
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 04 | Apr-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET ISO 9001:2008 Certified Journal Page 362

Improving Code Efficiency by Code Optimising Techniques

Neeraj Kumar 1, Prof. Dr. Saroj Hiranwal 2

1M.Tech Scholar, Dept. of Computer Science & Engineering, Rajasthan Institute of Engineering and Technology, Jaipur,

Rajasthan, INDIA

2Professor, Dept. of Computer Science & Engineering, Rajasthan Institute of Engineering and Technology, Jaipur, Rajasthan,

---***---
Abstract - In this paper we presented a tool which optimizes
the code by working on the following segments of code
optimization namely Dead Code Removal, Inlining, and
Constant Propagation etc. The change in the nature of code
remains a major issue from the prior days. Once in a while it is
troublesome for a software engineer to discover which some
portion of code devours more assets and thus prompt a
wasteful code. Already the vast majority of the enhancement
was done physically or can be said as statically which prompts
number of issues to the developer furthermore had a portion of
the constraints. Be that as it may, nowadays a few compilers
are accessible which makes the streamlining to be performed
progressively. In this paper work, an endeavor has been made
to plan and execute a framework that can consequently
improve the code keeping in mind the end goal to minimize the
multifaceted nature of the code such that the code turns out to
be more proficient. To finish this, a framework has been
created to execute the two machine autonomous methods
dead code end and normal sub-expression disposal, which
powerfully improves the code. The postulation essentially
moves around these two procedures, how these methods have
been executed, and how can it works alongside the figuring of
the code intricacy. For this, the codes were taken haphazardly.
Subsequently the advancement of code could be conceivable
utilizing diverse enhancement methods. Rather than
concentrating on adding to another calculation or to enhance
the current one, this paper endeavors to comprehend the
current compiler strategies unmistakably and to examine the
outcome subsequent to actualizing the systems furthermore to
think about the complexities taking into account diverse
measurements of the code.

Key Words: Code Optimization, Code Improvement, Code
Enhancement, CCCC, LOC, McCabe’s Cyclomatic number

1. INTRODUCTION

In compiler outline, there is one of the strategy in which a
piece of code is being changed to create more proficient and
additionally to enhance the execution such that the yield
stays same, termed as "Improvement". Code improvement
intends to make superb code with best intricacy (time and
space) such that it ought not influence the precise
consequence of the code. It is essentially taking into account
the basis to safeguard the semantic proportionality of the
project, such that the calculation must not be adjusted. On a
normal, the change ought to accelerate the execution of the

system. Improvement incorporates finding a bottleneck, a
basic part of the code which is the essential customer of the
required assets. Essentially Code streamlining worries on
rightness, it implies the accuracy of the created code ought
not to be changed. The primary point of the code
enhancement is to make fantastic code with enhanced many-
sided quality (time and space) without influencing the
accurate consequence of the code.

2. IMPORTANCE AND RELEVANCE OF THE STUDY

Enhancement is that the field wherever the majority of the

examination is finished. Looking the different papers and

article some of the significant information are assembled

that makes the advancement strategy doable. [5]

Chirag [3] depicts concerning the gap improvement method

utilizing totally diverse example coordinating methodologies

that structures A standard expression and conjointly has

investigates the past and current examination issues in term

of "advancing" compilers utilizing enhancement decides that

range unit envisioned to be coordinated through that the

excess guideline of moderate code are frequently researched

and supplanted. For this totally distinctive example

coordinating methodologies are said like string based

generally, tree control, object based for the most part and so

forth. The paper is being gap into four segments wherever

particular guidelines and example standards are difficult

coded that clarifies concerning the machine subordinate gap

streamlining agents, the motivation of retarget prepared gap

enhancement the mix of code era and advancement into one

section and concerning totally distinctive example

coordinating strategies severally.

Brandolese[7] presented a thorough system for

programming bundle execution time estimation, that is

upheld by thorough numerical models of C articulations as

far as basic operations. Amid this the complete investigation

stream has been performed inside an encapsulation toolset

that are in the blink of an eye being utilized for steady and

adjusting model parameters.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 04 | Apr-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET ISO 9001:2008 Certified Journal Page 363

Johnson[6] in his article portrays concerning the

advancement that is system of changing a touch of code such

the code gets to be extra practical and in this way the yield

stays same. it's as a rule conjointly announced that a

considerable measure of the issues were NP finished and in

this manner a large portion of the enhancement recipe relies

on upon guess and heuristics. Conjointly he announced that

when the code has been composed, given the compiler a

chance to do the enhancement utilizing compiler procedures.

In this paper the layout is given concerning the improvement

that concentrates consequently the accumulation technique

should be similar to on the grounds that the rightness of the

produced code mustn't be altered, conjointly procedure is

characterized like "when" and "where" to advance for

playing enhancement. some of the procedures connected to

middle of the road code, others zone unit connected to

conclusive code era and even some of the strategies might

happen once the last code era inside of which the attempt is

made to redesign the gather code itself to extra sparing one.

It conjointly depicts concerning the "neighborhood

advancement" that is delineated in light of the fact that the

enhancement that zone unit exclusively authorized inside a

fundamental piece, in this manner these kind of

improvement region unit simple to execute as a consequence

of any sensibly administration information isn't required

exclusively the streamlining is to be performed inside a

square. Some of the local advancement such as steady

collapsing, consistent proliferation additionally are clarified.

Advancements that might take out futile guidelines utilizing

logarithmically personalities range unit like administrator

quality decrease, duplicate spread, and dead code disposal.

With the exception of local improvements, the same sensibly

streamlining that may be connected over the fundamental

squares makes them world advancement. Conjointly

concerning machine streamlining is clarified; one among the

machine advancement that is of particular significance is

register allotment, another most noteworthy enhancement is

direction programming.

Michael E Lee [4] narrates methods which were utilized to

advance the code of C. The fixation is on lessening time spent

by the CPU and gives test source code change which

frequently yield change. The change or advancement is

performed such that the engineers of the application

programs have the obligation to plan programs with a

specific end goal to make utilization of restricted and costly

assets.

3. Proposed Solution

System architecture describes about how the system works

and how the process flows. The layout of the work is

presented that shows how the transformation takes place.

Initially, starting with the selection of desired technique

which is to be performed, then it is required to select the

program code which needs to be optimized or the code to

perform transformation. After selecting the program code

(unoptimized code), now the need is to apply the technique

which was selected. When the button, provided for the same

purpose is clicked then the attribute of program structure

matches with the techniques which is applied i.e. if the

selected technique will work on the chosen program code

then the new optimized code will be generated, and if not

then an warning message will be displayed, or the errors

message which were encountered during the

implementation of the technique and the control will

transfer again to select the new code. If the optimization will

take place then the new optimized code needs to be saved.

Once the optimized code is saved, complexity comparison is

performed between the program source codes with the new

generated optimized code.

Fig – 1: Proposed System Architecture

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 04 | Apr-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET ISO 9001:2008 Certified Journal Page 364

4. Result & Findings

This section of the thesis describes about the results or

findings which is obtained after the implementation of

optimization techniques. Two elementary objectives are to

implement the optimization techniques such that sample

code should optimize automatically i.e. the dynamic

optimization of code takes place and the resultant code will

be one of the new optimized code and to compare and

analyze the complexity of unoptimized code with the new

one generated optimized code in order to reduce the

complexity of the code. The objectives where achieved. The

analysis and comparison between the program code and

resultant code are done using CCCC tool in a report which is

shown below.

4.1 Result showing transformation of unoptimized

code into optimized one and complexity comparison

between the program code and target code using Dead

Code Elimination:

This part of result shows the transformation which takes

place after applying the dead code elimination. Different

snapshots, windows were presented which shows how the

code is been initially selected using browse option to be

further optimize, and how the elimination is performed, and

also the window displaying report of different metrics of

both the unoptimized and optimized code.

Fig - 2: Selection of the program code

The above given snapshot in figure 2 shows how to browse

for the code file in order to perform optimization using

respective technique. The selected code file is used for the

dead code elimination.

Fig - 3: Importing program code for optimization

When the desired file is browsed, the source code opens up

into a text box in the window for the dead code analysis. This

is well understood by the snapshot in the figure 3.

Fig – 4: Window showing the removal of unused function

Figure 4 shows the transformation which takes place after

clicking on button named remove dead code. The function

which was not used anywhere in the program got eliminated

and dead code elimination is performed. The optimized i.e.

the target code is shown in the right hand side of rich text

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 04 | Apr-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET ISO 9001:2008 Certified Journal Page 365

box which automatically saves in debug folder with the name

dump.cpp. The below given snapshot shows the file with

name dump.cpp where optimized code is saved.

Fig – 5: Result saving window for resultant code

After the implementation of the dead code elimination, the

resultant code is saved in the bin folder, which could be seen

as in figure 5.

Fig – 6: Report generated by the CCCC of unoptimized code

This window shows the report which is generated by the

CCCC tool when the program is analyzed for the complexity.

Different metrics were displayed showing number of

modules, LOC and McCabe’s Cyclomatic Number. Here, the

analysis of source code has been done where the lines of

code are 11 and McCabe’s Cyclomatic number is 1.

4. Conclusion and Future Scope

The paper work focuses to apply the optimization

techniques on the C/C++ codes in-order to improve the

complexity of the source code with respect to size and time.

The machine independent techniques have been

implemented successfully as desired with some limitations

on the source codes used. The interface designed for this

work consists of the various modules through which the

work has been fulfilled. Different techniques have their own

way of modifying the source code and attempt to optimize

the code which reduces the complexity of that code. Dead

code analysis finds the functions that are not required in the

whole program and so those functions are eliminated.

Common sub-expression elimination replaces the multiple

instances of the common expressions with a new variable, so

that the computation is performed only once and its value

could be replaced with all other instances of the common

expression. The complete analysis has been done on the

interface specially designed for this work. The

implementation process has been shown as how the

technique has been applied on the code and the new

modified code is produced. Then the complexity has been

calculated first for the original source code and then for the

new modified code. This complexity is calculated using CCCC

tool based on various metrics. When the comparison of the

complexity of the original code and the modified code is

performed, it results into the reduction of the complexity.

The goal that was proposed earlier has been accomplished

completely.

The future scope still exists for this work which includes few

modifications that would make it more functional. Firstly,

the source codes on which the techniques are applied have

some limitations depending on the technique used. Like dead

code analysis module only attempts to remove those

functions that are not used in the main calling function.

Moreover, the common sub-expression elimination module

only attempts to replace a single common expression only.

These are some limitations of the modules that need to

overcome. Secondly, this work could be more effective if a

compiler could be incorporated within the interface so that

the output of the source codes must also be displayed.

Finally, the advancements would be beneficial such as the

comparison of the complexities of both the un-optimized

code and the optimized code could be displayed on the same

screen.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 04 | Apr-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET ISO 9001:2008 Certified Journal Page 366

REFERENCES

[1] Mr. Chirag H. Bhatt, Dr. Harshad B. Bhadka , “Peephole

Optimization Technique for analysis and review of Compile
Design and Construction”, IOSR Journal of Computer
Engineering (IOSR-JCE), Volume 9, Issue 4 (Mar. - Apr.
2013).

[2] C. Brandolese, W. Fornaciari, F. Salice, D. Sciuto,
“Source–Level Execution Time Estimation of C Programs”,
Proceedings of the ninth international symposium on
Hardware/software codesign.

[3] Maggie Johnson, “Code Optimization”, Handout 20
“August 08,2004.

[4] Michael E. Lee, “Optimization of Computer Programs in C
”, Ontek Corporation, USA.

[5] Keith D. Cooper, L. Taylor Simpson, Christopher A. Vick”
“Operator Strength reduction” available at
:http://www.cs.rice.edu/~keith/EMBED/OSR.pdf.

[6] Tom Erkinen,“Fixed point ECU code optimization and
verification with model based design” available at
http://in.mathworks.com/tagteam/59064_2009-01-
0269.New.pdf.

[7] Paul Heish, “Programming Optimization: Techniques,
examples and discussion” available at:
http://www.azillionmonkeys.com/qed/optimize.html

[8] Keith D. Cooper, Kathryn S. Mckinley, and Linda
Torczon,“Compiler-Based Code-Improvement Techniques”
available at
http://www.cs.tufts.edu/~nr/cs257/archive/keith-
cooper/survey.pdf

[9] Req. Charney, “Programming Tools: Code Complexity
Metrics” available at
http://www.linuxjournal.com/article/8035

[10] Bruce Childers, Jack W. Davidson, Mary Lou Soffa,
“Continuous Compilation: A New Approach to Aggressive
and Adaptive Code Transformation” available at
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber
=1213375&url=http%3A%2F%2Fieeexplore.ieee.org%
2Fxpls%2Fabs_all.jsp%3Farnumber%3D1213375\

[11] Doeppner, “Optimization Techniques in C”, Fall, 2013.
http://cs.brown.edu/courses/cs033/docs/guides/c_optimizati
on_notes.pdf

[12] Mohammed Fadle Abdulla, “Manual and Fast C Code
Optimization”, Anale. SeriaInformatica. Vol.VIII fasc. I-
2010.

BIOGRAPHIES
 Neeraj Kumar is a Research

Scholar from Rajasthan Institute of
Engineering and Technology. He has
BE degree from the University of
Rajasthan, Jaipur. His area of interest
including Software Engineering,
Computer Graphics, Data Structures
and Computer Networks.

Prof. Dr. Saroj Hiranwal is a

Professor in the Department of

Computer Science and Engineering

in Rajasthan Institute of Engineering

and Technology, Jaipur. She has

completed her Doctorate degree from

Suresh Gyan Vihar University,

Jaipur. Her area of interest includes

Computer Graphics, Distributed

System, Software Engineering and

Computer Architecture.

