
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 06 | June-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET ISO 9001:2008 Certified Journal Page 738

IMPROVING MAPREDUCE FOR MINING EVOLVING BIG DATA USING TOP

K RULES

Vishakha B. Dalvi1, Ranjit R. Keole2

1CSIT, HVPM’s College of Engineering & Technology,
SGB Amravati University, Maharashtra, INDIA

2 Professor, CSIT, HVPM’s College of Engineering & Technology,
SGB Amravati University, Maharashtra, INDIA

---***---

Abstract - As new data and updates are constantly arriving;

the results of data mining applications become stale and

obsolete over time. Incremental processing is a promising

approach to refreshing mining results. It utilizes previously

saved states to avoid the expense of re-computation from

scratch. This paper proposes i
2
MapReduce, a novel incremental

processing extension to MapReduce, the most widely used

framework for mining big data. Compared with the state-of-the-

art work on Incoop, (i) performs key-value pair level

incremental processing rather than task level re-computation,

(ii) supports not only one-step computation but also more

sophisticated iterative computation, which is widely used in data

mining applications, and (iii) incorporates a set of novel

techniques to reduce I/O overhead for accessing preserved fine-

grain computation states. In this paper i
2
MapReduce is

evaluated using a one-step algorithm and four iterative

algorithms with diverse computation characteristics. The

proposal uses a modified version of the A-priori algorithm,

named as Top K rules, which finds and recommends only the

best K rules of the system. Experimental results on Amazon EC2

show significant performance improvements of i
2
MapReduce

compared to both plain and iterative MapReduce performing re-

computation.

Key Words: Top K rules, MapReduce, Data mining, Key value
pairs, Incremental processing,

1. INTRODUCTION

Today huge amount of digital data is being accumulated in
many important areas, including e-commerce, social
network, finance, health care, education, and environment. It
has become increasingly popular to mine such big data in
order to gain insights to help business decisions or to
provide better personalized, higher quality services. In
recent years, a large number of computing frameworks [1],
[2], [3], [4], [5], [6] have been developed for big data
analysis. Among these frameworks, MapReduce (with its
open-source implementations, such as Hadoop) is the most
widely used in production because of its simplicity,
generality, and maturity. This paper will focus on improving
MapReduce. Big data is constantly evolving. As new data and

updates are being collected, the input data of a big data
mining algorithm will gradually change, and the computed
results will become stale and obsolete over time. In many
situations, it is desirable to periodically refresh the mining
computation in order to keep the mining results up-to-date.
For example, the PageRank algorithm computes ranking
scores of web pages based on the web graph structure for
supporting web search. However, the web graph structure is
constantly evolving; Web pages and hyper-links are created,
deleted, and updated. As the underlying web graph evolves,
the PageRank ranking results gradually become stale,
potentially lowering the quality of web search. Therefore, it
is desirable to refresh the PageRank computation regularly.
Incremental processing is a promising approach to
refreshing mining results. Given the size of the input big
data, it is often very expensive to rerun the entire
computation from scratch. Incremental processing exploits
the fact that the input data of two subsequent computations
A and B are similar. Only a very small fraction of the input
data has changed. The idea is to save states in computation
A, re-use A’s states in computation B, and perform re-
computation only for states that are affected by the changed
input data. The realization of this principle in the context of
the MapReduce computing framework is investigated. A
number of previous studies (including Percolator [7], CBP
[8], and Naiad [9]) have followed this principle and designed
new programming models to support incremental
processing.

On the other hand, Incoop [10] extends MapReduce to
support incremental processing. However, it has two main
limitations. First, Incoop supports only task-level
incremental processing. That is, it saves and reuses states at
the granularity of individual Map and Reduce tasks. Each
task typically processes a large number of key-value pairs
(kv-pairs). If Incoop detects any data changes in the input of
a task, it will rerun the entire task. While this approach easily
leverages existing MapReduce features for state savings, it
may incur a large amount of redundant computation if only a
small fraction of kv-pairs have changed in a task. Second,
Incoop supports only one-step computation, while important
mining algorithms, such as PageRank, require iterative

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 06 | June-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET ISO 9001:2008 Certified Journal Page 739

computation. Incoop would treat each iteration as a separate
MapReduce job. However, a small number of input data
changes may gradually propagate to affect a large portion of
intermediate states after a number of iterations, resulting in
expensive global re-computation afterwards. This paper
proposes i2MapReduce, an extension to MapReduce that
supports fine-grain incremental processing for both one step
and iterative computation. Compared to previous solutions,
i2MapReduce incorporates the following three novel
features:

 Fine-grain incremental processing using MRBG-

Store. Unlike Incoop, i2MapReduce supports kv-pair
level fine-grain incremental processing in order to
minimize the amount of re-computation as much as
possible. This paper models the kv-pair level data
flow and data dependence in a MapReduce
computation as a bipartite graph, called MRBGraph.
A MRBG-Store is designed to preserve the fine-grain
states in the MRBGraph and support efficient
queries to retrieve fine-grain states for incremental
processing.

 General-purpose iterative computation with modest
extension to MapReduce API. Previous work
proposed iMapReduce [6] to efficiently support
iterative computation on the MapReduce platform.
However, it targets types of iterative computation
where there is a one-to-one/all-to-one
correspondence from Reduce output to Map input.
In comparison, this paper provides general-purpose
support, including not only one-to-one, but also
one-to-many, many-to-one, and many-to-many
correspondence. The system enhances the Map API
to allow users to easily express loop-invariant
structure data, and proposes a Project API function
to express the correspondence from Reduce to Map.
While users need to slightly modify their algorithms
in order to take full advantage of i2MapReduce, such
modification is modest compared to the effort to re-
implement algorithms on a completely different
programming paradigm, such as in Percolator [7],
CBP [8], and Naiad [9].

 Incremental processing for iterative computation.

Incremental iterative processing is substantially
more challenging than incremental one-step
processing because even a small number of updates
may propagate to affect a large portion of
intermediate states after a number of iterations [1].
To address this problem, this paper proposes to
reuse the converged state from the previous
computation and employ a change propagation
control (CPC) mechanism. This paper also enhances
the MRBG-Store to better support the access
patterns in incremental iterative processing. To our
knowledge, i2MapReduce is the first MapReduce-

based solution that efficiently supports incremental
iterative computation.

Researchers implemented i2MapReduce by modifying
Hadoop-1.0.3. Researchers evaluate i2MapReduce using a
one-step algorithm (A-Priori) and four iterative algorithms
(PageRank, SSSP, Kmeans, GIM-V) with diverse computation
characteristics. Experimental results on Amazon EC2 show
significant performance improvements of i2MapReduce
compared to both plain and iterative MapReduce performing
re-computation. For example, for the iterative PageRank
computation with 10 percent data changed, i2MapReduce
improves the run time of re-computation on plain
MapReduce by an eight fold speedup [1]. This paper uses a
modified version of the A-priori algorithm, named as Top K
rules, which finds and recommends only the best K rules of
the system, not considering the redundant rules, and giving
only the rules which are better for describing the system
behavior.

2. SURVEY RELATED DETAILS

Previous work Incoop, [10] supports only task-level
incremental processing. That is, it saves and reuses states at
the granularity of individual Map and Reduce tasks. Each
task typically processes a large number of key-value pairs
(kv-pairs). If Incoop detects any data changes in the input of
a task, it will rerun the entire task. While this approach easily
leverages existing MapReduce features for state savings, it
may incur a large amount of redundant computation if only a
small fraction of kv-pairs have changed in a task.

Previous work proposed iMapReduce, [6] to efficiently
support iterative computation on the MapReduce platform.
However, it targets types of iterative computation where
there is a one-to-one/all-to-one correspondence from
Reduce output to Map input.

Previous work Incoop, [10] supports incremental one-step
processing. Incoop would treat each iteration as a separate
MapReduce job. However, a small number of input data
changes may gradually propagate to affect a large portion of
intermediate states after a number of iterations, resulting in
expensive global re-computation afterwards.

In the previous work [1] the researchers have developed fast
techniques for evolving data, and its mapping. But the
reduction part still needs improvement. In the work, they
have described various mapping and reducing techniques,
but if reduction is not optimized then the overall system
efficiency is low and might lead to a slow response for a real
time system.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 06 | June-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET ISO 9001:2008 Certified Journal Page 740

Previous works have following problems:

 Does not supports key-value pair level incremental
processing and supports only task level incremental
processing.

 Does not supports General-purpose iterative
computation and only supports one-to-one/all-to-
one correspondence from Reduce output to Map
input.

 Does not supports incremental processing for
iterative computations and only supports
incremental one-step processing.

 Speed of the mining process is low.

3. PROPOSED WORK

Current paper proposes, a system which overcomes the
drawback of slower reduction times, and uses a method
which reduces the input data faster as compared to any
proposed algorithm, thereby improving the overall efficiency
of the system. The proposal uses a modified version of the A-
priori algorithm, named as Top K rules, which finds and
recommends only the best K rules of the system, not
considering the redundant rules, and giving only the rules
which are better for describing the system behavior and
giving the best possible recommendations for the system.
This method will improve the overall speed and accuracy of
the rule mining process and make the entire Map Reduce
structure perform in real time with highest level of accuracy.
Proposed approach works in the following manner,

Step 1: Collection of evolving datasets

 The evolving datasets will be collected for mapping

and reduction.

Step 2: Development of mapping technique

 MapReduce allows for distributed processing of the
map and reduction operations. Provided that each
mapping operation is independent of the others, all
maps can be performed in parallel – though in
practice this is limited by the number of
independent data sources and/or the number of
CPUs near each source.

 Map function Maps input key/value pairs to a set of
intermediate key/value pairs. Maps are the
individual tasks which transform input records into
intermediate records. The transformed
intermediate records need not be of the same type
as the input records. A given input pair may map to
zero or many output pairs. Map() is run exactly once
for each K1 key value, generating output organized
by key values K2.

Step 3: Development of reduction technique

 A set of 'reducers' can perform the reduction phase,
provided that all outputs of the map operation that
share the same key are presented to the same
reducer at the same time, or that the reduction
function is associative. Reduce() is run exactly once
for each K2 key value produced by the Map step.

Logical View of MapReduce process

The Map and Reduce functions of MapReduce are both
defined with respect to data structured in (key, value) pairs.
Map takes one pair of data with a type in one data domain,
and returns a list of pairs in a different domain:

Map(k1,v1) → list(k2,v2)

The Map function is applied in parallel to every pair in the
input dataset. This produces a list of pairs for each call. After
that, the MapReduce framework collects all pairs with the
same key from all lists and groups them together, creating
one group for each key.

The Reduce function is then applied in parallel to each group,
which in turn produces a collection of values in the same
domain:

Reduce(k2, list (v2)) → list(v3)

Each Reduce call typically produces either one value v3 or an
empty return, though one call is allowed to return more than
one value. The returns of all calls are collected as the desired
result list.

Thus the MapReduce framework transforms a list of (key,
value) pairs into a list of values.

Fig -1: MapReduce Computation

Step 4: Improvement in reduction technique using Top K
Rules

Improvement is done in reduction techniques using Top K
Rules algorithm which is the modifies version of a-priori
algorithm. The Top K Rules algorithm works as follows:

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 06 | June-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET ISO 9001:2008 Certified Journal Page 741

 The TopKRules algorithm takes as input a
transaction database, a number k of rules that the
user wants to discover, and the minconf threshold.

 The algorithm main idea is the following. TopKRules
first sets an internal minsup variable to 0. Then, the
algorithm starts searching for rules. As soon as a
rule is found, it is added to a list of rules L ordered
by the support. The list is used to maintain the top-k
rules found until now. Once k valid rules are found,
the internal minsup variable is raised to the support
of the rule with the lowest support in L. Raising the
minsup value is used to prune the search space
when searching for more rules. Thereafter, each
time a valid rule is found, the rule is inserted in L,
the rules in L not respecting minsup anymore are
removed from L, and minsup is raised to the value of
the least interesting rule in L. The algorithm
continues searching for more rules until no rule are
found, which means that it has found the top-k
rules.

 To search for rules, TopKRules does not rely on the
classical two steps approach to generate rules
because it would not be efficient as a top-k
algorithm (as explained in the introduction). The
strategy used by TopKRules instead consists of
generating rules containing a single item in the
antecedent and a single item in the consequent.
Then, each rule is recursively grown by adding
items to the antecedent or consequent. To select the
items that are added to a rule to grow it, TopKRules
scans the transactions containing the rule to find
single items that could expand its left or right part.
Two processes for expanding rules in TopKRules
are left expansion and right expansion. These
processes are applied recursively to explore the
search space of association rules.

 Another idea incorporated in TopKRules is to try to
generate the most promising rules first. This is
because if rules with high support are found earlier,
TopKRules can raise its internal minsup variable
faster to prune the search space. To perform this,
TopKRules uses an internal variable R to store all
the rules that can be expanded to have a chance of
finding more valid rules. TopKRules uses this set to
determine the rules that are the most likely to
produce valid rules with a high support to raise
minsup more quickly and prune a larger part of the
search space.

Step 5: Result Analysis and Comparison

 The result of algorithm will be analyzed and will be

compared to existing results.

4. CONCLUSIONS

The first model uses i2MapReduce, which combines a fine-
grain incremental engine, a general-purpose iterative model,
and a set of effective techniques for incremental iterative
computation. The new model uses a modified version of the
A-priori algorithm, named as Top K rules, which finds and
recommends only the best K rules of the system. Compared
with the first model, the new model is much more efficient
and achieved the satisfactory performance as well. The main
objective of this paper was to throw some light on the
proposed work. It provides a promising methodology to
improve the overall speed and accuracy of the rule mining
process and make the entire Map Reduce structure perform
in real time with highest level of accuracy by using Top K
Rules.

REFERENCES

[1] Yanfeng Zhang, Shimin Chen, Qiang Wang, and Ge Yu,
“i2MapReduce: Incremental MapReduce for Mining Evolving
Big Data”, IEEE Transactions On Knowledge And Data
Engineering, Vol. 27, No. 7, July 2015.

[2] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M.
McCauley, M. J. Franklin, S. Shenker, and I. Stoica, “Resilient
distributed datasets: A fault-tolerant abstraction for, in-
memory cluster computing,” in Proc. 9th USENIX Conf. Netw.
Syst. Des. Implementation, 2012, p. 2.

[3] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: A system for large-scale
graph processing,” in Proc. ACM SIGMOD Int. Conf. Manage.
Data, 2010, pp. 135–146.

[4] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst, “Haloop:
Efficient iterative data processing on large clusters,” in Proc.
VLDB Endowment, 2010, vol. 3, no. 1–2, pp. 285–296.

[5] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J.
Qiu, and G. Fox, “Twister: A runtime for iterative
mapreduce,” in Proc. 19th ACM Symp. High Performance
Distributed Comput., 2010, pp. 810–818.

[6] Y. Zhang, Q. Gao, L. Gao, and C. Wang, “imapreduce: A
distributed computing framework for iterative
computation,” J. Grid Comput., vol. 10, no. 1, pp. 47–68, 2012.

[7] D. Peng and F. Dabek, “Large-scale incremental
processing using distributed transactions and notifications,”
in Proc. 9th USENIX Conf. Oper. Syst. Des. Implementation,
2010, pp. 1–15.

[8] D. Logothetis, C. Olston, B. Reed, K. C. Webb, and K.
Yocum, “Stateful bulk processing for incremental analytics,”
in Proc. 1st ACM Symp. Cloud Comput., 2010, pp. 51–62.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 06 | June-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET ISO 9001:2008 Certified Journal Page 742

[9] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham,
and M. Abadi, “Naiad: A timely dataflow system,” in Proc.
24th ACM Symp. Oper. Syst. Principles, 2013, pp. 439–455.

[10] P. Bhatotia, A. Wieder, R. Rodrigues, U. A. Acar, and R.
Pasquin, “Incoop: Mapreduce for incremental computations,”
in Proc. 2nd ACM Symp. Cloud Comput., 2011, pp. 7:1–7:14.

BIOGRAPHIES

Vishakha B. Dalvi received B.E. degree in Computer Science
and Engineering from H.V.P.M’s college of Engineering and
Technology, Amravati in 2014. She is currently pursuing M.E.
degree in Computer Science and Information Technology
from H.V.P.M’s college of Engineering and Technology,
Amravati.

Prof. Ranjit R. Keole received the B.E. and M.E. degree in
Computer Science from Prof. Ram Meghe Institute of
Technology, Badnera in 1992 and 2008, respectively. His
field of specialization is web Mining. He is currently working
as Associate Professor at H.V.P.M’s college of Engineering
and Technology, Amravati.

