

World Community Grid (WCG) is an effort to create the
world's largest public computing grid to tackle scientific
research projects that benefit humanity. Launched on
November 16, 2004, it is co-ordinate by IBM with client
software currently available for Windows, Linux, Mac OS X,
and Android operating systems. World Community Grid
enables anyone with a computer, smart-phone or tablet to
donate their unused computing power to advance cutting-
edge scientific research on topics related to health, poverty
and sustainability. Through the contributions of over 650,000
individuals and 460 organizations, World Community Grid
has supported 26 research projects to date, including
searches for more effective treatments for cancer, HIV/AIDS
and neglected tropical diseases. Other projects are looking for
low-cost water filtration systems and new materials for
capturing solar energy efficiently. Through World Community
Grid, many volunteers from all over the world provide
computing power to advance leading research. Researchers
are using world community grid for majorly tackling health
problems. The computing power can be donated by all in the
world. Even the smart phone like devices can donate its
computing power for the projects. Using the idle time of
computers around the world, World Community Grid's
research projects have analyzed aspects the human
genome, HIV, dengue, musculardystrophy, cancer, influenza,
Ebola, virtual screening, rice crop yields, and clean energy. As

of October 2014, the organization has partnered with 466
other companies and organizations to assist in its work, and
has over 55,000 active registered users.[6]

The overall working of WGC is beyond the scope of this
paper.

Limitations of WCG:
WCG also has similar limitations as that of the BOINC, except
the platform dependency.

3. PROPOSED SYSTEM TO OVERCOME THE
LIMITATIONS

System can be made for overcoming the limitations of BOINC.

Following are the things that are needs to be taken care of while

designing distributed computing platform:

 For Overcoming platform dependent architecture: -

A system can be developed that can be executed on any

platform. A system made in Java (platform

independent) makes it possible to execute client/server

programs on any platform thus making the system

platform independent.

 For Overcoming Complexity: A system can be

developed in which the server is always in a free state

whereas the state of clients is maintained at client side

only. This makes the architecture of the server very

simple as the server does not have to remember

anything about client except from maintaining the list

of active clients present in the system. Due to which

the whole architecture becomes simple.

 Making System Suitable for small and medium

sized projects: Distributing the modules over local or

metropolitan area network and not on wide area

network makes it easy for the programmer. As the

programmers have not to understand the architecture of

the system and which makes easy for the programmers

to use the system.

 No Documentation Required: As the architecture of

the system is very simple, it is not necessary for the

programmers to refer to the documentation of the

designed system. Only the code needed for the

formation of modules is needed to be written in the

program.

4. CONCLUSIONS

Making server platform independent will facilitate us to
provide platform independent distributed computing
platform. Moreover platform dependency could be avoided
making a good use of resources and providing a reliable
platform for the programmers interested in small and
medium size projects.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 03 | Mar-2016 www.irjet.net p-ISSN: 2395-0072

 © 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1251

REFERENCES

[1] Adam L. Bazinet and Michael P. Cummings, Subdividing

Long-Running, Variable-Length Analyses Into Short,
Fixed-Length BOINC Workunits, Journal of Grid
Computing DOI:10.1007/s10723-015-9348-5

[2] A. Acharya, G. Edjlali, and J. Saltz. “The Utility of
Exploiting Idle Workstations for Parallel Computation”.
SIGMETRICS 97. Seattle, June 15-18 1997.

[3] Baldassari and James D, “Design and Evaluation of a
Public Resource Computing Framework”, Worcester
Polytechnic Institute etd-042006-225855

[4] David P. Anderson, GRID '04 Proceedings of the 5th
IEEE/ACM International Workshop on Grid Computing,
2004-11-08, IEEE Computer Society Washington, DC,
USA ISBN: 0-7695-2256-4 doi:10.1109/GRID.2004.14

[5] BOINC: A System for Public-Resource Computing and
Storage-David P. Anderson-Space Sciences Laboratory

-University of California at BerkeLey

[6] en.wikipedia.org/wiki/World_Community_Grid

[7] www.worldcommunitygrid.org

