
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 04 | Apr-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | Page 1606

VLSI Implementation Of High Performance Montgomery Modular
Multiplication For Crypto graphical Application

Kayalvizhi.R2, PG Student, Dept. of ECE, Venkateshwara Hi-Tech Engineering College, Gobi, India.

Kamalakannan.R.S1,

 Asst. Professor Dept. of ECE, Venkateshwara Hi-Tech Engineering College, Gobi, India.

--

Abstract--- The multiplier receives and outputs the
data with binary representation and uses only one-level
Carry Save Adder (CSA) to avoid the carry propagation at
each addition operation. This CSA is also used to perform
operand pre computation and format conversion from
the carry save format to the binary representation,
leading to a low hardware cost and short critical path
delay at the expense of extra clock cycles for completing
one modular multiplication. To overcome the weakness, a
Configurable CSA (CCSA), which could be one full-adder
or two serial half-adders, is proposed to reduce the extra
clock cycles for operand pre computation and format
conversion by half. The mechanism that can detect and
skip the unnecessary carry-save addition operations in
the one-level CCSA architecture while maintaining the
short critical path delay is developed. The extra clock
cycles for operand pre computation and format
conversion can be hidden and high throughput can be
obtained. AES is based on a design principle known as
a substitution-permutation network, combination of both
substitution and permutation, and is fast in both software
and hardware. AES does not use a Feistel network. AES is
a variant of Rijndael which has a fixed block size of
128 bits, and a key size of 128, 192, or 256 bits. By
contrast, the Rijndael specification per se is specified with
block and key sizes that may be any multiple of 32 bits,
both with a minimum of 128 and a maximum of 256
bits.AES operates on a 4×4 column-major order matrix of
bytes, termed the state, although some versions of
Rijndael have a larger block size and have additional
columns in the state. Most AES calculations are done in a
special finite field.

Keywords--Carry-save addition, low-cost architecture,
Montgomery modular multiplier, public-key
cryptosystem.

 1. INTRODUCTION

In Many public-key cryptosystems [1]–[3],

modular multiplication (MM) with large integers is the
most critical and time-consuming operation.

Therefore, numerous algorithms and hardware
implementation have been presented to carry out the

MM more quickly, and Montgomery’s algorithm is one
of the most well-known MM algorithms. Montgomery’s
algorithm [4] determines the quotient only depending
on the least significant digit of operands and replaces
the complicated division in conventional MM with a
series of shifting modular additions to produce S = A × B
× R−1 (mod N), where N is the k-bit modulus, R−1 is the
inverse of R modulo N, and R = 2k mod N. As a result, it
can be easily implemented into VLSI circuits to speed
up the encryption/decryption process. However, the
three-operand addition in the iteration loop of
Montgomery’s
requires long carry propagation for large operands in
binary representation. To solve this problem, several
approachesof based on carry-save addition were
proposed to achieve a significant speedup of
Montgomery MM. Based on the representation of input
and output operands, these approaches can be roughly
divided into semi-carry-save (SCS) strategy and full
carry-save (FCS) strategy. In the SCS strategy [5]–[8],
the input and output operands (i.e., A, B, N, and S) of the
Montgomery MM are represented in binary, but
intermediate results of shifting modular additions are
kept in the carry-save format to avoid the carry
propagation. However, the format conversion from the
carry-save format of the final modular product into its
binary representation is needed at the end of each MM.
This conversion can be accomplished by an extra carry
propagation adder (CPA) [5] or reusing the carry-save
adder (CSA) architecture [8] iteratively. Contrary to the
SCS strategy, the FCS strategy [9], [10] maintains the
input and output operands A, B, and S in the carry-save
format, denoted as (AS, AC), (BS, BC), and (SS, SC),
respectively, to avoid the format conversion, leading to
fewer clock cycles for completing a MM. Nevertheless,
this strategy implies that the number of operands will
increase and that more CSAs and registers for dealing
with these operands are required. Therefore, the FCS-
based Montgomery modular multipliers possibly have
higher hardware complexity and longer critical path
than the SCS-based multipliers.

http://en.wikipedia.org/wiki/Substitution-permutation_network
http://en.wikipedia.org/wiki/Feistel_network
http://en.wikipedia.org/wiki/Block_size_(cryptography)
http://en.wikipedia.org/wiki/Bit
http://en.wikipedia.org/wiki/Key_size
http://en.wikipedia.org/wiki/Column-major_order
http://en.wikipedia.org/wiki/Finite_field_arithmetic

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 04 | Apr-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | Page 1607

2. PREVIOUSLY PROPOSED ARCHITUCTURE

2.1. Montgomery Modular Multiplier

In propose a new SCS-based Montgomery MM
algorithm to reduce the critical path delay of
Montgomery multiplier. In addition, the drawback of
more clock cycles for completing one multiplication is
also improved while maintaining the advantages of
short critical path delay and low hardware complexity
[2].

2.2. Critical Path Delay Reduction

The critical path delay of SCS-based multiplier
can be reduced by combining the advantages of FCS-
MM-2 and SCS-MM-2. That is pre compute D = B + N and
reuse the one-level CSA architecture to perform B+N
and the format conversion. Figure.1 shows the modified
SCS-based Montgomery multiplication (MSCS-MM)
algorithm and possible hardware architecture,
respectively [3].

FIG.1. Diagram of Montgomery Modular Multiplier

The Zero_D circuit is used to detect whether SC
is equal to zero, which can be accomplished using one
NOR operation. The Q_L circuit decides the qi value.

 The carry propagation addition operations of B

+ N and the format conversion are performed by the
one-level CSA architecture of the MSCS-MM multiplier
through repeatedly executing the carry-save addition
(SS, SC) = SS + SC + 0 until SC = 0.In addition, we also pre
compute Ai and qi in iteration i−1 (this will be explained
more clearly in Section III-C) so that they can be used to
immediately select the desired input operand from 0, N,
B, and D through the multiplexer M3 in iteration I [5] .

Therefore, the critical path delay of the MSCS-
MM multiplier can be reduced into TMUX4 + TFA.
However, in addition to performing the three-input
carry-save additions k + 2 times, many extra clock
cycles are required to perform B + N and the format
conversion via the one-level CSA architecture because
they must be performed once in every MM.

Furthermore, the extra clock cycles for

performing B+N and the format conversion through
repeatedly executing the carry-save addition (SS, SC) =
SS+SC+0 are dependent on the longest carry
propagation chain in SS + SC. If SS = 111…1112 and SC =
000…0012, the one-level CSA architecture needs k clock
cycles to complete SS + SC. That is, 3k clock cycles in the
worst case are required for completing one MM. Thus, it
is critical to reduce the required clock cycles of the
MSCS-MM multiplier [1].

2.3. Clock Cycle Number Reduction

To decrease the clock cycle number, a CCSA
architecture which can perform one three-input carry-
save addition or two serial two-input carry-save
additions is proposed to substitute for the one-level CSA
architecture [4].

Two cells of the one-level CSA architecture in

Figure.2each cell is one conventional FA which can
perform the three-input carry-save addition. Two cells
of the proposed configurable FA (CFA) circuit. If α = 1,
CFA is one FA and can perform one three-input carry-
save addition (denoted as 1F_CSA).

 FIG.2. Carry Full Adder Circuit

 Otherwise, it is two half-adders (HAs) and can

perform two serial two-input carry-save additions
(denoted as 2H_CSA). In this case, G1 of CF Aj and G2 of
CFAj+1 will act as HA1 j and G3, G4, and G5 of CF Aj will
behave as HA2j.

Moreover, we modify the 4-to-1 multiplexer M3

into a simplified multiplier SM3 because one of its

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 04 | Apr-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | Page 1608

inputs is zero, where the INVERT operation. Note that
M3 has been replaced by SM3 in the proposed one-level
CCSA architecture.

3. PROPOSED ADVANCED ENCRYPTION
STANDARD

AES is based on a design principle known as
a substitution-permutation network, combination of
both substitution and permutation, and is fast in both
software and hardware. Its predecessor DES, AES does
not use a Festal network. AES is a variant of Rijndael
which has a fixed block size of 128 bits, and a key size of
128, 192, or 256 bits. By contrast, the Rijndael
specification per se is specified with block and key sizes
that may be any multiple of 32 bits, both with a
minimum of 128 and a maximum of 256 bits [9].

AES operates on a 4×4 column-major
order matrix of bytes, termed the state, although some
versions of Rijndael have a larger block size and have
additional columns in the state. Most AES calculations
are done in a special finite field.

The key size used for an AES cipher specifies
the number of repetitions of transformation rounds that
convert the input, called the plaintext, into the final
output, called the cipher text.

The numbers of cycles of repetition are as follows:

 10 cycles of repetition for 128-bit keys.

 12 cycles of repetition for 192-bit keys.

 14 cycles of repetition for 256-bit keys.

Each round consists of several processing
steps, each containing four similar but different stages,
including one that depends on the encryption key itself
[9].

 A set of reverse rounds are applied to
transform cipher text back into the original plaintext
using the same encryption key.

 3.1. High-Level Description Of The Algorithm

 Key Expansions

 Round keys are derived from the
cipher key using Rijndael's key
schedule. AES requires a separate
128-bit round key block for each
round plus one more.

 Initial Round

 Add Round Key—each byte of the
state is combined with a block of the
round key using bitwise xor.

 Rounds

 Sub Bytes—a non-linear substitution
step where each byte is replaced
with another according to a lookup
table.

 Shift Rows—a transposition step
where the last three rows of the
state are shifted cyclically a certain
number of steps.

 Mix Columns—a mixing operation
which operates on the columns of
the state, combining the four bytes in
each column.

 Add Round Key

 Final Round (no Mix Columns)

 Sub Bytes

 Shift Rows

 Add Round Key.

3.2 The Subbytes Step

In the Sub Bytes step, each byte in
the state matrix is replaced with a Sub

Byte using an 8-bit substitution box,
the Rijndael S-box. This operation provides the non-
linearity in the cipher. The S-box used is derived from
the multiplicative inverse over GF (28), known to have
good non-linearity properties. To avoid attacks based
on simple algebraic properties, the S-box is constructed
by combining the inverse function with an
invertible affine transformation[4]. The S-box is also
chosen to avoid any fixed points (and so is

a derangement), i.e., , and also any
opposite fixed points,

i.e., . While performing
the decryption, Inverse Sub Bytes step is used, this
requires first taking the affine transformation and then
finding the multiplicative inverse.

http://en.wikipedia.org/wiki/Substitution-permutation_network
http://en.wikipedia.org/wiki/Feistel_network
http://en.wikipedia.org/wiki/Block_size_(cryptography)
http://en.wikipedia.org/wiki/Bit
http://en.wikipedia.org/wiki/Key_size
http://en.wikipedia.org/wiki/Column-major_order
http://en.wikipedia.org/wiki/Column-major_order
http://en.wikipedia.org/wiki/Finite_field_arithmetic
http://en.wikipedia.org/wiki/Rijndael_key_schedule
http://en.wikipedia.org/wiki/Rijndael_key_schedule
http://en.wikipedia.org/wiki/Rijndael_key_schedule
http://en.wikipedia.org/wiki/Rijndael_S-box
http://en.wikipedia.org/wiki/Rijndael_S-box
http://en.wikipedia.org/wiki/Rijndael_S-box
http://en.wikipedia.org/wiki/Substitution_box
http://en.wikipedia.org/wiki/Rijndael_S-box
http://en.wikipedia.org/wiki/Cipher
http://en.wikipedia.org/wiki/Multiplicative_inverse
http://en.wikipedia.org/wiki/Finite_field
http://en.wikipedia.org/wiki/Affine_transformation
http://en.wikipedia.org/wiki/Derangement

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 04 | Apr-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | Page 1609

FIG.3. Diagram of Sub Bytes

3.3 THE SHIFT ROWS STEP

The Shift Rows step operates on the rows of the
state; it cyclically shifts the bytes in each row by a
certain offset. For AES, the first row is left unchanged.
Each byte of the second row is shifted one to the left.
Similarly, the third and fourth rows are shifted by
offsets of two and three respectively [7].

For blocks of sizes 128 bits and 192 bits, the
shifting pattern is the same. Row n is shifted left
circular by n-1 bytes. In this way, each column of the
output state of the Shift Rows step is composed of bytes
from each column of the input state. (Rijndael variants
with a larger block size have slightly different offsets).

FIG.4 Diagram of Shift Rows

 For a 256-bit block, the first row is unchanged
and the shifting for the second, third and fourth row is 1
byte, 3 bytes and 4 bytes respectively. This change only
applies for the Rijndael cipher when used with a 256-bit
block, as AES does not use 256-bit blocks. The
importance of this step is to avoid the columns being
linearly independent, in which case, AES degenerates
into four independent block cipher[10].

3.4. The Mix columns Step

In the Mix Columns step, the four bytes of each
column of the state are combined using an

invertible linear transformation. The Mix
Columns function takes four bytes as input and outputs
four bytes, where each input byte affects all four output
bytes. Together with Shift Rows, Mix
Columns provides diffusion in the cipher.

FIG.5. Diagram of Mix Columns

Matrix multiplication is composed of
multiplication and addition of the entries, and here the
multiplication operation can be defined as this:
multiplication by 1 means no change, multiplication by
2 means shifting to the left, and multiplication by 3
means shifting to the left and then performing XOR with
the initial UN shifted value.

 After shifting, a conditional XOR with 0x1B
should be performed if the shifted value is larger than
0xFF. (These are special cases of the usual
multiplication in GF (28).) Addition is simply XOR. In
more general sense, each column is treated as a
polynomial over GF (28) and is then multiplied modulo
x4+1 with a fixed polynomial c(x) = 0x03 · x3 + x2 + x +
0x02 [11].

The coefficients are displayed in
their hexadecimal equivalent of the binary
representation of bit polynomials from GF (2) [x].
The Mix Columns step can also be viewed as a
multiplication by the shown particular MDS matrix in
the finite field GF (28). This process is described further
in the article Rijndael mix columns.

3.5. The Add round key Step

In the Add Round Key step, the sub key is
combined with the state. For each round, a sub key is
derived from the main key using Rijndael's key
schedule; each sub key is the same size as the state. The
sub key is added by combining each byte of the state
with the corresponding byte of the sub key using
bitwise XOR.

http://en.wikipedia.org/wiki/Offset_(computer_science)
http://en.wikipedia.org/wiki/Linear_transformation
http://en.wikipedia.org/wiki/Diffusion_(cryptography)
http://en.wikipedia.org/wiki/Exclusive_or
http://en.wikipedia.org/wiki/Exclusive_or
http://en.wikipedia.org/wiki/Hexadecimal
http://en.wikipedia.org/wiki/MDS_matrix
http://en.wikipedia.org/wiki/Finite_field
http://en.wikipedia.org/wiki/Rijndael_mix_columns
http://en.wikipedia.org/wiki/Key_(cryptography)
http://en.wikipedia.org/wiki/Rijndael_key_schedule
http://en.wikipedia.org/wiki/Rijndael_key_schedule
http://en.wikipedia.org/wiki/Rijndael_key_schedule
http://en.wikipedia.org/wiki/Exclusive_or

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 04 | Apr-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | Page 1610

FIG.6. Diagram of Add Round Key

On systems with 32-bit or larger words, it is
possible to speed up execution of this cipher by
combining the Sub Bytes and Shift Rows steps with
the Mix Columns step by transforming them into a
sequence of table lookups.

This requires four 256-entry 32-bit tables, and
utilizes a total of four kilobytes (4096 bytes) of memory
one kilobyte for each table. A round can then be done
with 16 table lookups and 12 32-bit exclusive-or
operations, followed by four 32-bit exclusive-or
operations in the Add Round Key.

If the resulting four-kilobyte table size is too
large for a given target platform, the table lookup
operation can be performed with a single 256-entry 32-
bit (i.e. 1 kilobyte) table by the use of circular rotates.
Using a byte-oriented approach, it is possible to
combine the Sub Bytes, Shift Rows, and Mix
Columns steps into a single round operation [12].

 5. RESULT

 FIG.6.Output Function

 6. CONCLUSION

To enhance the performance of Montgomery
MM while maintaining the low hardware complexity,
this paper has modified the SCS-based Montgomery
multiplication algorithm a low-cost and high-
performance Montgomery modular multiplier. The
multiplier used one-level CCSA architecture and
skipped the unnecessary carry-save addition operations
to largely reduce the critical path delay and required
clock cycles for completing one MM operation. FCS-
based multipliers maintain the input and output
operands of the Montgomery MM in the carry-save
format to escape from the format conversion, leading to
fewer clock cycles but larger area than SCS-based
multiplier.In Future, for cryptographers,
a cryptographic "break" is anything faster than a brute
force performing one trial decryption for each key
(see Cryptanalysis). This includes results that are
infeasible with current technology. The largest
successful publicly known brute force attack against
any block-cipher encryption was against a 64-
bit RC5 key.

ACKNOWLEDGEMENT

We are expressing our thanks to all Faculty
members and Skilled Assistants of Electronics and
Communication Engineering department and my
Friends who helped me in every possible way. Last but
not least I thank my Parents for their moral support.

REFERENCES

1. Amber.P, Pinckney.N, and Harris, D. M.
“Parallel high-radix Montgomery
multipliers,”(2008) in Proc. 42nd Asilomar
Conf. Signals, Syst., Comput., pp. 772–776.

2. Bunimov.V, Schimmler.M, and Tolg.B, “A
complexity-effective version of Montgomery’s
algorihm,” (2002) in Proc. Workshop
Complex.Effective Designs.

3. Gang.F, “Design of modular multiplier based on

improved Montgomery algorithm and systolic
array,” (2006) in Proc. 1st Int. Multi-Symp.
Comput. Co mput. Sci., vol. 2. Jun. 2006, pp. 356–
359.

4. Han, J. Wang S., Huang W., Yu Z., and Zeng X,

“Parallelization of radix-2 Montgomery
multiplication on multicore platform,”(2013)
IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 21, no. 12, pp. 2325–2330,.

http://en.wikipedia.org/wiki/Cryptanalysis
http://en.wikipedia.org/wiki/Brute-force_attack
http://en.wikipedia.org/wiki/Brute-force_attack
http://en.wikipedia.org/wiki/Brute-force_attack
http://en.wikipedia.org/wiki/Cryptanalysis#Computational_resources_required
http://en.wikipedia.org/wiki/Brute_force_attack
http://en.wikipedia.org/wiki/RC5

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 04 | Apr-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | Page 1611

5. Kuang S.-R., Wang J.-P., Chan K.-C., and Hsu. H.-
W., “Energy-efficient high-throughput
Montgomery modular multipliers for RSA
cryptosystems,” (2013) IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 21, no. 11,pp.
1999–2009,.

6. McIvor.C, McLoone.M, and McCanny, J. V.

“Modified Montgomery modular multiplication
and RSA exponentiation techniques,”(2004)
IEE Proc.-Comput. Digit. Techn., vol. 151, no. 6,
pp. 402–408,.

7. Miyamoto A., Homma N., Aoki, T. and Satoh.A,
“Systematic design of RSA processors based on
high-radix Montgomery multipliers,”(2011)
IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 19, no. 7, pp. 1136–1146.

8. Neto, J. C. Tenca A. F., and Ruggiero W. V., “A
parallel k-partition method to perform
Montgomery multiplication,”(2011) in Proc.
IEEE Int. Conf. Appl.-Specific Syst., Archit.,
Processors, , pp. 251–254.

9. Sassaw.G,. Jimenez.C.J, and Valencia.M, “High
radix implementation of Montgomery
multipliers with CSA,” (2010) in Proc. Int. Conf.
Micro electron., Dec. 2010, pp. 315–318.

10. Saemen.J and Rijmen.V, The block cipher
Rijndael, Smart Card research and Applications,
(2010)LNCS 1820, Springer-Verlag, pp. 288-
296

11. Wang S.-H., Lin W.-C “Fast scalable radix-4
Montgomery modular multiplier,” (2012) in
Proc. IEEE Int. Symp. Circuits Syst., , pp. 3049–
3052.

12. Yee.A, Guideline for Implementing
Cryptography in the Federal Government,
National Institute of Standards and Technology,
(1999),NIST Special Publication 800-21.

BIOGRAPHIES

Kamala Kannan R.S. received his
B.E. degree in Electronics and
communication engineering from
Mookambigai College of
Engineering, Trichy, Tamilnadu in
2007, the M.E. degree in VLSI
from KSR College of
technology,Tamilnadu in 2011.

He was an Assistant professor, Shree Venkateshwara
Hi-Tech Engineering College, 2010-2016.

Kayalvizhi.R received the B.E
degree in electronic and
communication engineering with
first class from Shree
Venkateshwara Hi-tech Engineering
College,
Gobichettipalayam,Tamilnadu in
2013, At present, She is engaged in
M.E in Applied Electronics from

Shree Venkateshwara Hi-Tech Engineering College,
2014-2016.

