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Abstract - As new data and updates are constantly arriving; 

the results of data mining applications become stale and 

obsolete over time. Incremental processing is a promising 

approach to refreshing mining results. It utilizes previously 

saved states to avoid the expense of re-computation from 

scratch. This paper proposes i
2
MapReduce, a novel incremental 

processing extension to MapReduce, the most widely used 

framework for mining big data. Compared with the state-of-the-

art work on Incoop, (i) performs key-value pair level 

incremental processing rather than task level re-computation, 

(ii) supports not only one-step computation but also more 

sophisticated iterative computation, which is widely used in data 

mining applications, and (iii) incorporates a set of novel 

techniques to reduce I/O overhead for accessing preserved fine-

grain computation states. In this paper i
2
MapReduce is 

evaluated using a one-step algorithm and four iterative 

algorithms with diverse computation characteristics. The 

proposal uses a modified version of the A-priori algorithm, 

named as Top K rules, which finds and recommends only the 

best K rules of the system. Experimental results on Amazon EC2 

show significant performance improvements of i
2
MapReduce 

compared to both plain and iterative MapReduce performing re-

computation. 
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1. INTRODUCTION 

Today huge amount of digital data is being accumulated in 
many important areas, including e-commerce, social 
network, finance, health care, education, and environment. It 
has become increasingly popular to mine such big data in 
order to gain insights to help business decisions or to 
provide better personalized, higher quality services. In 
recent years, a large number of computing frameworks [1], 
[2], [3], [4], [5], [6] have been developed for big data 
analysis. Among these frameworks, MapReduce (with its 
open-source implementations, such as Hadoop) is the most 
widely used in production because of its simplicity, 
generality, and maturity. This paper will focus on improving 
MapReduce. Big data is constantly evolving. As new data and 

updates are being collected, the input data of a big data 
mining algorithm will gradually change, and the computed 
results will become stale and obsolete over time. In many 
situations, it is desirable to periodically refresh the mining 
computation in order to keep the mining results up-to-date. 
For example, the PageRank algorithm computes ranking 
scores of web pages based on the web graph structure for 
supporting web search. However, the web graph structure is 
constantly evolving; Web pages and hyper-links are created, 
deleted, and updated. As the underlying web graph evolves, 
the PageRank ranking results gradually become stale, 
potentially lowering the quality of web search. Therefore, it 
is desirable to refresh the PageRank computation regularly. 
Incremental processing is a promising approach to 
refreshing mining results. Given the size of the input big 
data, it is often very expensive to rerun the entire 
computation from scratch. Incremental processing exploits 
the fact that the input data of two subsequent computations 
A and B are similar. Only a very small fraction of the input 
data has changed. The idea is to save states in computation 
A, re-use A’s states in computation B, and perform re-
computation only for states that are affected by the changed 
input data. The realization of this principle in the context of 
the MapReduce computing framework is investigated. A 
number of previous studies (including Percolator [7], CBP 
[8], and Naiad [9]) have followed this principle and designed 
new programming models to support incremental 
processing. 

 
On the other hand, Incoop [10] extends MapReduce to 
support incremental processing. However, it has two main 
limitations. First, Incoop supports only task-level 
incremental processing. That is, it saves and reuses states at 
the granularity of individual Map and Reduce tasks. Each 
task typically processes a large number of key-value pairs 
(kv-pairs). If Incoop detects any data changes in the input of 
a task, it will rerun the entire task. While this approach easily 
leverages existing MapReduce features for state savings, it 
may incur a large amount of redundant computation if only a 
small fraction of kv-pairs have changed in a task. Second, 
Incoop supports only one-step computation, while important 
mining algorithms, such as PageRank, require iterative 
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computation. Incoop would treat each iteration as a separate 
MapReduce job. However, a small number of input data 
changes may gradually propagate to affect a large portion of 
intermediate states after a number of iterations, resulting in 
expensive global re-computation afterwards. This paper 
proposes i2MapReduce, an extension to MapReduce that 
supports fine-grain incremental processing for both one step 
and iterative computation. Compared to previous solutions, 
i2MapReduce incorporates the following three novel 
features: 

 
 Fine-grain incremental processing using MRBG-

Store. Unlike Incoop, i2MapReduce supports kv-pair 
level fine-grain incremental processing in order to 
minimize the amount of re-computation as much as 
possible. This paper models the kv-pair level data 
flow and data dependence in a MapReduce 
computation as a bipartite graph, called MRBGraph. 
A MRBG-Store is designed to preserve the fine-grain 
states in the MRBGraph and support efficient 
queries to retrieve fine-grain states for incremental 
processing. 
 

 General-purpose iterative computation with modest 
extension to MapReduce API. Previous work 
proposed iMapReduce [6] to efficiently support 
iterative computation on the MapReduce platform. 
However, it targets types of iterative computation 
where there is a one-to-one/all-to-one 
correspondence from Reduce output to Map input. 
In comparison, this paper provides general-purpose 
support, including not only one-to-one, but also 
one-to-many, many-to-one, and many-to-many 
correspondence. The system enhances the Map API 
to allow users to easily express loop-invariant 
structure data, and proposes a Project API function 
to express the correspondence from Reduce to Map. 
While users need to slightly modify their algorithms 
in order to take full advantage of i2MapReduce, such 
modification is modest compared to the effort to re-
implement algorithms on a completely different 
programming paradigm, such as in Percolator [7], 
CBP [8], and Naiad [9]. 

 
 Incremental processing for iterative computation. 

Incremental iterative processing is substantially 
more challenging than incremental one-step 
processing because even a small number of updates 
may propagate to affect a large portion of 
intermediate states after a number of iterations [1]. 
To address this problem, this paper proposes to 
reuse the converged state from the previous 
computation and employ a change propagation 
control (CPC) mechanism. This paper also enhances 
the MRBG-Store to better support the access 
patterns in incremental iterative processing. To our 
knowledge, i2MapReduce is the first MapReduce-

based solution that efficiently supports incremental 
iterative computation. 
 

Researchers implemented i2MapReduce by modifying 
Hadoop-1.0.3. Researchers evaluate i2MapReduce using a 
one-step algorithm (A-Priori) and four iterative algorithms 
(PageRank, SSSP, Kmeans, GIM-V) with diverse computation 
characteristics. Experimental results on Amazon EC2 show 
significant performance improvements of i2MapReduce 
compared to both plain and iterative MapReduce performing 
re-computation. For example, for the iterative PageRank 
computation with 10 percent data changed, i2MapReduce 
improves the run time of re-computation on plain 
MapReduce by an eight fold speedup [1]. This paper uses a 
modified version of the A-priori algorithm, named as Top K 
rules, which finds and recommends only the best K rules of 
the system, not considering the redundant rules, and giving 
only the rules which are better for describing the system 
behavior. 

2. SURVEY RELATED DETAILS 

Previous work Incoop, [10] supports only task-level 
incremental processing. That is, it saves and reuses states at 
the granularity of individual Map and Reduce tasks. Each 
task typically processes a large number of key-value pairs 
(kv-pairs). If Incoop detects any data changes in the input of 
a task, it will rerun the entire task. While this approach easily 
leverages existing MapReduce features for state savings, it 
may incur a large amount of redundant computation if only a 
small fraction of kv-pairs have changed in a task. 

 
Previous work proposed iMapReduce, [6] to efficiently 
support iterative computation on the MapReduce platform. 
However, it targets types of iterative computation where 
there is a one-to-one/all-to-one correspondence from 
Reduce output to Map input. 

 
Previous work Incoop, [10] supports incremental one-step 
processing. Incoop would treat each iteration as a separate 
MapReduce job. However, a small number of input data 
changes may gradually propagate to affect a large portion of 
intermediate states after a number of iterations, resulting in 
expensive global re-computation afterwards. 

 
In the previous work [1] the researchers have developed fast 
techniques for evolving data, and its mapping. But the 
reduction part still needs improvement. In the work, they 
have described various mapping and reducing techniques, 
but if reduction is not optimized then the overall system 
efficiency is low and might lead to a slow response for a real 
time system. 
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Previous works have following problems: 
 

 Does not supports key-value pair level incremental 
processing and supports only task level incremental 
processing. 

 Does not supports General-purpose iterative 
computation and only supports one-to-one/all-to-
one correspondence from Reduce output to Map 
input. 

 Does not supports incremental processing for 
iterative computations and only supports 
incremental one-step processing. 

 Speed of the mining process is low.  

3. PROPOSED WORK 

Current paper proposes, a system which overcomes the 
drawback of slower reduction times, and uses a method 
which reduces the input data faster as compared to any 
proposed algorithm, thereby improving the overall efficiency 
of the system. The proposal uses a modified version of the A-
priori algorithm, named as Top K rules, which finds and 
recommends only the best K rules of the system, not 
considering the redundant rules, and giving only the rules 
which are better for describing the system behavior and 
giving the best possible recommendations for the system. 
This method will improve the overall speed and accuracy of 
the rule mining process and make the entire Map Reduce 
structure perform in real time with highest level of accuracy. 
Proposed approach works in the following manner, 
 
Step 1: Collection of evolving datasets 
 

 The evolving datasets will be collected for mapping 

and reduction. 
 

Step 2: Development of mapping technique 
 

 MapReduce allows for distributed processing of the 
map and reduction operations. Provided that each 
mapping operation is independent of the others, all 
maps can be performed in parallel – though in 
practice this is limited by the number of 
independent data sources and/or the number of 
CPUs near each source.  

 Map function Maps input key/value pairs to a set of 
intermediate key/value pairs. Maps are the 
individual tasks which transform input records into 
intermediate records. The transformed 
intermediate records need not be of the same type 
as the input records. A given input pair may map to 
zero or many output pairs. Map() is run exactly once 
for each K1 key value, generating output organized 
by key values K2. 

 
 

Step 3: Development of reduction technique  
 

 A set of 'reducers' can perform the reduction phase, 
provided that all outputs of the map operation that 
share the same key are presented to the same 
reducer at the same time, or that the reduction 
function is associative. Reduce() is run exactly once 
for each K2 key value produced by the Map step. 

Logical View of MapReduce process 

The Map and Reduce functions of MapReduce are both 
defined with respect to data structured in (key, value) pairs. 
Map takes one pair of data with a type in one data domain, 
and returns a list of pairs in a different domain: 

Map(k1,v1) → list(k2,v2) 
 
The Map function is applied in parallel to every pair in the 
input dataset. This produces a list of pairs for each call. After 
that, the MapReduce framework collects all pairs with the 
same key from all lists and groups them together, creating 
one group for each key. 
 
The Reduce function is then applied in parallel to each group, 
which in turn produces a collection of values in the same 
domain: 
 
Reduce(k2, list (v2)) → list(v3) 
 
Each Reduce call typically produces either one value v3 or an 
empty return, though one call is allowed to return more than 
one value. The returns of all calls are collected as the desired 
result list. 
 
Thus the MapReduce framework transforms a list of (key, 
value) pairs into a list of values.  
 

 
 
Fig -1: MapReduce Computation 
 
 
Step 4: Improvement in reduction technique using Top K 
Rules 
 
Improvement is done in reduction techniques using Top K 
Rules algorithm which is the modifies version of a-priori 
algorithm. The Top K Rules algorithm works as follows: 
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 The TopKRules algorithm takes as input a 
transaction database, a number k of rules that the 
user wants to discover, and the minconf threshold.  

 The algorithm main idea is the following. TopKRules 
first sets an internal minsup variable to 0. Then, the 
algorithm starts searching for rules. As soon as a 
rule is found, it is added to a list of rules L ordered 
by the support. The list is used to maintain the top-k 
rules found until now. Once k valid rules are found, 
the internal minsup variable is raised to the support 
of the rule with the lowest support in L. Raising the 
minsup value is used to prune the search space 
when searching for more rules. Thereafter, each 
time a valid rule is found, the rule is inserted in L, 
the rules in L not respecting minsup anymore are 
removed from L, and minsup is raised to the value of 
the least interesting rule in L. The algorithm 
continues searching for more rules until no rule are 
found, which means that it has found the top-k 
rules. 

 To search for rules, TopKRules does not rely on the 
classical two steps approach to generate rules 
because it would not be efficient as a top-k 
algorithm (as explained in the introduction). The 
strategy used by TopKRules instead consists of 
generating rules containing a single item in the 
antecedent and a single item in the consequent. 
Then, each rule is recursively grown by adding 
items to the antecedent or consequent. To select the 
items that are added to a rule to grow it, TopKRules 
scans the transactions containing the rule to find 
single items that could expand its left or right part. 
Two processes for expanding rules in TopKRules 
are left expansion and right expansion. These 
processes are applied recursively to explore the 
search space of association rules.  

 Another idea incorporated in TopKRules is to try to 
generate the most promising rules first. This is 
because if rules with high support are found earlier, 
TopKRules can raise its internal minsup variable 
faster to prune the search space. To perform this, 
TopKRules uses an internal variable R to store all 
the rules that can be expanded to have a chance of 
finding more valid rules. TopKRules uses this set to 
determine the rules that are the most likely to 
produce valid rules with a high support to raise 
minsup more quickly and prune a larger part of the 
search space. 

 
 
Step 5: Result Analysis and Comparison 
 

 The result of algorithm will be analyzed and will be 

compared to existing results. 
 

 

4. CONCLUSIONS 

The first model uses i2MapReduce, which combines a fine-
grain incremental engine, a general-purpose iterative model, 
and a set of effective techniques for incremental iterative 
computation. The new model uses a modified version of the 
A-priori algorithm, named as Top K rules, which finds and 
recommends only the best K rules of the system. Compared 
with the first model, the new model is much more efficient 
and achieved the satisfactory performance as well. The main 
objective of this paper was to throw some light on the 
proposed work. It provides a promising methodology to 
improve the overall speed and accuracy of the rule mining 
process and make the entire Map Reduce structure perform 
in real time with highest level of accuracy by using Top K 
Rules. 
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