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Abstract--- The multiplier receives and outputs the 
data with binary representation and uses only one-level 
Carry Save Adder (CSA) to avoid the carry propagation at 
each addition operation. This CSA is also used to perform 
operand pre computation and format conversion from 
the carry save format to the binary representation, 
leading to a low hardware cost and short critical path 
delay at the expense of extra clock cycles for completing 
one modular multiplication. To overcome the weakness, a 
Configurable CSA (CCSA), which could be one full-adder 
or two serial half-adders, is proposed to reduce the extra 
clock cycles for operand pre computation and format 
conversion by half. The mechanism that can detect and 
skip the unnecessary carry-save addition operations in 
the one-level CCSA architecture while maintaining the 
short critical path delay is developed. The extra clock 
cycles for operand pre computation and format 
conversion can be hidden and high throughput can be 
obtained. AES is based on a design principle known as 
a substitution-permutation network, combination of both 
substitution and permutation, and is fast in both software 
and hardware. AES does not use a Feistel network. AES is 
a variant of Rijndael which has a fixed block size of 
128 bits, and a key size of 128, 192, or 256 bits. By 
contrast, the Rijndael specification per se is specified with 
block and key sizes that may be any multiple of 32 bits, 
both with a minimum of 128 and a maximum of 256 
bits.AES operates on a 4×4 column-major order matrix of 
bytes, termed the state, although some versions of 
Rijndael have a larger block size and have additional 
columns in the state. Most AES calculations are done in a 
special finite field. 

 

Keywords--Carry-save addition, low-cost architecture, 
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                                   1. INTRODUCTION 
 
In Many public-key cryptosystems [1]–[3], 

modular multiplication (MM) with large integers is the 
most critical and time-consuming operation.  
 
Therefore, numerous algorithms and hardware 
implementation have been presented to carry out the 

MM more quickly, and Montgomery’s algorithm is one 
of the most well-known MM algorithms. Montgomery’s 
algorithm [4] determines the quotient only depending 
on the least significant digit of operands and replaces 
the complicated division in conventional MM with a 
series of shifting modular additions to produce S = A × B 
× R−1 (mod N), where N is the k-bit modulus, R−1 is the 
inverse of R modulo N, and R = 2k mod N. As a result, it 
can be easily implemented into VLSI circuits to speed 
up the encryption/decryption process. However, the 
three-operand addition in the iteration loop of 
Montgomery’s  
requires long carry propagation for large operands in 
binary representation. To solve this problem, several 
approachesof based on carry-save addition were 
proposed to achieve a significant speedup of 
Montgomery MM. Based on the representation of input 
and output operands, these approaches can be roughly 
divided into semi-carry-save (SCS) strategy and full 
carry-save (FCS) strategy. In the SCS strategy [5]–[8], 
the input and output operands (i.e., A, B, N, and S) of the 
Montgomery MM are represented in binary, but 
intermediate results of shifting modular additions are 
kept in the carry-save format to avoid the carry 
propagation. However, the format conversion from the 
carry-save format of the final modular product into its 
binary representation is needed at the end of each MM. 
This conversion can be accomplished by an extra carry 
propagation adder (CPA) [5] or reusing the carry-save 
adder (CSA) architecture [8] iteratively. Contrary to the 
SCS strategy, the FCS strategy [9], [10] maintains the 
input and output operands A, B, and S in the carry-save 
format, denoted as (AS, AC), (BS, BC), and (SS, SC), 
respectively, to avoid the format conversion, leading to 
fewer clock cycles for completing a MM. Nevertheless, 
this strategy implies that the number of operands will 
increase and that more CSAs and registers for dealing 
with these operands are required. Therefore, the FCS-
based Montgomery modular multipliers possibly have 
higher hardware complexity and longer critical path 
than the SCS-based multipliers. 
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2. PREVIOUSLY PROPOSED ARCHITUCTURE 
 
 

2.1. Montgomery Modular Multiplier 

In propose a new SCS-based Montgomery MM 
algorithm to reduce the critical path delay of 
Montgomery multiplier. In addition, the drawback of 
more clock cycles for completing one multiplication is 
also improved while maintaining the advantages of 
short critical path delay and low hardware complexity 
[2]. 
 

2.2. Critical Path Delay Reduction 
 

The critical path delay of SCS-based multiplier 
can be reduced by combining the advantages of FCS-
MM-2 and SCS-MM-2. That is pre compute D = B + N and 
reuse the one-level CSA architecture to perform B+N 
and the format conversion. Figure.1 shows the modified 
SCS-based Montgomery multiplication (MSCS-MM) 
algorithm and possible hardware architecture, 
respectively [3].  

 
 

FIG.1. Diagram of Montgomery Modular    Multiplier 
 
 
 

The Zero_D circuit is used to detect whether SC 
is equal to zero, which can be accomplished using one 
NOR operation. The Q_L circuit decides the qi value. 

 
 The carry propagation addition operations of B 

+ N and the format conversion are performed by the 
one-level CSA architecture of the MSCS-MM multiplier 
through repeatedly executing the carry-save addition 
(SS, SC) = SS + SC + 0 until SC = 0.In addition, we also pre 
compute Ai and qi in iteration i−1 (this will be explained 
more clearly in Section III-C) so that they can be used to 
immediately select the desired input operand from 0, N, 
B, and D through the multiplexer M3 in iteration I [5] .  

 

Therefore, the critical path delay of the MSCS-
MM multiplier can be reduced into TMUX4 + TFA. 
However, in addition to performing the three-input 
carry-save additions k + 2 times, many extra clock 
cycles are required to perform B + N and the format 
conversion via the one-level CSA architecture because 
they must be performed once in every MM.  

 
Furthermore, the extra clock cycles for 

performing B+N and the format conversion through 
repeatedly executing the carry-save addition (SS, SC) = 
SS+SC+0 are dependent on the longest carry 
propagation chain in SS + SC. If SS = 111…1112 and SC = 
000…0012, the one-level CSA architecture needs k clock 
cycles to complete SS + SC. That is, 3k clock cycles in the 
worst case are required for completing one MM. Thus, it 
is critical to reduce the required clock cycles of the 
MSCS-MM multiplier [1]. 

 

2.3. Clock Cycle Number Reduction 
 

To decrease the clock cycle number, a CCSA 
architecture which can perform one three-input carry-
save addition or two serial two-input carry-save 
additions is proposed to substitute for the one-level CSA 
architecture [4]. 

 
Two cells of the one-level CSA architecture in 

Figure.2each cell is one conventional FA which can 
perform the three-input carry-save addition. Two cells 
of the proposed configurable FA (CFA) circuit. If α = 1, 
CFA is one FA and can perform one three-input carry-
save addition (denoted as 1F_CSA). 

 
 

        FIG.2. Carry Full Adder Circuit 
 
 Otherwise, it is two half-adders (HAs) and can 

perform two serial two-input carry-save additions 
(denoted as 2H_CSA). In this case, G1 of CF Aj and G2 of 
CFAj+1 will act as HA1 j and G3, G4, and G5 of CF Aj will 
behave as HA2j. 

 
Moreover, we modify the 4-to-1 multiplexer M3 

into a simplified multiplier SM3 because one of its 
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inputs is zero, where the INVERT operation. Note that 
M3 has been replaced by SM3 in the proposed one-level 
CCSA architecture. 
 
 

3. PROPOSED ADVANCED ENCRYPTION 
STANDARD 

 

AES is based on a design principle known as 
a substitution-permutation network, combination of 
both substitution and permutation, and is fast in both 
software and hardware. Its predecessor DES, AES does 
not use a Festal network. AES is a variant of Rijndael 
which has a fixed block size of 128 bits, and a key size of 
128, 192, or 256 bits. By contrast, the Rijndael 
specification per se is specified with block and key sizes 
that may be any multiple of 32 bits, both with a 
minimum of 128 and a maximum of 256 bits [9]. 

AES operates on a 4×4 column-major 
order matrix of bytes, termed the state, although some 
versions of Rijndael have a larger block size and have 
additional columns in the state. Most AES calculations 
are done in a special finite field. 

The key size used for an AES cipher specifies 
the number of repetitions of transformation rounds that 
convert the input, called the plaintext, into the final 
output, called the cipher text.  

The numbers of cycles of repetition are as follows: 

 10 cycles of repetition for 128-bit keys. 

 12 cycles of repetition for 192-bit keys. 

 14 cycles of repetition for 256-bit keys. 

 

Each round consists of several processing 
steps, each containing four similar but different stages, 
including one that depends on the encryption key itself 
[9]. 

 A set of reverse rounds are applied to 
transform cipher text back into the original plaintext 
using the same encryption key. 

 

 3.1. High-Level Description Of The Algorithm  

 Key Expansions 

 Round keys are derived from the 
cipher key using Rijndael's key 
schedule. AES requires a separate 
128-bit round key block for each 
round plus one more. 

 Initial Round  

 Add Round Key—each byte of the 
state is combined with a block of the 
round key using bitwise xor. 

 Rounds 

 Sub Bytes—a non-linear substitution 
step where each byte is replaced 
with another according to a lookup 
table. 

 Shift Rows—a transposition step 
where the last three rows of the 
state are shifted cyclically a certain 
number of steps. 

 Mix Columns—a mixing operation 
which operates on the columns of 
the state, combining the four bytes in 
each column. 

 Add Round Key 

 Final Round (no Mix Columns) 

 Sub Bytes 

 Shift Rows 

 Add Round Key. 

 

3.2 The Subbytes Step 

In the Sub Bytes step, each byte  in 
the state matrix is replaced with a Sub 

Byte  using an 8-bit substitution box, 
the Rijndael S-box. This operation provides the non-
linearity in the cipher. The S-box used is derived from 
the multiplicative inverse over GF (28), known to have 
good non-linearity properties. To avoid attacks based 
on simple algebraic properties, the S-box is constructed 
by combining the inverse function with an 
invertible affine transformation[4]. The S-box is also 
chosen to avoid any fixed points (and so is 

a derangement), i.e., , and also any 
opposite fixed points, 

i.e., . While performing 
the decryption, Inverse Sub Bytes step is used, this 
requires first taking the affine transformation and then 
finding the multiplicative inverse. 

 

http://en.wikipedia.org/wiki/Substitution-permutation_network
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http://en.wikipedia.org/wiki/Column-major_order
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http://en.wikipedia.org/wiki/Rijndael_key_schedule
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FIG.3. Diagram of Sub Bytes 

 

3.3 THE SHIFT ROWS STEP 

 

The Shift Rows step operates on the rows of the 
state; it cyclically shifts the bytes in each row by a 
certain offset. For AES, the first row is left unchanged. 
Each byte of the second row is shifted one to the left. 
Similarly, the third and fourth rows are shifted by 
offsets of two and three respectively [7].  

For blocks of sizes 128 bits and 192 bits, the 
shifting pattern is the same. Row n is shifted left 
circular by n-1 bytes. In this way, each column of the 
output state of the Shift Rows step is composed of bytes 
from each column of the input state. (Rijndael variants 
with a larger block size have slightly different offsets). 

 

 

FIG.4 Diagram of Shift Rows 

 For a 256-bit block, the first row is unchanged 
and the shifting for the second, third and fourth row is 1 
byte, 3 bytes and 4 bytes respectively. This change only 
applies for the Rijndael cipher when used with a 256-bit 
block, as AES does not use 256-bit blocks. The 
importance of this step is to avoid the columns being 
linearly independent, in which case, AES degenerates 
into four independent block cipher[10]. 

 

3.4. The Mix columns Step 

 

In the Mix Columns step, the four bytes of each 
column of the state are combined using an 

invertible linear transformation. The Mix 
Columns function takes four bytes as input and outputs 
four bytes, where each input byte affects all four output 
bytes. Together with Shift Rows, Mix 
Columns provides diffusion in the cipher. 

 

 
 
 

FIG.5. Diagram of Mix Columns 
 

Matrix multiplication is composed of 
multiplication and addition of the entries, and here the 
multiplication operation can be defined as this: 
multiplication by 1 means no change, multiplication by 
2 means shifting to the left, and multiplication by 3 
means shifting to the left and then performing XOR with 
the initial UN shifted value. 

 After shifting, a conditional XOR with 0x1B 
should be performed if the shifted value is larger than 
0xFF. (These are special cases of the usual 
multiplication in GF (28).) Addition is simply XOR. In 
more general sense, each column is treated as a 
polynomial over GF (28) and is then multiplied modulo 
x4+1 with a fixed polynomial c(x) = 0x03 · x3 + x2 + x + 
0x02 [11].  

The coefficients are displayed in 
their hexadecimal equivalent of the binary 
representation of bit polynomials from GF (2) [x]. 
The Mix Columns step can also be viewed as a 
multiplication by the shown particular MDS matrix in 
the finite field GF (28). This process is described further 
in the article Rijndael mix columns. 

 

3.5. The Add round key Step 

In the Add Round Key step, the sub key is 
combined with the state. For each round, a sub key is 
derived from the main key using Rijndael's key 
schedule; each sub key is the same size as the state. The 
sub key is added by combining each byte of the state 
with the corresponding byte of the sub key using 
bitwise XOR. 

http://en.wikipedia.org/wiki/Offset_(computer_science)
http://en.wikipedia.org/wiki/Linear_transformation
http://en.wikipedia.org/wiki/Diffusion_(cryptography)
http://en.wikipedia.org/wiki/Exclusive_or
http://en.wikipedia.org/wiki/Exclusive_or
http://en.wikipedia.org/wiki/Hexadecimal
http://en.wikipedia.org/wiki/MDS_matrix
http://en.wikipedia.org/wiki/Finite_field
http://en.wikipedia.org/wiki/Rijndael_mix_columns
http://en.wikipedia.org/wiki/Key_(cryptography)
http://en.wikipedia.org/wiki/Rijndael_key_schedule
http://en.wikipedia.org/wiki/Rijndael_key_schedule
http://en.wikipedia.org/wiki/Rijndael_key_schedule
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FIG.6. Diagram of Add Round Key  

 

On systems with 32-bit or larger words, it is 
possible to speed up execution of this cipher by 
combining the Sub Bytes and Shift Rows steps with 
the Mix Columns step by transforming them into a 
sequence of table lookups.  

This requires four 256-entry 32-bit tables, and 
utilizes a total of four kilobytes (4096 bytes) of memory 
one kilobyte for each table. A round can then be done 
with 16 table lookups and 12 32-bit exclusive-or 
operations, followed by four 32-bit exclusive-or 
operations in the Add Round Key.  

If the resulting four-kilobyte table size is too 
large for a given target platform, the table lookup 
operation can be performed with a single 256-entry 32-
bit (i.e. 1 kilobyte) table by the use of circular rotates. 
Using a byte-oriented approach, it is possible to 
combine the Sub Bytes, Shift Rows, and Mix 
Columns steps into a single round operation [12].  

 

                            5. RESULT  
 

 

 
 

          FIG.6.Output Function               
 
          

  6. CONCLUSION 
 

To enhance the performance of Montgomery 
MM while maintaining the low hardware complexity, 
this paper has modified the SCS-based Montgomery 
multiplication algorithm a low-cost and high-
performance Montgomery modular multiplier. The 
multiplier used one-level CCSA architecture and 
skipped the unnecessary carry-save addition operations 
to largely reduce the critical path delay and required 
clock cycles for completing one MM operation. FCS-
based multipliers maintain the input and output 
operands of the Montgomery MM in the carry-save 
format to escape from the format conversion, leading to 
fewer clock cycles but larger area than SCS-based 
multiplier.In Future, for cryptographers, 
a cryptographic "break" is anything faster than a brute 
force performing one trial decryption for each key 
(see Cryptanalysis). This includes results that are 
infeasible with current technology. The largest 
successful publicly known brute force attack against 
any block-cipher encryption was against a 64-
bit RC5 key. 
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