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Abstract:  In this paper, we propose a novel Part-level 

Regularized Semi-Nonnegative coding (PRSN) approach to 

construct a discriminative graph benefiting from the part-

level graph regularizer. Specifically, with the low-rank 

decomposition via SNMF, our method can well uncover the 

global structure of the multiple subspace of the data. 

Meanwhile, it preserves the local intrinsic information by 

virtue of part-level similarity measurement. Finally, with 

the iteratively optimized data representation matrix Z, the 

label information can be effectively propagated to the 

remaining unlabeled data. 

Introduction:  The main objective of this paper, a novel 

graph construction approach for graph based learning, 

including data clustering and semi-supervised 

classification. By taking advantages of low-rank coding and 

sparsification constraints, we jointly learned symmetric 

and sparse graphs. Graphs have been widely applied in 

modeling the relationships and structures in real-world 

applications. Graph construction is the most critical part in 

these models, while how to construct an effective graph is 

still an open problem. In this paper, we propose a novel 

approach to graph construction based on two 

observations. First, by virtue of recent advances in low-

rank subspace recovery, the similarity between every two 

samples evaluated in the low-rank code space is more 

robust than that in the sample space. Second, a sparse and 

balanced graph can greatly increase the performance of 

learning tasks, such as label propagation in graph based 

semi-supervised learning. The k-NN sparsification can 

provide fast solutions to constructing unbalanced sparse 

graphs, and b-matching constraint is a necessary route for 

generating balanced graphs. These observations motivate 

us to jointly learn the low-rank codes and balanced (or 

unbalanced) graph simultaneously. In particular, two non-

convex models are built by incorporating k-NN constraint 

and b-matching constraint into the low-rank 

representation model, respectively. We design a 

majorization-minimization augmented Lagrange multiplier 

(MM-ALM) algorithm to solve the proposed model. 

 

Existing System:  In unsupervised and semi-supervised 

learning, the algorithms usually show effective 

performance on data that obey the smoothness, cluster or 

manifold assumptions.  
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Methodologies:  Databases and settings, Problem 

formulation & optimization, Spectral Clustering with 

Graph,Semi-Supervised Classification with Graph. 

Databases and settings:  In this module, we randomly 

generate dataset and process with these data. we 

randomly select 50 datasets of every class in the A and B 

tables, 100 datasets from each class in the C database, and 

use all the datasets of ORL database.  

Semi-Supervised Classification with Graph:  We first 

normalize all the images to be unit-norm as shown in 

Algorithm 2. All methods are repeated 10 times, and each 

time we randomly select a subset of images for each 

individual to create a labeled sample set. We can observe 

that our two graphs obtain better performance than other 

graphs. Even though Ours-I graph is unbalanced, it 

performs better than our previous work LRCB graph that 

is balanced. The reason is that Ours-I, as well as Ours-II, 

reformulates the rank-minimization model to obtain a new 

similarity metric, which is the key during graph 

construction. 

Data Collection with Part-level regularized graph:  The 

graph regularizer helps generate a more sparse and 

discriminative coefficient matrix Z [21], [28]. As we know, 

the similar data points should also have similar coefficients 

Z, so the graph regularizer is designed to transfer such 

local intrinsic structure via a similarity matrix S. The 

common way to measure the similarity is via various 

distance metrics based on Z. However, the common way is 

NOT the best choice in this case. We consider part-level 

representation coefficient H can uncover much richer 

information from underlying sample structure. In order to 

differentiate the similarity matrix learned over part-level 

representation H from the conventional one, we denote the 

novel similarity as SP, and its corresponding Lapidarian 

matrix as LP. 

Optimization and Complexity Analysis:  In this section, 

we discuss the time complexity of our model. For 

simplicity, assume X is a n × n matrix. The time-consuming 

components of Algorithm 1 are the semi nonnegative 

matrix factorization operation in Step 1, and matrix 

multiplication and inverse operations in Step 2. As 

discussed in, the computation complexity for SNMF is 

m(n2p + np2) for updating variable W ∈ Rn×p, where m is 

the number of iterations to convergence (we set m = 10 in 

our experiment) and p is the dimension of W (we set it as 

the rank of Z) . The computation complexity of updating 

variable H ∈ Rp×n for SNMF is 3mn2p. Thus, the total 

complexity for Step 1 is of order (4mn2p+mnp2). 

Generally, each matrix multiplication and inverse 

operation take O(n3). Thus, the order of time cost for Step 

2 is O(n3). To sum up, the time complexity of our method 

is O(n3+4mn2p+mnp2). 

Algorithm: 

Input: data matrix X, parameter λ1, λ2, k  

Initialize: Z0 = E0 = W0 = H0 = LP0 = 0, 

Y1,0 = Y2,0 = 0, μ0 = 10−6, μmax = 106_ = 10−4, ρ = 1.3, t = 

0.  

while not converged do 

1. Fix the others and update Wt+1,Ht+1 using Eq. (6) 

2. Fix the others and update Zt+1 using Eq. (7) 

3. Fix the others and update LPt+1 using k-NN. 

4. Fix the others and update Et+1 using Eq. (8). 

5. Update the multiplier Y1,t+1, Y2,t+1 by 

Y1,t+1 = Y1,t + μ(X − XZt+1 − Et+1), 

Y2,t+1 = Y2,t + μ(1TnZt+1 − 1Tn), 

6. Update the parameter μ by μ = min(ρμ, μmax) 

7. Check the convergence condition by 
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_X − XZt+1 − Et+1_∞ < _, _1TnZt+1 − 1Tn_∞ < _. 

8. t = t + 1. 

end while 

Output: Z,W,H,E,LP 

Architecture: 

 

 

Existing method and proposed method: 

 

 

Example: 
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Conclusion: In this paper, we have proposed a 

novel graph construction approach for graph 

based learning, including data clustering and 

semi-supervised classification. By taking 

advantages of low-rank coding and sparsification 

constraints (i.e., k-NN and b-matching), we jointly 

learned symmetric and sparse graphs. We also 

designed novel optimisation algorithms to solve 

the proposed models. 
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