
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 04 | Apr-2016 www.irjet.net p-ISSN: 2395-0072

 © 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1477

IMAGE ENCRYPTION USING RECURRSIVE HUFFMAN

CODING AND DECODING USING HEAP STRUCTURE

SonaKhanna1,SumanKumari2 ,Taqdir3

1Student M.Tech, Computer Science, Guru Nanak Dev University RC, Gurdaspur, India 1,2

2Assistant Professor, Computer Science, Guru Nanak Dev University RC, Gurdaspur, India 3

ABSTRACT

The image compression is the mechanism by which size of the image is reduced. The compression techniques may be lossy or

lossless in nature. The image compression will enhance the transmission process also. The image compression is achieved with the

help of mechanism present within the image processing. The proposed system will use the concept of Huffman coding. The existing

work focuses on the iterative approach. The iterative approach which is followed will use binary search mechanism in order to

perform the encryption. The proposed work will enhance the clarity of the image in much less time than the existing approach.

INTRODUCTION

The image compression is the mechanism by which size of

the image is reduced. The size of the image has to be

reduced so that less bandwidth is consumed when data is

being transmitted. The size will also affect the cost

associated with the system. In the proposed scheme

Huffman encoding is followed which is lossless form of

image compression. The Huffman encoding using existing

approach will use the sorting mechanism which will be

complex in nature. In order to simplify the encoding and

decoding process recursive Huffman coding is proposed.

The coding and decoding process which is proposed has

less complexity and hence is better as compared to the

existing Huffman coding schemes. In order to perform

simulation MATLAB is used. the Huffman code which is

proposed is prefix code. The variable length code is

produced using the Huffman encoding scheme. The time

which is required in order to implement Huffman coding is

depending upon the total number of inputs.

HUFFMAN CODING

The Huffman coding will produce the variable length code.

The algorithm which is followed will use probability and

frequency of occurrence in order to determine the code

associated with the particular symbol. The symbols are

presented as the input to the encoder. The encoded image

is presented in the form a tree. The bottom up approach is

followed in this case. The Huffman coding in the proposed

model uses stacks. Stack is the last in first out system. The

elements will be fetched out of the memory (stacks) and

then conversion operation is performed. The proposed

model is less complex as compared to the existing

approach.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 04 | Apr-2016 www.irjet.net p-ISSN: 2395-0072

 © 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1478

The technique works by creating a binary tree of nodes.

These can be stored in a regular array, the size of which

depends on the number of symbols, . A node can be either

a leaf node or an internal node. Initially, all nodes are leaf

nodes, which contain the symbol itself,

the weight (frequency of appearance) of the symbol and

optionally, a link to a parent node which makes it easy to

read the code (in reverse) starting from a leaf node.

Internal nodes contain symbol weight, links to two child

nodes and the optional link to a parent node. As a common

convention, bit '0' represents following the left child and

bit '1' represents following the right child. A finished tree

has up to leaf nodes and internal nodes. A

Huffman tree that omits unused symbols produces the

most optimal code lengths.

The process essentially begins with the leaf nodes

containing the probabilities of the symbol they represent,

then a new node whose children are the 2 nodes with

smallest probability is created, such that the new node's

probability is equal to the sum of the children's

probability. With the previous 2 nodes merged into one

node (thus not considering them anymore), and with the

new node being now considered, the procedure is

repeated until only one node remains, the Huffman tree.

The simplest construction algorithm uses a priority

queue where the node with lowest probability is given

highest priority:

1. Create a leaf node for each symbol and add it to

the priority queue.

2. While there is more than one node in the queue:

1. Remove the two nodes of highest priority

(lowest probability) from the queue.

2. Create a new internal node with these

two nodes as children and with

probability equal to the sum of the two

nodes' probabilities.

3. Add the new node to the queue.

3. The remaining node is the root node and the tree

is complete.

THE FLOW OF IMAGE COMPRESSION SCHEME

The flow of image compression through the Huffman

Coding will be described by using the stacks. The stack is

the last in first out system. The image will be inputted to

the encoder. The encoded image is then plotted. The

encoded image is transferred toward the destination. The

image will be passed through the decoder for decoding.

The decoded image is then plotted.

Fig. I Flow of Compression Algorithms

https://en.wikipedia.org/wiki/Binary_tree
https://en.wikipedia.org/wiki/Array_data_type
https://en.wikipedia.org/wiki/Leaf_node
https://en.wikipedia.org/wiki/Internal_node
https://en.wikipedia.org/wiki/Priority_queue
https://en.wikipedia.org/wiki/Priority_queue
https://en.wikipedia.org/wiki/Priority_queue

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 04 | Apr-2016 www.irjet.net p-ISSN: 2395-0072

 © 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1479

PROPOSED MODEL

The proposed model will be described with the help of the

figure as

Fig .II Model for iterative Huffman Encoding and Decoding

The image will be received and then passed through the

encoder. The encoded image is received and then

displayed. The heap sort mechanism is used to complete

Huffman coding. The encoded image is passed through the

decoder for performing decoding operation. The decoded

image is then displayed using stacks. The recursive

operation is used for the entire operation.

PROPOSED ALGORITHM

The proposed algorithm for performing the compression

and then generating original image will be as follows

Algorithm is a sequence of steps which are expressed

in such a way that desired result will be obtained. The

algorithm describing recursive Huffman algorithm will

be as follows

string HuffmanCode(const char& symbol, const

TreeNode<SymbolPriority>* huffman, string

&code)

{

 //Base case: you are in a leaf; if the leaf contains

the character

 //you are looking for then return the code

(third argument)

 //else return an empty string (which means

'wrong leaf').

 if(huffman->IsLeaf())

 {

 if(huffman->Value.Symbol == symbol)

 return code;

 else

 return "";

 }

 /*always start by going to the left and adding '0'

to the code

 (code + '0'); check the return value against the

empty string:

 if the return value is not empty then return it

without going

 to the right else return the result of going to the

right

 (do not forget to add '1' to the code).*/

 else

 {

 HuffmanCode(symbol, huffman->Left,

code+'0');

 HuffmanCode(symbol, huffman->Right,

code+'1');

 }

}

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 04 | Apr-2016 www.irjet.net p-ISSN: 2395-0072

 © 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1480

CONCLUSION AND FUTURE WORK

 The proposed system is used in order to reduce the

complexity of overall operation. The recursive approach

will use stack and hence the speed of overall operation is

low. The heap will be used rather than binary heap

structure. The sorting is not required in this case. Hence

large amount of data can be used in the proposed system.

The bottom up approach is followed in this case. The

existing system cannot implement post order traversal

since stacks are not used. the proposed system still

consumed more time so in the future the time

consumption must be reduced using some encryption

mechanism.

REFERENCES

[1] Abraham Lempel and Jacob Ziv. A universal algorithm

forsequential data compression. IEEE Transactions on

Information Theory, 23(3):337–343, May 1977.

[2] Abraham Lempel and Jacob Ziv. Compression of

individual sequencesviavariable-

ratecoding.IEEETransactionsonInformation Theory,

24(5):530–536, September 1978.

 [3] Alistair Moffat and Andrew Turpin. On the

implementation of minimumredundancy prefix codes.IEEE

Transactions on Communications, 45(10):1200–1207,

October 1997.

 [4] Arun N. Netravali and Barry G. Haskell. Digital

Pictures: Representation, Compression and Standards.

Plenum Press, New York and London, second edition,

1995.

 [5] Renato Pajarola and Jarek Rossignac. Compressed

progressive meshes. IEEE Transactions on Visualization

and Computer Graphics, 6(1):79–93, January-March 2000.

 [6] Renato Pajarola and Jarek Rossignac. Squeeze: Fast

and progressive decompression of triangle meshes. In

Proceedings Computer Graphics International CGI 2000,

pages 173–182. IEEE, Computer Society Press, Los

Alamitos, California, 2000.

[7] Renato Pajarola and Peter Widmayer. Pattern matching

in compressed raster images. In Third South American

Workshop on String Processing WSP 1996, International

Informatics Series 4, pages 228–242. Carleton University

Press, 1996.

[8] Renato Pajarola and Peter Widmayer. Spatial indexing

into compressed raster images: How to answer range

queries without decompression.In Proc.Int. Workshop on

Multi-Media Database Management Systems, pages 94–

100. IEEE, Computer Society Press, Los Alamitos,

California, 1996.

 [9] Jorma Rissanen. A universal data compression system.

IEEE Transactions on Information Theory, 29(5):656–664,

September 1983.

 [10] David Salomon. Data compression: the complete

reference. Springer-Verlag, New York, 1998.

 [11] Khalid Sayood. Introduction to data compression.

Morgan Kaufmann Publishers, San Francisco, California,

1996.

[12] E. S. Schwartz and B. Kallick. Generating a canonical

prefix encoding. Communications of the ACM, 7(3):166–

169, 1964.

[13] Andrzej Sieminski. Fast decoding of the huffman

codes. Information Processing Letters, 26(5):237–241,

January 1988.

 [14] James A. Storer, editor. Image and Text Compression.

Kluwer Academic Publishers, Norwell, Massachusetts,

1992.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 04 | Apr-2016 www.irjet.net p-ISSN: 2395-0072

 © 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1481

 [15] Gabriel Taubin and Jarek Rossignac. Geometric

compression through topological surgery. ACM

Transactions on Graphics, 17(2):84–115, 1998.

 [16] Costa Touma andCraig Gotsman. Triangle Mesh

Compression. In Proceedings Graphics Interface 98, pages

26–34, 1998.

[17] Terry A. Welch. A technique for high-performance

data compression.IEEEComputer,pages8–19,June1984.

 [18] IanH. Witten, Alistair Moffat, and TimothyC. Bell.

Managing Gigabytes: Compressing and Indexing

Documents and Images. Morgan Kaufmann Publishers, San

Francisco, 1999.

