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Abstract — we consider the problem of discovering frequent 
item sets and association rules between items in a large 
database of transactional databases acquired under 
uncertainty. With each transaction associated is a probability 
gives the confidence that the transaction will occur. We discuss  
generalized  algorithms for solving this problem that are 
fundamentally different from the known algorithms. Complete 
demonstration of algorithm  presented and discussed in this 
paper. We also show how the best features of the algorithm 
can be combined into a business system. 
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1. INTRODUCTION  
Now a days business databases not only recording exact 

transactions but at the same time also recording instable 

business circumstances into the data and hence with each 

and every possible transaction are associating a confidence 

or probability value that indicates strength by which the 

transaction will took place in real business world. Field of 

analytics specially predictive and prescriptive analytics 

playing critical role and are of great use to motivate 

probabilistic databases. Progress in digital bar-coding 

technology has made it possible for organizations to collect 

and store massive amounts of sales data, referred to as the 

basket data. A record in such data typically consists of the 

transaction date and the items bought in the transaction. 

Successful organizations view such databases as important 

pieces of the marketing infrastructure. They are interested in 

instituting information-driven marketing processes, 

managed by database technology, that enable marketers to 

develop and implement customized marketing programs and 

strategies [6]. 

The problem of mining association rules over market basket 

data was introduced in [4]. An  example  of such a rule  might  

be  that  98%  of  customers  that purchase tires and auto 

accessories also get automotive services done. Finding all 

such rules is valuable for cross-marketing, cross-sell, up-sell, 

targeted marketing, product bundling and propensity 

focused attached mailing applications. Other applications  

 

include catalog design, add-on sales, store layout, and 

customer segmentation based on buying patterns. The 

databases involved in these applications are very large. It is 

imperative, therefore, to have fast algorithms for this 

task[23]. 

The following is a formal statement of the problem [4]: Let I 

= { i1, i2, …, im} be  a  set  of literals, called items. Let D be a 

set of transactions, where each transaction T is a set of items 

such that T ⊆ I. Associated with each transaction is a unique 

identifier, called its TID. We say that a transaction T  contains 

X, a set of some items in I, if X ⊆ T.  An association rule is an 

implication of the form X  ⇒  Y ,  where X ⊂ I, Y ⊂ I, and X∩Y 

= Ø. The rule X  ⇒ Y  holds in the transaction set D with 

confidence c if c% of transactions in D that contain X also 

contain Y . The rule X⇒ Y has support  s in the transaction set 

D if s% of transactions in D contain X ∪ Y . Our rules are 

somewhat more general than in [4] in that we allow a 

consequent to have more than one item[23].Given a set of 

transactions D, the problem of mining association rules is to 

generate all association rules that have support and 

confidence greater than the user specified minimum support 

(called minsup) and minimum confidence  (called  minconf )  

respectively. Our discussion is neutral with respect to the 

representation of Database D. For example, D could be a data 

file, a relational table, or the result of a relational 

expression[23].An algorithm for finding all association rules, 

henceforth referred to as the AIS algorithm, was presented in 

[4]. Another algorithm for this task, called the SETM 

algorithm, has been proposed in [13]. In this paper, we 

restudied algorithms, Apriori and Probabilistic_Apriori, that 

differ fundamentally from these algorithms.  

The problem of finding frequent item sets and association 

rules falls within the purview of database mining [3] [12], 

also called knowledge discovery in databases [21]. Related, 

but not directly applicable, work includes the induction of 

classification rules [8] [11] [22], discovery of causal rules 

[19], learning of logical definitions [18], fitting of functions to 

data [15], and clustering [9] [10]. The closest work in the 

machine learning literature is the KID3 algorithm presented 
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in [20]. If used for finding all association rules, this algorithm 

will make as many passes over the data as the number of 

combinations of items in the antecedent, which is 

exponentially large. Related work in the database literature 

is the work on inferring functional dependencies from data 

[16]. Functional dependencies are rules requiring strict 

satisfaction. Consequently, having determined a dependency 

X → A, the algorithms in [16] consider any other dependency 

of the form X + Y → A redundant and do not generate it. The 

association rules we consider are probabilistic in nature. The 

presence of a rule X → A does not necessarily mean that X + Y 

→ A also holds because the latter may not have minimum 

support. Similarly, the presence of rules X → Y and Y → Z 

does not necessarily mean that X → Z holds because the 

latter may not have minimum confidence. There has been 

work on quantifying the “usefulness” or “interestingness" of 

a rule [20]. What is useful or interesting is often application-

dependent. The need for a human in the loop and providing 

tools to allow human guidance of the rule discovery process 

has been articulated, for example, in [7] [14].  

Original Apriori works on exact non-probabilistic 

transactions. But transactions in real world occur with some 

uncertain probability. Data uncertainty is inherent in 

applications such as sensor monitoring systems, location-

based services, and biological databases. To record and 

manage this vast amount of imprecise, uncertain 

information, probabilistic databases have been recently 

developed. In this paper, we study the discovery of frequent 

patterns and association rules from probabilistic databases 

under the Possible World Semantics. This is technically 

challenging, since a probabilistic database can have an 

exponential number of possible worlds. We evaluated 

probabilistic apriori algorithms, which discover frequent 

patterns in bottom-up manner likewise Apriori.  

1.2 Problem Decomposition and Paper Organization 

In case of non-probabilistic databases the problem of 

discovering all association rules can be decomposed into two 

subproblems[4]: 

(1). Find all sets of items (itemsets) that have transaction 

support above minimum support.  The support for  an  

itemset  is  the  number  of  transactions that contain the 

itemset. Itemsets with minimum support are called large 

itemsets, and all others small itemsets. 

(2). Use the large itemsets to generate the desired rules. 

Here is a straightforward algorithm for this task. For every 

large itemset l, nd all non-empty subsets of l. For every such 

subset a, output a rule of the  form  a  ⇒  (l - a)  if  the  ratio of 

support(l) to support(a) is at least minconf. We need to 

consider all subsets of l to generate rules with multiple 

consequents. Due to lack of space, we do not discuss this 

subproblem further, but refer the reader to [5] for a fast 

algorithm. 

1.3 Discovering Large Itemsets 

Algorithms for discovering large itemsets make 

multiple passes over the data. In the first pass, we 

count the support of individual items and determine 

which of them are large, i.e. have minimum support. In 

each subsequent pass, we start with a seed set of 

itemsets found to be large in the previous pass. We use 

this seed set for generating new potentially large 

itemsets, called candidate itemsets, and count the 

actual support for these candidate itemsets during the 

pass over the data. At the end of the pass, we determine 

which of the candidate itemsets are actually large, and 

they become the seed for the next pass. This process 

continues until no new large itemsets are found. The 

Apriori and AprioriTid algorithms differ fundamentally 

from the AIS[4] and SETM[13] algorithms in terms of 

which candidate itemsets are counted in a pass and in 

the way that those candidates are generated. In both 

the AIS and SETM algorithms, candidate itemsets are 

generated on-the-fly during the pass as data is being 

read. Specifically, after reading a transaction, it is 

determined which of the itemsets found large in the 

previous pass are present in the transaction. New 

candidate itemsets are generated by extending these 

large itemsets with other items in the transaction. 

However,  the disadvantage with the Apriori and 

AprioriTID algorithms is that they generate the candidate 

itemsets to be counted in a pass by using only the 

itemsets found large in the previous pass.  The  basic  

intuition is  that  any subset  of a large itemset must be 

large. Therefore, the candidate itemsets having k items 

can be generated by joining large itemsets having k-1 

items, and deleting those that contain any subset that is 

not large. This procedure results in generation of a 

much smaller number of candidate itemsets. Apriori is 

explained in next section 2, than in section 3 problem of 

finding probabilistic frequent itemset is defined and in 

section 4 problem is solved fully on toy database. 

2 APRIORI ALGORITHM 

In this section we will revisit Apriori algorithm. Notation We 
assume that items in each transaction are kept sorted in 
their lexicographic order. It is straightforward to adapt these 
algorithms to the case where the database DB is kept 
normalized and each given database record is a <TID, item> 
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pair, where TID is the identifier of the corresponding 
transaction. We call the number of items in an itemset its 
size, and call an itemset of size k a k-itemset. Items within an 
itemset are kept in lexicographic order. We use the notation 
c[1].c[2]. . . . . c[k] to represent a k-itemset c consisting of 
items c[1], c[2], ... , c[k], where c[1] < c[2] < . . . < c[k]. if c is 
XY is an m-itemset, we also call Y an m-extension of X. 
Associated with each itemset is a count field to store the 
support for this itemset. The count field is initialized to zero 
when the itemset is first created. We summarize in table 1 
the notation used in the algorithms. 

 
TABLE -1: NOTATIONS FOR APRIORI  

k -itemset An itemset having k items. 

Lk Set of large k-itemsets Lk  
#those with minimum support#.  
Each member of this set has two fields:  
i# itemset and ii# support count. 

Ck Set of candidate k-itemsets Ck  
#potentially large itemsets#.  
Each member of this set has two fields:  
i# itemset and ii# support count. 

 
2.1 Algorithm Apriori 
Figure 1 gives the Apriori algorithm. The first pass of 
the algorithm simply counts item occurrences to 
determine the large 1-itemsets. A subsequent pass, say 
pass k, consists of two phases. First, the large itemsets 
Lk-1 found in the (k-1)th pass are used to generate the 
candidate itemsets Ck, using the apriori gen function 
described in 2.1.1. Next the database is scanned and the 
support of candidates in Ck is counted. For fast 
counting, we need to efficiently determine candidates 
in Ck that are contained in a given transaction t. See [5] 
for a discussion of buffer management. 

1)   L1    =   { large 1-itemsets } ; 

2)  for ( k = 2; Lk-1≠ Φ ; k++ ) do begin 

3)        Ck    = apriori-gen(Lk-1 );   // New candidates 
4)     forall transactions t Є D do begin 

5) Ct    = subset(Ck , t); // Candidates contained  in 

t 
6) forall candidates  c  Є  Ct    do 
7) c.count++; 
8)      end 

9)  Lk  = { c Є  Ck | c.count  ≥ minsup } 
10) end 

11) Answer = ∪k Lk ; 
Figure -1: Algorithm Apriori 
2.2 The apriori-gen function 

The apriori-gen function takes as argument Lk-1, the set 
of all large (k-1)-itemsets. It returns a superset of the 
set of all large k-itemsets. The function works as 

follows. 1 First, in the join step, we join Lk-1 with Lk-1 : 

the logic implemented using sql query form is as 
follows;  
(1) insert into Ck 
select p.item[1], p.item[2], ... , p.item[k-1],  q.item[k-1] 

from Lk-1 p, Lk-1 q 

where p.item[1] = q.item[1], ... , p.item[k-2] = q.item[k-

2], p.item[k-1] < q.item[k-1]; 
 
Next, in the prune step, we delete all itemsets  c Є  Ck  

itemsets such that some (k-1)-subset of c is not in  Lk-1 

(1) forall itemsets c Є  Ck do  
 forall (k-1)-subsets s of c do  

  if ( c not belongs to L[k-1] ) then  
   delete c from Ck ; 
3. Probabilistic FREQUENT PATTERN AND 
ASSOCIATION RULE MINING 

In this section we will discuss mining uncertain database 
data with probabilistic certainty. Data uncertainty is 
inherent in many applications such as sensor monitoring 
systems, location-based services, and biological databases. 
To manage this vast amount of imprecise information, 
probabilistic databases have been recently developed. In this 
paper, we study the discovery of frequent patterns and 
association rules from probabilistic data under the Possible 
World Semantics. This is technically challenging, since a 
probabilistic database can have an exponential number of 
possible worlds. The data managed in many emerging 
applications is often uncertain. Integration and record 
linkage tools, for example, associate confidence values to the 
output tuples according to the quality of matching [34]. In 
structured information extractors, confidence values are 
appended to rules for extracting patterns from unstructured 
data [52]. In habitat monitoring systems, data collected from 
sensors like temperature and humidity are noisy [34]. The 
locations of users obtained through RFID and GPS 
systems are also imprecise [25, 39]. To handle these 
problems, probabilistic databases have been recently 
proposed, where uncertainty is treated as a “first-class 
citizen” [31, 34, 44, 33, 38]. Due to its simplicity in 
database design and query semantics, the tuple-
uncertainty model is commonly used in probabilistic 
databases. Conceptually, each tuple carries an 
existential probability attribute, which denotes the 
confidence that the tuple exists.  Figure 2 illustrates 
this model, which records traffic violation events due to 
red-light running. The details of each event (e.g., 
location, and traffic volume) are captured by a red-light 
camera system, which contains sensors and cameras 
mounted in road intersections. Each tuple is annotated 
by a probability that a true violation happens. The 
probability that a violation occurs is determined by 
sensor measurement errors, as well as the uncertainty 
caused by automatic information extraction of the 
photographs taken by the system [53]. 
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ID locatio
n 

time spee
d 

traffi
c 

weathe
r 

prob
. 

t1 x 8-
9pm 

30-40 high Rain 0.1 

t2 x 7-
8am 

80-90 low null 1.0 

t3 x 8-
9pm 

80-90 low Foggy 0.5 

t4 x 8-
9pm 

30-40 high Rain 0.2 

t5 y 2-
3pm 

50-60 low Sunny 1.0 

Figure -2: A probabilistic database example 
 
To interpret tuple uncertainty, the Possible World Semantics 
(or PWS in short) is often used [34]. Conceptually, a database 
is viewed as a set of deterministic instances (called possible 
worlds), each of which contains a set of zero or more tuples. A 
possible world for Figure 2 consists of the tuples { t2, t3, t5 }, 
existing with a probability of (1 - 0.1) x 1.0 x 0.5 x ( 1 - 0.2) x 
1.0 = 0.036. Any query evaluation algorithm for 
probabilistic database has to be correct under PWS. 
That is, the results produced by the algorithm 
should be the same as if the query is evaluated on 
every possible world[34] Although PWS is intuitive and 
useful, evaluating queries under this notion is costly. This is 
because a probabilistic database has an exponential number 

of possible worlds. For example, the table in Figure 1 has 2
3 

= 8 possible worlds. Performing query evaluation or data 
mining under PWS can thus be technically challenging. In 
fact, the mining of uncertain or probabilistic data has 
recently attracted research attention [26]. In [41], efficient 
clustering algorithms were developed to group uncertain 
objects that are close to each other. Recently, a Naive Bayes 
classifier has been developed [49]. The goals of this paper 
are: (1) propose a definition of frequent patterns and 
association rules for the tuple uncertainty model; and (2) 
develop efficient algorithm for mining frequent patterns and 
association rules. 
 

               Association rule  Probability 

r1: {location=x} ⇒ {time=8-9pm} 
r2: {location=x} ⇒ {speed=80-

90,traffic=low} 

0.15 
0.49 

Figure -3: Sample p-ARs derived from Figure 2 
The frequent patterns discovered from probabilistic 
data are also probabilistic, to reflect the confidence 
placed on the mining results. Figure 3 shows two 
probabilistic frequent patterns (or p-FP) extracted 
from the database in Figure 2. A p-FP is a set of 
attribute values that occur frequently  with 
sufficiently high probabilities. The pmf of the number 
of tuples is the support count that  contains  a  
pattern with specific probability.  Under  PWS,  a 
database is a set of possible worlds, each of which 
records a (different) support of the same pattern. 
Hence, the support of a frequent pattern is a pmf. In 
figure 1, if we consider all possible worlds where { 

location = x }occurs three times, the pmf of { location 

= x } with a support of 3 is 0.49. for the p-FP shown. 
Figure 3 displays their related probabilistic association 
rules (or p-ARs). Here, rule r2 suggests that with a 
0.49 probability, 1) red-light violations occur 
frequently at location x and 2) when this happens, 
the involved vehicle is likely driving at a high speed 
amid low traffic. We will later explain more about the 
semantics of p-FP and   p-AR. A simple way of finding 
p-FPs is to extract frequent pat- terns from every 
possible world. This is practically infeasible, since the 
number of possible worlds is exponentially large.  
Prior work. [30] studied approximate frequent 
patterns on noisy data, while [42] examined 
association rules on fuzzy sets. The notion of a “vague 
association rule” was developed in [43]. These 
solutions were not developed on probabilistic data 
models. For probabilistic databases, [32, 25] derived 
patterns based on their expected support counts. [54, 
50] found that the use of expected support may 
render important patterns missing. They discussed 
the computation of  the probability that a pattern is 
frequent. While [55] handled the mining of single 
items, our solution can discover patterns with more 
than one item. The data model used in [50] assumes 
that for each tuple, each attribute value  has a 
probability of being correct. This is different from the 
tuple-uncertainty model, which describes the joint 
probability of attribute values within a tuple. pmf 
evaluation method DC algorithm is asymptotically 
faster than the DP algorithms used in [54, 50], and is 
thus more scalable for large and dense datasets. To 
our best knowledge, none of the above works 
considered the important problem of generating 
association rules on probabilistic databases. 
This section is organized as follows. Section 3.1 
introduces the notions of p-FPs and p-ARs. Sections 
3.2 present our algorithms for mining p-FPs. Section 
3.3 discusses fully solved example using dataset used 
in paper introduced Pascal algorithm.  The CIPFP 
algorithm is described in section 5 and example is 
described in section 6 
3.1 Problem Definition 

We first review frequent patterns and association 
rules in Sections 3.1.1. Then, we discuss the 
uncertain data model in Section 3.1.2. We present the 
problems of mining p-FPs and p-ARs, in Sections 
3.1.3 and 3.1.4. 
3.1.1 Frequent Patterns and Association Rules 

A transaction is a set of items (e.g., goods bought by a 
customer in a supermarket). A set of items is also called an 
itemset or a pattern. Given a transaction database of size n 
and a pattern X, we use sup(X) to denote the support of  X, 
i.e., the number of times that X appears in the database. A 
pattern X is frequent if: 
sup(X) ≥ minsup        (1) 
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where minsup ∈ N ∩ [1, n] is the support threshold 
[27]. 
Given patterns X and Y  (with  X∩Y = Ø), if pattern XY is 
frequent, then X is also frequent (called the anti-
monotonicity property). Also, X⇒Y is an association rule if 
following conditions holds:  
supp(XY) ≥ minsup           (2) 
supp(XY)/supp(X) ≥  minconf           (3) 
sup(XY) / sup(X), denoted by conf(X⇒Y), is the confidence 
of X⇒Y, and minconf ∈ R ∩ (0, 1] is the confidence 
threshold. To verify Equation 3, the values of sup(XY) and 
sup(X) have to be found first.  
We remark that a transaction database is essentially 
a relational table with asymmetric binary attribute 
values. For example, the existence of item “apple” in a 
transaction is equivalent to a binary attribute of a 
tuple with a value of 1. This kind of attributes, 
assumed in this paper, is also considered by some 
mining algorithms (e.g., [27, 28]). To handle other 
attribute types (e.g., continuous and categorical), 
discretization and binarization techniques can be 
used to convert them to binary attributes [52]. 
3.2.2 The Possible World Semantics 
We assume that each transaction has an existential 
probability, which specifies the chance that the 
transaction exists. Figure 4(a) illustrates this 
database, in which each transaction is a set of items 
represented by letters. This model has been used to 
capture uncertainty in many applications, including 
data streams[33] and geographical services[45].  
Now, let P(E) be the probability that an event E occurs  
and PDB be probabilistic database of size n. Also, let Ti 
(where i = 1, ..., n ) be the ID of each tuple in PDB. Suppose 
Ti.S is the set of items contained in Ti, and Ti.p is the 
existential probability of Ti. 
 

 

ID  SetOfItems  
Probability/ 
confidence 

T 1  {a, c, e, g, i}  
0.6  
 

T 2 {a, c, f, h}  
0.5  
 

T 3 {a, d, e, g, j}  
0.7  
 

T 4 {b, d, f, h, i}  1.0 

Figure -4(a):  A probabilistic database  
 

Under PWS, PDB is a set of possible worlds W. Figure 
4(b) lists all possible worlds for figure 4(a). Each Wi 
ε W exists with probability P(Wi). For example 
P(W2) = T1.p X ( 1 – T2.p) X ( 1 -T3.p) X T4.p or 0.09. 
The sum of possible world probabilities is one. Also, 
the number of possible worlds is exponentially large, 

i.e. |w| = O( 2n). Our goal is to discover patterns and 
rule using these possible worlds.   
 

W Tuples in 
W 

Pro
b. W Tuples in W Prob

. 
 

W1 
 

T4 
 

0.06 
 

W5 
 

T1, T2, T4 
 

0.09 

 
W2 

 
T1, T4 

 
0.09 

 
W6 

 
T1, T3, T4 

 
0.21 

   
 W3 

 
T2, T4 

 
0.06 

 
W7 

 
T2, T3, T4 

 
0.14 

 
W4 

 
T3, T4 

 
0.14 

 
W8 

 
T1, T2, T3, T4 

 
0.21 

Figure -4(b):Possible World for PDB in Figure 4(a) 
 

3.2 Probabilistic Frequent Patterns 

we first explain the concept of support for 
probabilistic data. Given a pattern X, we denote its 
support in each world Wi as supi(X) is obtained by 
counting the number of times X appears in Wi. Since 
each Wi exists with a probability, the support of X in 
PDB, i.e. sup(X), is a random variable. We denote 
fX(k) that the probability mass function (pmf) of 
sup(X) can take. Specifically, fX(k) is the probability 
that sup(X) = k, and fX(k) = 0 for any k ∉ [0,n]. We use 
an array to store the non-zero values of fX, where 
fX[k] = P(supp(X) = k). Figure 4(c) depicts the 
support pmf of {a}. the probability that sup({a}) = 1 is 
0.29. 

  
 
 
 
 
 
 
DEFINITION 1. A 
pattern X is a 

probabilistic frequent pattern or p-FP in PDB if   
P(sup(X) ≥ minsup) ≥ minprob     (4) 
where minprob є R ∩ (0,1] is the probability 
threshold. 
Problem 1 (p-FP Mining). Given PDB, minsup and 
minprob, return a set of {X,  fX(k), where X is a p-FP 
.As we will discuss, the pmfs obtained with p-FPs are  
essential to generating probabilistic association 
rules. There are methods to approximating and 
compressing pmfs (e.g., see [35]). Here we assume 
that the pmf is exact, but our solutions can be 
extended to support these schemes. Next, we present 
a useful lemma. 
Lemma 1 (Anti-monotonicity). If pattern X is a p-
FP, then any pattern X' ⊂ X is also a p-FP. 
The anti-monotonicity property is true for frequent 
patterns in exact data [27]. Lemma 1 allows us to stop 
examining a pattern, if any of its sub-pattern is not a p-FP. 
A p-FP X is said to be maximal if we cannot find another p-

Figure -4(C): Support pmf 

for 1-itemset {a} in PWS 
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FP Y such that X ⊂ Y . A maximal p-FP can succinctly 
represent a set of p-FPs when their supports are not 
concerned. Since the mining of maximal frequent patterns 
is an important problem [28] for exact data, we also study 
maximal p-FPs, together with free set, maximal set make a 
complete system, we study them too,:  
Problem 2.1 (Free set p-FP Mining). Given a 
database PDB, minsup and minprob, return all 
minimal generators or free sets p-Fps. 
Problem 2.2 (Maximal p-FP Mining). Given a 
database PDB, minsup and minprob, return all 
maximal p-Fps. 
Problem 2.3 (closed p-FP Mining). Given a 
database  PDB, minsup and minprob, return all 
closed p-FPs. 
3.3 Probabilistic Association Rules 
In a probabilistic database, the support counts of patterns 
are random variables. Let P (X⇒Y) be the probability that 
X⇒Y is an association rule. By Equations 2 and 3,  we have: 
P (X⇒Y) =  
P [sup(XY ) > minsup∧conf (X⇒Y) ≥ minconf]  (5) 
Definition 2. X⇒Y is a probabilistic association rule 
(p-AR in short) if   
P (X ⇒ Y ) ≥ minprob          (6) 
The problem of p-AR mining is defined as follows. 
Problem 3 (p-AR Mining). Given minsup, minprob, 
minconf, and the p-FPs and their support pmfs 
obtained from Problem 1, derive all p-ARs and their 
probabilities. 
A simple way of solving Problems 1, 2, and 3 is to expand 
PDB into all possible worlds, compute patterns and rules 
from each world, and then combine the results. If minsup=2, 
minconf=0.5, and minprob=0.2, for Figure 4(a), {a}⇒{c} is an 
association rule only in worlds W5 and W8 (Figure 4(c)), 
with P ({a}⇒{c}= Pr(W5) + Pr(W 8) = 0.09 + 0.21 = 0.3. Since 
this is larger than 0.2, {a}⇒{c} is a p-AR. This method is not 
practical , due to the large number of possible worlds. To 
tackle Problems 1 and 2, proposed  algorithms, namely 
probabilistic Apriori discussed and solved fully in next 
section 4. 
4. Probabilistic Apriori using PWS fully Solved case 
In this section we display the probabilistic Apriori using 
PWS fully Solved using toy database used in research 
paper by Bastides et. al. described algorithm Pascal. To 
solve Problem 1, we discussed the probabilistic-Apriori 
algorithm, which is an adaptation of the Apriori algorithm 
[27] for probabilistic databases. Specifically, probabilistic-
Apriori uses the bottom-up framework [27]: using PWS. 
4.1 Our Probabilistic Algorithm: Probabilistic Apriori 

1. PDB Database making, 

2. PWS making using PDB, 

3. Define candidate C1 1-itemset equal to Item 
Collection I. 

4. PDB database scan for all c belongs to C1 to calculate 
support c.support. Store them in a list call it FP.  

5. PWS database scan for all c in FP and all c.support where 
support is equal to “0” to “c.support” to evaluate fc[k] 
probability pmf support. 

6. Determining Probabilistic Frequent Patterns using 
minsup and minprob. First compare minsup with 
c.support. If c.support ≥ minsup than using pmf for 
pattern c in C1 compare fc[k] ≥ minprob. Collect all c in 
PFP and assign it to L1 all along with valid frequent 
probable support and probability. Call it L1. 

7.1)  L1    =   { large 1-itemsets } ; 

7.2)  for ( k = 2; Lk-1≠ Φ ; k++ ) do begin 

7.3)  Ck=apriori-gen(Lk-1 ); // New candidates 

7.4)     forall transactions t Є PDB do begin 

7.5) Ct=subset(Ck,t);//Candidates contained in t 

7.6) forall candidates  c  Є  Ct    do 

7.7) c.count++; 

7.8)      end 

7.9)       FP = { c Є  Ck | c.count  ≥ minsup } 

7.10)      forall fp  Є FP 

7.11)  from k = 0 to fp.support 

7.12)  W = w Є PWS exactly with size k times  k 
number of transactions 

7.13)   Ffp[k].prob++; 

7.14)  end 

7.15)    PFP = { FP Є  FPk | Ffp[k].prob ≥ minprob } 

7.15)    Lk  = PFP 

7.16) end 

7.17) Answer = ∪k Lk ; 

Figure -5: Probabilistic Apriori  Algorithm 

A. The apriori-gen function 

The apriori-gen function takes as argument Lk-1, the set of 
all large (k-1)-itemsets. It returns a superset of the set of 
all large k-itemsets. The function works as follows. 1 First, 

in the join step, we join Lk-1 with Lk-1 : the logic is in the 

form of sql query form is as follows;  
(1) insert into Ck 

select p.item[1], p.item[2], ... , p.item[k-1],  q.item[k-
1] 

 from Lk-1 p, Lk-1 q 

 where p.item[1] = q.item[1], ... , p.item[k-2] = 

q.item[k-2], p.item[k-1] < q.item[k-1]; 
 
Next, in the prune step, we delete all itemsets  c Є  Ck  

itemsets such that some (k-1)-subset of c is not in  Lk-1. 
 

(1) forall itemsets c Є  Ck do  
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 forall (k-1)-subsets s of c do  

  if ( c not belongs to Lk-1 ) then  

   delete c from Ck  ; 
 

4.2 Solved Example Probabilistic Apriori 
This section discusses the solved example of probabilistic 
Apriori on toy database. To explain fully general version is 
solved to full length. The database used is same as used is 
paper  which presented Pascal Algorithm extended to 
include the transaction level existential probability and 
time stamp for time at which transaction took place. 
Figure 6 depicts Pascal Transaction Temporal Dataset 
with Probabilistic Confidence. For our Probabilistic 
Apriori algorithm only column TID, SetOfItems, and 
Probabilistic/Confidence are of importance or relevant. 

TID 
SetOfItem

s 
TimeSta

mp 
Key 

Probabili
ty/Confiden

ce 

T1 A, B, C, F 1 ? 0.6 

T2 B, C, E, F 2 ? 0.5 

T3 A, B, C, E, F 3 ? 0.7 

T4 B, E, F 4 ? 0.4 

T5 A, B, C, E, F 5 ? 1.0 

Figure -6: PDB for Pascal Transactional Temporal Dataset 
with Probabilistic Confidence  
Using concepts of Possible World Semantics in earlier 
sections, on database presented in Figure 6 we calculated 
PWS, which is available in Figure 7. 

Wor
lds 

Transact
ionInWo

rld 

WorldProbalityCalcul
ation 

WorldPro
bablity 

W1 T5 
(1-0.6)*(1-0.5)*(1-
0.7)*(1-0.4)*(1.0) 

0.036 

W2 T1T5 
( 0.6 )*(1-0.5)*(1-0.7)*(1-

0.4)*(1.0) 
0.054 

W3 T2T5 
(1-0.6)*( 0.5 )*(1-0.7)*(1-

0.4)*(1.0) 
0.036 

W4 T3T5 
(1-0.6)*(1-0.5)*( 0.7 )*(1-

0.4)*(1.0) 
0.084 

W5 T4T5 
(1-0.6)*(1-0.5)*(1-0.7)*( 

0.4 )*(1.0) 
0.024 

W6 T1T2T5 
( 0.6 )*( 0.5 )*(1-0.7)*(1-

0.4)*(1.0) 
0.054 

W7 T1T3T5 
( 0.6 )*(1-0.5)*( 0.7 )*(1-

0.4)*(1.0) 
0.126 

W8 T1T4T5 
( 0.6 )*(1-0.5)*(1-0.7)*( 

0.4 )*(1.0) 
0.036 

W9 T2T3T5 
(1-0.6)*( 0.5)*( 0.7)*(1-

0.4)*(1.0) 
0.084 

W10 T2T4T5 
(1-0.6)*( 0.5 )*(1-0.7)*( 

0.4 )*(1.0) 
0.024 

W11 T3T4T5 
(1-0.6)*(1-0.5)*( 0.7 )*( 

0.4 )*(1.0) 
0.056 

W12 
T1T2T3T

5 
( 0.6 )*( 0.5 )*( 0.7 )*(1-

0.4)*(1.0) 
0.126 

W13 
T1T2T4T

5 
( 0.6 )*( 0.5 )*(1-0.7)*( 

0.4 )*(1.0) 
0.036 

W14 
T1T3T4T

5 
( 0.6 )*( 1- 0.5 )*( 0.7 )*( 

0.4 )*(1.0) 
0.084 

W15 
T2T3T4T

5 
( 1-0.6 )*( 0.5 )*( 0.7 )*( 

0.4 )*(1.0) 
0.056 

W16 
TIT2T3T4

T5 
( 0.6 )*( 0.5 )*( 0.7 )*( 0.4 

)*(1.0) 
0.084 

Figure -7:  PWS for  PDB for Pascal Transactional 
Temporal Dataset with Probabilistic Confidence 
The collection of Items for figure 6 PDB contains 6 
individual items, let say I is the set of these items. Hence I 
=  { A, B, C, D, E, F }, For this example minsup is 2/5 that is 
40%. As total number of transactions in database i.e. the 
size of database n is 5. So, the threshold for minsup will be 
given by (5 * 40 ) /100, i.e 2. So, minsup is 2, let minprob is 
0. We are taking minprob 0 to show that algorithm will 
behave exactly as apriori behave when no probabilistic 
transaction is considered. This is equivalent to treating all 
transactions having certainty or probability of 1 to occur.  
All the elements which belongs to collection I will become 
the candidate pattern, as the individual items themselves 
are used as patterns we call them 1-itemset. The collection 
of candidate 1-itemset denoted as C1 is as follows:   C1 =  { 
{A}, {B},{C},{D},{E},{F}} for each element c belongs to C1 
we calculate its support in database PDB Figure 6. For all 
itemset the PDB database scan output is as follows: 

Pattern/1-itemset  Support in PDB 

{A} 3 

{B} 4 

{C} 4 

{D} 1 

{E} 4 

{F} 5 

Figure -8: C1 and its Support Count 
 

In the figure 8 if we compare support of  respective 
patterns we found that pattern {D} has a support 1 which 
is less than the minimum support. sup({D}) < minsup. So 
the set of frequent 1-itemset FP1 will contain all 1-itemset 
from figure 8 but not {D}.This set of frequent 1-itemset  
FP1 is as follows; 

Pattern/1- Support in PDB 
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itemset 

{A} 3 

{B} 4 

{C} 4 

{E} 4 

{F} 5 

Figure -9:  FP1  set of frequent 1-itemset 
Now we use patterns in FP1 one by one to calculate their 
existential probability. For this we first scan PDB and 
extract the TIDs in which pattern is present. For 
combination of length equal to in range for support from 0 
to c.support we start scan of PWS rows and sum up the 
provabilities of Wi in which exactly the number of 
transaction present, here the number of transaction which 
occurred in Wi is determined for every support from 0 to 
c.support. For example we want to determine existential 
probability of frequent 1-itemset {A} to determine 
probabilistic frequent pattern {A} is or not. First, we scan 
PDB and found that T1, T3, T5 contains {A}. {A}.support is 
3. So for transaction combination length of 0, 1, 2, and 3, 
are possible k th support for {A} in PDB. Let say for 
example  support 1 of pattern {A}, exactly for the count of 
1, number of transactions that have {A}, Wi will form 
universe, means any Wi that contain exactly one time any 
of the {A}.Ti, i.e., Wi exactly contain either one of T1, or T2, 
or T2 but not T1T2, T1T3 or T2T3 or T1T2T3 together, all 
their probabilities will be summed up. For {A}.support is 1,  
PWS is W1W3W5W10 with probability 0.036, 0.036, 
0.024, 0.024 summed up to 0.12, this 0.12 is existential 
probability of pattern {A} when its support is 1. Like wise 
we calculate for all fp belongs to FP1. The following figure 
10 summaries C1 PFP1  patterns with their support pmf 
values.  “-” represents not required status. 

Support\Pat
tern 

{A} {B} 
{C}
  

{D} {E} {F} 

0 0 0 0 0.4 0 0 

1 
0.1
2 

0.09 
0.0
6 

0.6 0.09 0.036 

2 
0.4
6 

0.36 
0.2
9 

- 0.36 0.198 

3 
0.4
2 

0.41 
0.4
4 

- 0.41 0.380 

4 - 0.14 
0.2
1 

- 0.14 0.246 

5 - - - - - 0.140 

Figure -10: C1 candidate PFP1  patterns with their support 
pmf values 
If we compare all 1-itemset support pmf values against 
minprob we will get PFP 1-itemset. For minprob “0” we 
will have entire Figure 10 as probabilistic frequent PFP1. 
So, now using all patterns in PFP1 we will continue and 

assign this collection to L1 and call apriori_gen on all 
probabilistically frequent 1-itemset patterns in L1 to 
generate candidate 2-itemset C2. Using PDB database scan 
we count their support. 

Pattern/2-
itemset 

 Support in 
PDB 

{AB} 2 

{AC} 3 

{AE} 2 

{AF} 3 

{BC} 3 

{BE} 4 

{BF} 4 

{CE} 3 

{CF} 4 

{EF} 4 

Figure -11: C2 and its Support Count 
All pattern in Figure 11 are frequent. So, frequent 2-
itemset will be as following in figure 12. 

Pattern/2-
itemset 

 Support in 
PDB 

{AB} 2 

{AC} 3 

{AE} 2 

{AF} 3 

{BC} 3 

{BE} 4 

{BF} 4 

{CE} 3 

{CF} 4 

{EF} 4 

Figure -12: FP2 and its Support Count 
The candidate for PFP will be as following in figure 13. 
 

Patte
rn> 
Supp
ortV 

{A
B} 

{A
C} 

{AE
}
  

{AF
} 

{B
C} 

{B
E} 

{B
F} 

{C
E} 

{C
F} 

{EF
} 

0 0 0 0 0 0 0 0 0 0 0 

1 0.3 0.1
2 

0.3 0.1
2 

0.1
5 

0.0
9 

0.0
9 

0.1
5 

0.0
6 

0.0
9 

2 0.7 0.4
6 

0.7 0.4
6 

0.5
0 

0.3
6 

0.3
6 

0.5
0 

0.2
9 

0.3
6 

3 - 0.4 - 0.4 0.3 0.4 0.4 0.3 0.4 0.4
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2 2 5 1 1 5 4 1 

4 - - - - - 0.1
4 

0.1
4 

- 0.2
1 

0.1
4 

5 - - - - - - - - - - 

Figure -13: C2  candidate PFP2  patterns with their support 
pmf values. 
All candidate PFP2 are probabilistic frequent hence we treat 
patterns in figure 13 as PFP and finally as L2. These 2-itemset 
probabilistically frequent patterns in L2 will be used to 
generate candidate 3-itemset patterns. 

Pattern/3-
itemset 

 Support in 
PDB 

{ABC} 2 

{ABE} 2 

{ABF} 2 

{ACE} 2 

{ACF} 3 

{AEF} 2 

{BCE} 3 

{BCF} 3 

{BEF} 4 

{CEF} 3 

Figure -14.: C3 and its Support Count 
All pattern in Figure 14 are frequent. So, frequent 3-
itemset will be as following in figure 15. 

Pattern/3-
itemset 

 Support in 
PDB 

{ABC} 2 

{ABE} 2 

{ABF} 2 

{ACE} 2 

{ACF} 3 

{AEF} 2 

{BCE} 3 

{BCF} 3 

{BEF} 4 

{CEF} 3 

Figure -15: FP3 and its Support Count 
The candidate for PFP will be as following in figure 16. 

 

 

Patt {A {AB {A {AC {AC {A {BC {B {B {CEF

ern 
Supp
ort 

BC
} 

E} BF
}
  

E} F} EF
} 

E} CF
} 

EF
} 

} 

0 0 0 0 0 0 0 0 0 0 0 

1 0.2
64 

0.2
64 

0.2
64 

0.2
64 

0.2
64 

0.2
64 

0.1
5 

0.1
5 

0.0
9 

0.1
5 

2 0.7
36 

0.7
36 

0.7
36 

0.7
36 

0.7
36 

0.7
36 

0.5
0 

0.5
0 

0.3
6 

0.5
0 

3 - - - - - - 0.3
5 

0.3
5 

0.4
1 

0.3
5 

4 - - - - - - - - 0.1
4 

- 

5 - - - - - - - - - - 

Figure -16: C3 candidate PFP3  patterns with their support 
pmf values. 
All candidate PFP3 are probabilistic frequent hence we 
treat patterns in figure 16 as PFP and finally as L3. These 
3-itemset probabilistically frequent patterns in L3 will be 
used to generate candidate 4-itemset patterns, which are 
as follows; 
 
 

Pattern/4-
itemset 

 Support in 
PDB 

{ABCE} 2 

{ABCF} 2 

{ABEF} 2 

{ACEF} 2 

{BCEF} 3 

Figure -17: C4 and its Support Count 
All pattern in Figure 17 are frequent. So, frequent 3-
itemset will be as following in figure 18. 

Pattern/4-
itemset 

 Support in 
PDB 

{ABCE} 2 

{ABCF} 2 

{ABEF} 2 

{ACEF} 2 

{BCEF} 3 

Figure -18: FP4 and its Support Count 
 
 
 
 
 
 
 
The candidate for PFP will be as following in figure 19. 
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Pattern 
Support 

{ABCE} {ABCF} 
{ABEF
} 

{ACEF
} 

{BCEF} 

0 0 0 0 0 0 

1 0.264 0.264 0.264 0.264 0.15 

2 0.736 0.736 0.736 0.736 0.50 

3 - - - - 0.35 

4 - - - - - 

5 - - - - - 

Figure -19: C4 candidate PFP4  patterns with their support 

pmf values. 

 
All candidate PFP4 are probabilistic frequent hence we 
treat patterns in figure 19 as PFP and finally as L4. These 
4-itemset probabilistically frequent patterns in L4 will be 
used to generate candidate 5-itemset patterns, which are 
as follows; 

Pattern/4-
itemset 

 Support in 
PDB 

{ABCE} 2 

Figure -20:  C5 and its Support Count 
All pattern in Figure 20 are frequent. So, frequent 3-
itemset will be as following in figure 21. 

Pattern/5-itemset 
Support in 

PDB 

{ABCEF} 2 

Figure -21: P5 and its Support Count 
 

The candidate for PFP will be as following in figure 22. 

Support\Pattern {ABCEF} 

0 0 

1 0.264 

2 0.736 

3 - 

4 - 

5 - 

Figure -22: C5 candidate PFP5  patterns with their support 
pmf values. 
 

All candidate PFP5 are probabilistic frequent hence we 
treat patterns in figure 22 as PFP and finally as L5. These 
5-itemset probabilistically frequent patterns in L5 will be 
used to generate candidate 6-itemset patterns. But no 

more new candidate 6-itemset are possible so algorithm 
execution stops here. 
5. CONCLUSION 
Real world application requires mining of patterns 
occurrences of which are random or uncertain in nature. 
This uncertain is introduced in the system because of many 
parameters which may be endogenous or exogenous. This 
uncertainty is introduced many time because of uncertainty 
in competency of operator involved in transactional process. 
Uncertainty may be introduced due to limitation of 
measurement machines, instruments, and/or procedure. So, 
to encompass this truth of process we studied and suggested 
a mining procedure that can be used to answer queries 
which or otherwise only possible to answer on certain data 
using data mining techniques. To best of our knowledge the 
steps we carried out are not discuss to this much extent in 
any paper. Algorithm finally converged. 32 probabilistic 
frequent patterns were generated when we took the 
probability of transactions equal to one, i.e. minimum 
threshold is considered as 0. Many variations in 
implementation of the algorithm are possible. Also how to 
select suitable minprob threshold is, depending on this 
algorithm can be modified. In future we will implement the 
algorithm with possible alternate implementation as well as 
mechanism to support selection of minimum support 
threshold, and selection of minimum probability threshold.  
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