
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 04 | Apr-2016 www.irjet.net p-ISSN: 2395-0072

 © 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1536

SOFTWARE DEVELOPMENT LIFECYCLE MODEL (SDLC) INCORPORATED

WITH RELEASE MANAGEMENT

Ms. Gajalakshmi P.

*1Assisant Professor, Department of Computer Science Auxilium College (Autonomous), Vellore,

 TamilNadu, India

---***---
Abstract - Software Development Life Cycle or System

development Life Cycle or simply SDLC (system and

software is interchanged frequently in-accordance to

application scenario) is a step by step highly structured

technique employed for development of any software.

SDLC allows project leaders to configure and supervise

the whole development process of any software. There

are various SDLC models widely accepted and employed

for developing software. SDLC models give a theoretical

guide line regarding development of the software.

Employing proper SDLC allows the managers to

regulate whole development strategy of the software.

Each SDLC has its advantages and disadvantages

making it suitable for use under specific condition and

constraints for specified type of software only.

Developers employ SDLC models for analyzing, coding,

testing and deployment of software system. Software

developed by employing the suitable SDLC models is

better performers in the market when compared with

their competitors. SDLC Models helps in regulating the

software-system development time and helps in

effective cost scheduling. A model which guarantees the

development and delivery (release) teams engaged in

some project have strong co-ordination and

collaboration leading to enhanced productivity,

efficiency, effectiveness and longer market life is

developed. This can be achieved by incorporating

concept of Release Management with basic SDLC

phases.

Key Words: Software Development Life Cycle system,

software system, application life cycle management.

I. INTRODUCTION

The System Development Life Cycle framework
provides a sequence of activities for system designers and
developers to follow. The ideas about the software
development life cycle (SDLC) have been around for a long
time and many variations exist, such as the waterfall,
spiral, prototype and rapid application development
model (RAD). These variations have many versions

varying from those which are just guiding principles, to
rigid systems of development complete with processes,
paperwork and people roles. It consists of a set of steps or
phases in which each phase of the SDLC uses the results of
the previous one. A Systems Development Life Cycle
(SDLC) adheres to important phases that are essential for
developers, such as planning, analysis, design and
implementation. A number of system development life
cycle (SDLC) models have been created: waterfall, spiral,
prototype and rapid application development model
(RAD).

Various software development life cycle models
are suitable for specific project related conditions which
include organization, requirements stability, risks, budget
and duration of project. One life cycle model theoretical
may suite particular conditions and at the same time other
model may also looks fitting into the requirements but one
should consider trade-off while deciding which model to
choose. A software life cycle model is either a descriptive
or prescriptive characterization of how software is or
should be developed. A descriptive model describes the
history of how a particular software system was
developed. Descriptive models may be used as the basis
for understanding and improving software development
processes A prescriptive model prescribes how a new
software system should be developed. Prescriptive models
are used as guidelines or frameworks to organize and
structure how software development activities should be
performed and in what order.

To present an abstract definition of software
development life cycle model (SDLC) incorporated with
release management. There are various SDLC models
widely accepted and employed for developing software.
SDLC models give a theoretical guide line regarding
development of the software. Employing proper SDLC
allows the managers to regulate whole development
strategy of the software. Each SDLC has its advantages and
disadvantages making it suitable for use under specific
condition and constraints for specified type of software
only. We need to understand which SDLC would generate
most successful result when employed for software
development. There are various SDLC models such as
Waterfall, Spiral, Prototype, Incremental and RAD model
etc.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 04 | Apr-2016 www.irjet.net p-ISSN: 2395-0072

 © 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1537

Fig Steps of the Software Development Life Cycle

II. RELATED WORK
WHAT IS SDLC

Software Development Life Cycle is a process to
develop software. This process is divided into some
phases such as of the areas there are many other papers
that describe relevant work.

A. Requirement Analysis:

Requirement analysis is the initial phase of the
Software Development Life Cycle. The goal of this phase is
to understand the client’s requirements and to document
them properly. The emphasis in requirement analysis is an
identifying what is needed from the system. It is most
crucial phase in Software Development Life Cycle. The
output of requirement analysis is Software Requirement
Specification (SRS) [4],[5].

B. Design:

It is the first step to move from the problem
domain towards the solution domain. It is the most
creative phase in Software Development Life Cycle. The
goal of this phase is to transform the requirement
specification into structure [1]. The output of this phase is
Software Design Document (SDD).

C. Coding:

In this phase Software Design Document (SDD) is
converted into code by using some programming
language. It is the logical phase of the Software
Development Life Cycle. The output of this phase is
program code.

D. Testing:

This is most important and powerful phase.
Effective testing will contribute to the delivery of high
quality software products, more satisfied users, lower

maintenance costs, and more accurate and reliable results
[1],[5],[6].

Waterfall Model

The waterfall model is a sequential software
development process, in which progress is seen as flowing
steadily downwards (like a waterfall) through the phases
of Requirement definition, System and software design,
Implementation and unit testing, Integration and system
testing, Operation and maintenance. Small to medium
database software projects are generally broken down
into five stages.

Fig : Water Fall Model

Stages of the Waterfall Model

Requirement Analysis and Definition

All possible requirements of the system to be developed
are captured in this phase. Requirements are a set of
functions and constraints that the end user (who will be
using the system) expects from the system. The
requirements are gathered from the end user at the start
of the software development phase. These requirements
are analyzed for their validity, and the possibility of
incorporating the requirements in the system to be
developed is also studied. Finally, a requirement
specification document is created which serves the
purpose of guideline for the next phase of the model.

Advantages

 Simple to understand and use.

 Easy to arrange tasks.

 Process and results are well documented.

 Each phase has specific deliverable and a review.

 Works well for projects where requirements are
well understood.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 04 | Apr-2016 www.irjet.net p-ISSN: 2395-0072

 © 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1538

 Works well when quality is more important than
cost/schedule.

Disadvantages

 It is difficult to measure progress within stages.

 Cannot accommodate changing requirements.

 No working software is produced until late in the
life cycle.

 Risk and uncertainty is high with this process
model.

 Adjusting scope during the life cycle can end a
project

2. Prototype Model

In this model prototype is built as per the client
requirements. Instead of freezing the requirement before
a design or coding can proceed. The purpose of a
prototype is to allow users of the software to evaluate
proposals for the design of the eventual product by
actually trying them out, rather than having to interpret
and evaluate the design based on descriptions.
Prototyping has several benefits: The software designer
and developer can obtain feedback from the users early in
the project. The client and the developer can compare if
the software made matches the software specification,
according to which the software program is built. It also
allows the software engineer some insight into the
accuracy of initial project estimates and whether the
deadlines and milestones proposed can be successfully
met. A prototype model is not a standalone, complete
development methodology, but rather an approach to
handle selected part of a larger, more traditional
development methodology. It attempts to reduce inherent
project risk by breaking a project into smaller segments
and providing more ease-of-change during the
development process. User is involved throughout the
development process, which increases the likelihood of
user acceptance of the final implementation. Small-scale
mock-ups of the system are developed following an
iterative modification process until the prototype evolves
to meet the user‟s requirement. While most prototypes
are developed with the expectation that they will be
discarded, it is possible in some cases to evolve from
prototype to working system. A basic understanding of the
fundamental business problem is necessary to avoid
solving the wrong problem [3],[8],[9].

Fig : Prototype Moedel

Advantages

 Users are actively involved in the development

 When prototype Model is shown to the user, he
gets a proper clarity about his requirements. And
feel the functionality of the software, so can
suggest the changes and modifications.

 It reduces risk of failure, as potential risks can be
identified early and steps can be taken to remove
that risk.

 The customer does not need to wait long for
working software.

 Disadvantages

 Wastage of Time and money to build prototype, if
client not satisfied.

 Too many changes can disturb the rhythm of the
developer team.

 Long term procedure.

 It follows the “Quick and dirty” approach- the
prototype is through away after showing to the
client.

III. NEW PROPOSED SDLC MODEL

The New SDLC model is designed in such a way
that it allows client and developer to interact freely with
each other in order to understand and implement
requirements in a better way to produce a high quality
software within budget and schedule. As the Software
Development process began with the client’s need, so the
proposed model tries to discover most of the
requirements of the client. It helps in developing an
efficient software product that satisfies client. In the
sphere of computer based system products, client

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 04 | Apr-2016 www.irjet.net p-ISSN: 2395-0072

 © 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1539

satisfaction is dependent on how system development
process evolves to build operational product systems that
satisfy the perceived and actual client’s need and
associated system requirements. Ultimately, client
satisfaction depends upon the depth of „through-life‟
understanding about the client needs and associated user
requirements for a future system, and the ability to
communicate those requirements to the system developer.
In addition, client satisfaction and confidence depends
upon the level of system assurance offered throughout the
system development lifecycle. Requirements
understanding problems inevitably lead to poor client-
developer relationship, unnecessary re-work, and overrun
cost and time. The client satisfaction is totally depended
on client needs for this reason SDLC focus on the initial
phases.

Fig: New Proposed SDLC Model

A. Coordinator

Coordinator have a general knowledge of every aspect of
software development process, software applications,
various applicable operating systems or platforms as well
as various business functions to be performed. He
coordinates with all the phases of the software
development process. Coordinator deals with the client for
gathering the requirements and passes these
requirements to the matchmaker team and any query of
client is also solved by the coordinator. After finalizing
requirements coordinator estimates the cost, time and
effort required to develop the software product. Then he
passes the final requirements to the technical team. If
client wants any change in the final requirements during
the process, then coordinator firstly checks whether it can
be implemented or not and what are impacts of change on
the whole process in terms of cost, schedule and effort. If

change is possible and its impact is little or very less then
change will be accommodated

B. Matchmaker Team
Matchmaker team is an expert team and its team

members are updated with new technologies and new
software products. This team interacts with coordinator
and technical team during its or king. Matchmaker team
studies the requirements Received from the coordinator
which in turn get these requirements from the client. This
team identifies and gets the existing software whose
requirements match with the current proposed Software’s
requirements. And accordingly breakdown the
requirements into two parts implemented requirements
and non-Implemented requirements. Implemented
requirements are those requirements which are already
implemented in some existing software.

C. Technical Team
It is a technically expert team. The member of this

team is full of skills and interacts with coordinator and
matchmaker team. Technical team works on non-
implemented requirements. This team studies the
feasibility of requirements to check whether these are
technically possible or not. This team also identifies and
resolves the various risk associated with the
implementation of non-implemented requirements. After
feasibility study and risk analysis the technical team verify
the final requirements and pass these to the next phases,
i.e. designing, coding, testing, each of these phase also
followed by validation process.

IV. SYSTEM IMPLEMETNATION

4.1 Developing Software

Server-Application-Support Engineer

Release manager responsible for analyzing the
troubleshoot problems with an application not typically at
a code level but more at initial analysis level. He is even
responsible for analyzing release policy and release plan.
They help in identifying the problems that might occur
during the later stages of the development of the software.
 There might be many issues that are likely to occur and
will lead to reduce functionality of the software being
developed. If these futuristic problems are identified and a
help desk is stood against them then the efficiency and
effectiveness of the software will increase manifolds. Thus
server application support engineers' responsibility
increases in early stages of SDLC as most of the
requirements both functional and technical are identified
and most likely problems that might associate with them
are identified. Following are the two main functions being
performed by the server application support engineers,

Analyze Release Policy: Release policies are high-level
statements of how releases are to be managed, organized,

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 04 | Apr-2016 www.irjet.net p-ISSN: 2395-0072

 © 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1540

and performed in your environment. Policies include
management goals, objectives, beliefs, and responsibilities.
Use these topics to learn more about release policies and
to learn how to view, create, and edit the policies.

 Release policy purpose: Release policies are
typically written at an overall strategy level. The
management directives contained in a policy
determine the way in which activities and tasks
within a given release work-flow are performed.

 View release policy: Use this procedure to view
release policies that have been written and posted
to the database. These policies provide guidelines
for carrying out a release work-flow.

 Create/Edit release policy: Use this topic to
specify a link to a release policy that you have
created or edited. After you create the link, the
policy name and description are displayed in the
Release Policies table. The policy document can
then be opened and reviewed by any user in your
environment who is involved with IBM Tivoli
Release Process Manager

Analyze Release Plan: A release planning meeting is used
to create a release plan which lays out the overall project.
The release plan is then used to create iteration plan for
each iteration release. It is important for technical people
to make the technical decisions and business people to
make the business decisions. Release planning has a set of
rules that allows everyone involved with the project to
make their own decisions. The rules define a method to
negotiate a schedule everyone can commit to.

EVALUATION RESULT:

 Develop the process iteratively by knowing all
requirements in advance. Several software
development processes exist that deal with
providing solution on how to minimize cost in
terms of development phases.

 Manage requirements and always keep in mind
the requirements set by users.

 A use component that breaks down an advanced
project is not only suggested but in fact
unavoidable.

 Model Visually: Use diagrams to represent all
major components, users, and their interaction to
make this task more feasible.

 Verify quality: Always make testing a major part
of the project at any point of time. Testing
becomes heavier as the project progresses but
should be a constant factor in any software
product creation.

Guidelines are followed for performing a simulation

study for software development life cycles. It is composed of

ten processes, ten phases, and thirteen reliability evaluation

stages. Its purpose is to assess the credibility of every stage

after simulation and match it with the initial requirements and

specifications. The model provides one of the most

documented descriptions for simulating life-cycles in the

software engineering field.

Software engineering process simulation model (SEPS) is

used in proposed system for the dynamic simulation of

software development life cycles. It is based on using

feedback principles of system dynamics to simulate

communications and interactions among the different SDLC

phases and activities from a dynamic systems perspective.

Basically, Software engineering process simulation model

is a planning tool meant to improve the decision-making of

managers in controlling the projects outcome in terms of cost,

time, and functionalities. Discrete open source event

simulation model is used for simulating the programming and

the testing stages of a software development process using

Math Lab.

Assumptions and Specifications

Prior to simulating the Waterfall model, a number of
assumptions and specifications must be clearly made.
Basically, projects arrive randomly at a software firm with
inter-arrival time from a Triangular distribution with a
lower limit of 30 days, an upper limit of 40 days, and a
mode of 35 days. The probability density function is then
given as:

Projects can be divided into three groups based on their
complexity and scale: 70% of the projects are small-scale
projects, 25% are medium-scale projects, and 5% are
large-scale projects.

The business analysis phase requires a Uniform
distribution with a lower limit of 3 days and an upper limit
of 5 days.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 04 | Apr-2016 www.irjet.net p-ISSN: 2395-0072

 © 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1541

The design phase requires a Uniform distribution with a
lower limit of 5 days and an upper limit of 10 days.

The implementation phase requires a Uniform distribution
with a lower limit of 15 days and an upper limit of 20 days.

The testing phase requires a Uniform distribution with a
lower limit of 5 days and an upper limit of 10 days.

Essentially, the existing model consists of a set of resource,
queue, task, probability branch, capture and counter
modeling elements. The resources are the basic employees
and workers assigned to work on the phases of the
Waterfall model. Each resource has a FIFO queue which
accumulates and stores processing events to be processed
later.

Resource Average Utilization

Business Analysts 4.8

Designers 10.2

Programmers 20

Testers 6.5

Maintenance 1.9

Table: Resources with their Average Utilization in
Waterfall Model

Essentially, the existing model consists of a set of resource,
queue, task, probability branch, capture and counter
modeling elements. The resources are the basic employees
and workers assigned to work on the phases of the
Waterfall model. Each resource has a FIFO queue which
accumulates and stores processing events to be processed
later

Fig: Utilization of the Designer Resource in Waterfall
Model

The simulation model was executed 5 times, for 1500
milliseconds (2.5 minutes) with 50 incoming projects
using the Simphony.NET environment. Delineates the
obtained statistics including the number of projects
received and delivered, in addition to the time based on
release management. Delineates the average utilization of
every resource after the completion of the simulation with
release management. Furthermore, a graphical
representation for resource utilization is plotted in Fig A-
12 for the programmer resource while, is for the designer
resource

Resource Average
Utilization

Business
Analysts

5.2

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 04 | Apr-2016 www.irjet.net p-ISSN: 2395-0072

 © 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1542

Designers 11.6

Programmers 21.02

Testers 7.4

Maintenance 2.09

Table 2: Simulated Resources with their Average

Utilization incorporating Release Management

The model starts with a new entity element which sets the
number of incoming projects and a counter that counts the
number of projects being received, and ends with another
counter that counts the number of projects being
delivered.

Fig: Utilization of the Programmer Resource after
Release Management

 Divide the Waterfall model into independent
phases.

 Understand the concept and the requirements
that lie behind every phase.

 Define the resources, tasks, entities, and the work
flow of every phase.

 Simulate each phase apart and record results.

 Integrate the whole phases together, simulate the
system, and record results.

CONCLUSION
SDLC system/software development life cycle is a

step by step systematic approach from planning to testing
and deployment of the software. There are some basic
phases that are strictly followed in the specified order as
analysis, designing, coding, testing and implementation.
Different SDLC models are employed for developing
variety of software’s depending upon the type and
usability of the software. Release Management is an
entirely new concept that has come into scenario in recent
days. Conceptually release management itself has some
major phases that ensure smooth and timely delivery of
the software-system to the client. The proposed SDLC
model merges the basic phases of software development
and release management in such a manner that a new
SDLC model is evolved making the fullest use of release
management thus increasing the effectiveness and
software life in the market. The proposed model is
basically a four tier architecture comprising of Client side,
End user, Developer side and the Release manager as
individual (units) levels. It maps various release managers
onto specific SDLC phases thus providing complete co-
ordination of various release managers along with
analyzers, designers, coders, testers over specified phases
of SDLC. Release managers are provided with the
centralized control over SDLC phases leading to regular
release cycles. Clear guidelines have been established to
address, which Release Manager has to do what and when
in the various stages in SDLC.

The above model is practically successful as all

the phases and the roles and responsibilities of each
person involved are clearly established. Their interaction
and inter-relation with each other is well defined and thus
this model successfully addresses all development phases
that are integrated with the concept of release
management.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 04 | Apr-2016 www.irjet.net p-ISSN: 2395-0072

 © 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1543

REFERENCES:

1. Ian Sommerville, Software Engineering, Addison
Wesley, 9th ed., 2010.

2. Richard H. Thayer, and Barry W. Boehm, “software
engineering project management”, Computer
Society Press of the IEEE, pp.130, 1986.

3. Craig Larman and Victor Basili, “Iterative and
Incremental Development: A Brief History”, IEEE
Computer, 2003.

4. N. Munassar and A. Govardhan, “A Comparison
Between Five Models Of Software Engineering”,
IJCSI International Journal of Computer Science
Issues, vol. 7, no. 5, 2010.

5. P.Humphreys,”Extending Ourselves: Computational
Science, Empiricism, and Scientific Method”, Oxford
University Press, 2004.

6. Royce, W., “Managing the Development of Large
Software Systems”, Proceedings of IEEE WESCON
26, pp.1-9, 1970.

7. IEEE-STD-610, “A Compilation of IEEE Standard
Computer Glossaries”, IEEE Standard Computer
Dictionary, 1991.

8. Andrew Stellman, Jennifer Greene, “Applied
Software Project Management”, O'Reilly Media,
2005.

9. Jim Ledin, “Simulation Planning” PE, Ledin
Engineering, 2000.

10. Software Methodologies Advantages &
disadvantages of various SDLC models.mht

11. No.1, January 2010, “Evolving A New sModel (SDLC
Model-2010) For Software Development Life Cycle
(SDLC)” PK.Ragunath, S.Velmourougan, P.
Davachelvan, S.Kayalvizhi, R.Ravimohan.

12. Hoek, A. van der, Wolf, A. L. (2003) “Software
release management for component-based
software. Software—Practice & Experience”. Vol.
33, Issue 1, pp. 77–98. John Wiley & Sons, Inc.
New York, NY, USA.

