
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 07 | July -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1

A NOVEL SYMBOLIC EXECUTION MODEL IN

AUTOMATED GENERATION OF TEST CASES

To Huu Nguyen1*, Tran Thi Ngan1, Do Thanh Mai2, Tran Manh Tuan1

1 School of Information and Communication Technology, Thainguyen University, Vietnam
2 School of Foreign Languages, Thainguyen University, Vietnam

---***---

Abstract – Modern software is becoming more and

more complex and need to have a high reliability. A

programmer can be assured that sample test runs work

correctly by checking the results. Program testing is the

most intensive tool for maintaining quality of software.

It is executed on each input from a given set of inputs one

by one. The biggest challenge of testing is how to make

an effective set of inputs. Symbolic execution is a

program analysis that is based on the same idea as

testing. However, symbolic execution has a huge

difference. Instead of supplying the normal inputs to a

program, symbolic execution supplies symbols

representing arbitrary values. In this paper, we

introduce a novel symbolic execution model based on the

combination of SPF with Choco decision procedure in

solving complex string constraints. The proposed model

is implemented on the examples that are used in other

constraint solvers. The numerical statistics of the result

is also given in this paper.

Key Words: Test cases, Symbolic execution, automated
generation of test cases, program testing, programing
analysis.

1. INTRODUCTION

Software checking is the most necessary step in the
completeness of computer programs. The objective of
this step is to assure the reliability and the correctness
of software. Two strategies for checking the
correctness are testing and model checking [14].
Testing is often used but it is mostly performed
manually [15], [21]. Moreover, testing meets the
challenges at finding concurrent errors [3], [16]. This
makes software testing be an expensive progress and
still have low coverage of the source code. On the other
hand, model checking is completely automatic and fast,
frequently producing an answer in a matter of minutes

[13], [17]. The main disadvantage of model checking is
the state explosion problem [17], [24].
Symbolic execution is an analysis technique that
generates high coverage test suite and also finds the
deeply errors in complex software. The input values of
symbolic execution are symbolic values instead of
actual data. And its outputs are presented as a function
of the symbolic inputs [7]. The ability to generate
concrete test inputs is one of the major strengths of
symbolic execution [6]. In [16], Sarfraz Khurshid et al.
provided a two-fold generalization of symbolic
execution and performed symbolic execution of code
during explicit state model checking. The paper also
illustrated two applications of their framework that are
checking correctness of multi-threaded programs and
generation of non-isomorphic test inputs.
Symbolic execution has been applied into generate test
inputs for various goals. However, the most well-
known use of this approach is to generate test inputs,
to improve code coverage and expose software bugs
[8], [10]. Besides, other uses of this approach include
privacy preserving error reporting [9], automatic
generation of security exploits [2], load testing [25],
fault localization [20] regression testing, robustness
testing and testing of graphical user interfaces, etc.
Two components of symbolic execution are path
condition generation and path condition solving. A
main challenge in symbolic execution is dealing with
path conditions. To overcome this, a constraint solver
namely CORAL is proposed [23] by M. Souza et al.
CORAL supplies with a new constraint solver named
heuristic solver and it also integrates this solver into
SPF symbolic execution tool as well. But in this paper,
CORAL is not evaluated in the context of constraints
generation from the analysis of other applications yet.
In [11], Indradeep Gosh et al. proposed an effective tool
(JST) for the automated generation of test case with a
high coverage. JST is a novel tool with a newly
supported essential Java library components and
widely used data structures. This tool supplies with
new solving techniques mainly for string constraints,
regular expressions. Moreover, it also supports to

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 07 | July -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 2

integer and floating point numbers. Key optimizations
make this tool be more efficient. However, the
experimental results show that it is hard to reach to
100% code coverage for the sections under test since
the deficiencies in the driver are manually generated.

2. BACKGROUND

2.1. Symbolic execution tools

In this section we want to introduce about briefly

several recent tools that are based on symbolic

execution.

Java PathFinder (JPF)

JPF [1] is considered as an explicit-state model checker

for Java programs. It is built on top of a customized

Java Virtual Machine (JVM). For convenient of users,

JPF stores all the explored states. It always backtracks

when it visits a previously explored state. The user can

customize the search and it can specify what part of the

state to be stored and used for matching. JPF focuses on

finding bugs and uses a variety of scalability enhancing

mechanisms.

Symbolic PathFinder (SPF)

Fig – 1: Structure of SPF tool

SPF [18], [19] is part of the Java PathFinder verification

tool-set. It is used to generate and explore the symbolic

execution tree. It is also used to analyze thread inter-

leavings and other forms of non- determinism that

might be present in the code. The structure of SPF is

given as in Figure 1 below.

DART (Directed Automated Random Testing)

DART [12] is based on an automated extraction of

program interface from source code. It generates of

test driver for random testing through interface. DART

also supplies a dynamic test generation to direct

executions along alternative program paths. Hence,

DART can detect program crashes and assertion

violations. DART deals with dynamic data easier with

concrete executions. All bugs reported by DART are

guaranteed to be sound. But it may not terminate and

path space of a large program is huge. These are the

main limitations of DART.

CUTE (A Concolic Unit Testing Engine)

CUTE [22] executes the code under test both concretely

and symbolically at the same time. CUTE does not

provide an automated extraction of interfaces. CUTE

leaves it up to the user to specify which functions are

related and what their preconditions are. Unlike DART

that it was applied to testing each function in isolation

and without preconditions, CUTE targets related

functions with preconditions such as data structure

implementations.

CUTE also uses backtracking to generate a test input

that executes one given path. But it attempts to cover

all feasible paths

2.2. Automated generation of test cases

EXE

EXE [4] is popular as an effective bug-finding tool that

automatically generates inputs that crash real code. It

uses a robust, bit-level accurate symbolic execution to

find deep errors in code and automatically generate

inputs that will hit these errors. EXE has advantages in

modeling of memory and fast constraint solver. Based

on these, EXE can perform an execution down any

feasible program path and at dangerous operations. By

using EXE, the test cases are generated with a high

coverage and high ability in discovering deep bugs in a

variety of complex code as well.

KLEE

KLEE [5] is a redesign of EXE, built on top of the Low

Level Virtual Machine (LLVM) compiler infrastructure.

KLEE uses novel constraint solving optimizations that

improve performance by over an order of magnitude

and let it handle many programs that are completely

Test Suite/
CounterExamples

Java *.class files
Coverage
Criteria/Property

Constraint Solvers

Symbolic Instruction Factory

Search Strategy

Heap Value symbolic

Stack Value symbolic

Threads

Choice Generators

Listeners

JPF-CORE

Program State Atributes

JPF-SYMBC

SymbolicListener
SymbolicSeqListener

PCChoiceGenerator
HeapChoiceGenerator

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 07 | July -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 3

intractable otherwise. KLEE is an effective tool because

of its space-efficient representation, its heuristic search

and simple, straightforward approach to handling the

environment. The automated generation of test suites

with a high coverage on a diverse set of real,

complicated, and environmentally-intensive programs

is also the strength of KLEE. For evaluation purpose,

KLEE is applied into all 90 programs in the latest stable

version of GNU COREUTILS. In recent studies, KLEE is

used in a variety of areas including wireless sensor

networks, automated debugging, reverse engineering,

testing of binary device drivers, exploit generation,

online gaming and schedule memorization in

multithreaded code.

CREST

CREST [6], [7] is a concolic testing tool for C programs.

It generates test inputs automatically and executes

target under test on generated test inputs. CREST can

explore all possible execution paths of a target

systematically. CREST is also an open-source re-

implementation of CUTE. CREST’s instrumentation is

implemented as a module of C Intermediate Language

(CIL). CREST has been used in various applications

consisting of building tools for augmenting existing test

suites to test newly-changed code, detecting SQL

injection vulnerabilities, running distributed on a

cluster for testing a flash storage platform and

experimenting with more sophisticated concolic search

heuristics.

3. A SYMBOLIC METHOD

In this section, we propose a framework that combines

a symbolic execution and an automated generation of

test inputs. The general diagram of this frame work is

presented in Section 3.1. All the details about our work

are shown in Section 3.2. In section 3.3, we address

some main functions used in this model.

3.1. Modeling the novel frame work

In this section, we will introduce a new model (called

NSE) based on the performance of SPF on string

constraints. The general diagram of this model is

presented as in Figure 2 below. The input of this model

is a software program and the correctness

specification. Firstly, the input program is transformed

to the instrumented form by using code

instrumentation. Consequently, this transformed

program and correctness specification are used in SPF

tool like necessary conditions to perform the model.

The result of this step is counterexample or the test

suite. Lastly, a generic decision procedure is built based

on the status of the model through an interface. All the

above steps are repeated until every branch of input

program is browsed.

Fig - 2. General scheme of proposed model

3.2. Basic steps of proposed model

The steps of this model can be detailed as in Table 1

below.

Table – 1: Steps of novel framework

Input Code program, Correctness specification

Output Test cases and runtime, Error Report

NSE

1 Transfer the input program to instrumented

program

3 Repeat

2 Use SPF combining with Hybrid solver

3 Build Generic Decision Procedure Interfaces

4 Collect the constraints and solved through
an SMT (Satisfiability Modulo Theories)

5 Until every branch of input program is

tested

6 Error Report and Solved constraints to

generate test suite.

4. EXPERIMENT RESULTS

4.1. Some basic functions

To illustrate for the using of SPF in NSE, especially in

complex string solving, we apply the proposed model

into examples. In which, these examples have been

used in other solvers. We are going to show some basic

functions of the model in this section. Figure 3 below

Source

Program

Test suite

Correctness

Specification
Instrumented

Program

Code

Instrumentation

SPF

Generic Decision Procedure Interface

STP SCV SAT Choco

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 07 | July -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 4

shows the function used to check the correctness of URL

query chain.

Fig- 3: Test the correctness of query chain.

PreserveSomeHtmlTagsAndRemoveWhitespaces(String

body) is applied to remove the spaces and simple

HTML tag. It is presented as in Figure 4 below.

Fig-4: The code of String body function

The purpose of function site_exec(String cmd) (in figure

5) in symbolic execution is to check the risk of query

chains which can cause run-time exception errors.

Fig-5: site_exec(String cmd) function

The proposed model - NSE has been implemented in

Java program and executed on a PC HP Pavilion DV4

laptop with Core i3 processor, 4M RAM. The

experimental results are obtained by using constraint

solver “choco”(symbolic.dp=choco) and the decision

procedure interface Automata

(symbolic.string_dp=automata). The maximum

computational time for string constraint solving is 3

seconds (timeoisymbolic.string_dp_timeout_ms=3000).

Based on these functions, all the branches of the

program are tested. The statistics of performance of

the NSE model is given in Table 2.

Table – 2: Numerical statistics of the proposed model

Functions String Integer Number of

Iterations

PCs Pre-

processed

Timeouts

IsEasyChairQuer

y(String str)

3554 578 21 15 1 0

preserveSomeHtm

lTagsAndRemoveW

hitespaces

(String body)

4513 1876 358 6148 1628 1258

site_exec

(String cmd)

112 0 0 7 0 3

From table 2, the values on “String” column imply the

sum of necessary time to solve the string constraints

(mini-second). The values on “Integer” column give the

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 07 | July -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 5

same information for the Integer constraint solving.

“Number of Iterations” column shows the sum of

number of necessary transference between string and

integer solving. “PCs” column gives the sum of number

of Path Constraints used in the model. “Pre-processed”

column addresses the sum of path constraints found in

order to define unsatisfied paths in preprocessing step.

Finally, “timeouts” index is the number of unsolvable

constraints that can be reached if the running time is

more than 3 seconds.

5. CONCLUSIONS

Although the significant scalability challenge for

symbolic execution is how to handle the exponential

number of paths in the code. In the proposed model,

this issue is completely solved by using SPF and Choco

constraint solver in the complex mixed string

constraints. The model is effective because it gives the

test suite in which all the branches of the program are

browsed in a limited running time. This paper also

gives the experimented results obtained when applying

the proposed model on the typical examples.

ACKNOWLEDGEMENT

The authors are grateful for the support from the

staffs of Samsung ICTU Lab. The Lab has provided us

the necessary devices as experimental tools. We want

also to say thank TN2014-TN07-03, the project of

Thainguyen University.

REFERENCES

[1]. S. Anand, C. S. Păsăreanu, and W. Visser, JPF-SE: a

symbolic execution extension to Java PathFinder. In

TACAS’07, pages 134–138, 2007

[2]. Brumley, D., Poosankam, P., Song, D. X., and 0002, J.

Z., “Automatic patch based exploit generation is

possible: Techniques and implications,” in IEEE

Symposium on Security and Privacy, pp. 143–157,

2008.

[3]. Borges, M., d'Amorim, M., Anand, S., Bushnell, D., &

Pasareanu, C. S. (2012, April). Symbolic execution

with interval solving and meta-heuristic search.

In 2012 IEEE Fifth International Conference on

Software Testing, Verification and Validation (pp.

111-120). IEEE.

[4]. C. Cadar, V. Ganesh, P. Pawlowski, D. Dill, and D.

Engler, EXE: Automatically generating inputs of

death, In CCS’06, Oct–Nov 2006.

[5]. Cadar, C., Dunbar, D., & Engler, D. R. (2008), KLEE:

Unassisted and Automatic Generation of High-

Coverage Tests for Complex Systems Programs,

In OSDI (Vol. 8, pp. 209-224).

[6]. Cadar, C., Godefroid, P., Khurshid, S., Păsăreanu, C.

S., Sen, K., Tillmann, N., & Visser, W. (2011, May).

Symbolic execution for software testing in practice:

preliminary assessment. In Proceedings of the 33rd

International Conference on Software

Engineering (pp. 1066-1071). ACM.

[7]. Cadar, C., & Sen, K. (2013). Symbolic execution for

software testing: three decades

later. Communications of the ACM, 56(2), 82-90.

[8]. Cadar, C., Dunbar, D., & Engler, D. R. (2008,

December). KLEE: Unassisted and Automatic

Generation of High-Coverage Tests for Complex

Systems Programs. In OSDI (Vol. 8, pp. 209-224).

[9]. Castro, M., Costa, M., and Martin, J.-P., “Better bug

reporting with better privacy,” in International

Conference on Architectural Support for

Programming Languages and Operating Systems,

pp. 319–328, 2008

[10]. Darringer, J. A., & King, J. C. (1978). Applications

of symbolic execution to program

testing. Computer, 11(4), 51-60.

[11] Ghosh, I., Shafiei, N., Li, G., & Chiang, W. F. (2013),

JST: an automatic test generation tool for industrial

Java applications with strings. InProceedings of the

2013 International Conference on Software

Engineering(pp. 992-1001). IEEE Press.

[12]. P. Godefroid, N. Klarlund, and K. Sen, DART:

Directed Automated Random Testing, In PLDI’05,

June 2005.

[13]. Jhala, R., & Majumdar, R. (2009). Software model

checking. ACM Computing Surveys (CSUR), 41(4), 21.

[14]. Jovanović, I. (2006). Software testing methods

and techniques. The IPSI BgD Transactions on

Internet Research, 30.

[15]. Khan, M. E. (2010). Different forms of software

testing techniques for finding errors. International

Journal of Computer Science Issues, 7(3), 11-16.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 07 | July -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 6

[16]. Khurshid, S., Păsăreanu, C. S., & Visser, W. (2003,

April). Generalized symbolic execution for model

checking and testing. In International Conference on

Tools and Algorithms for the Construction and

Analysis of Systems (pp. 553-568). Springer Berlin

Heidelberg.

[17]. Merz, S. (2001). Model checking: A tutorial

overview. In Modeling and verification of parallel

processes (pp. 3-38). Springer Berlin Heidelberg.

[18]. Păsăreanu, C. S., & Rungta, N. (2010), Symbolic

PathFinder: symbolic execution of Java bytecode.

In Proceedings of the IEEE/ACM international

conference on Automated software engineering (pp.

179-180). ACM.

[19]. Păsăreanu, C. S., Visser, W., Bushnell, D.,

Geldenhuys, J., Mehlitz, P., & Rungta, N. (2013),

Symbolic PathFinder: integrating symbolic

execution with model checking for Java bytecode

analysis, Automated Software Engineering, 20(3),

391-425.

[20]. Qi, D., Roychoudhury, A., Liang, Z., and Vaswani,

K., “Darwin: An approach for debugging evolving

programs,” in Joint meeting of the European

Software Engineering Conference and the ACM

SIGSOFT Symposium on the Foundations of

Software Engineering, pp. 33–42, 2009.

[21]. Sawant, A. A., Bari, P. H., & Chawan, P. M. (2012).

Software testing techniques and

strategies. International Journal of Engineering

Research and Applications (IJERA), 2(3), 980-986.

[22]. Sen, K., Marinov, D., & Agha, G. (2005). CUTE: a

concolic unit testing engine for C. In ACM SIGSOFT

Software Engineering Notes (Vol. 30, No. 5, pp. 263-

272). ACM.

[23]. M. Souza, M. Borges, M. d’Amorim, and C. S.

Păsăreanu, “CORAL: Solving Complex Constraints

for Symbolic PathFinder,” in NASA Formal Methods,

2011, pp. 359–374.

[24]. Yang, J., Twohey, P., Engler, D., & Musuvathi, M.

(2006). Using model checking to find serious file

system errors. ACM Transactions on Computer

Systems (TOCS), 24(4), 393-423.

[25]. Zhang, P., Elbaum, S. G., and Dwyer, M. B.,

“Automatic generation of load tests,” in

International Conference on Automated Software

Engineering, pp. 43–52, 2011

BIOGRAPHIES

Msc. To Huu Nguyen received the
Bachelor Education of Information
Technology at Thai Nguyen University
of Education in 2003 and Master degree
on Computer Science at Thainguyen
University in 2008. He worked as a
lecturer at Faculty of Information
Technology, School of Information and
Communication Technology,
Thainguyen University from 2004. Now,
he is a researcher at Institute of
Information Technology, Academic
Institute of Science and Technology,
Vietnam.
Office address: University of
Information and Communication
Technology, Thai Nguyen University,
Thai Nguyen, Vietnam.
Email: thnguyen@ictu.edu.vn.

Dr. Tran Thi Ngan obtained the Bachelor
degrees on Mathematics- Informatics at
VNU University of Science, Vietnam
National University (VNU). She got Master
degree on Computer Science at Thai
Nguyen University. She received PhD
degree on applied Mathematics –
Informatics at Hanoi University of Science
and Technology. From 2003, she worked as
a lecture in Faculty of Information
Technology, School of Information and
Communication Technology, Thai Nguyen
University. Her major interests are discrete
mathematics, Monte Carlo method,
optimization, probability theory and
statistics, machine learning.

Msc. Do Thanh Mai received the Bachelor of
Education in Information Technology at
Thai Nguyen University of Education in
2003 and Master degree on Computer
Science at Thai Nguyen University in 2008.
She worked as a lecture of Information
Technology in Basic Sciences Department
at School of Foreign Languages (SFL-TNU).
Office address: School of Foreign
Languages, Thai Nguyen University, Thai
Nguyen, Vietnam.
 Email: dothanhmai.sfl@tnu.edu.vn.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 07 | July -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 7

Msc. Tran Manh Tuan received the
Bachelor on Applied Mathematics and
Informatics at Hanoi University of Science
and Technology in 2003 and Master degree
on Computer Science at Thainguyen
University in 2007. Now, he is a researcher
at Institute of Information Technology,
Academic Institute of Science and
Technology, Vietnam. He worked as a
lecturer at Faculty of Information
Technology, School of Information and
Communication Technology, Thainguyen
University from 2003.
Office address: University of Information
and Communication Technology, Thai
Nguyen University, Quyet Thang, Thai
Nguyen city, Thai Nguyen, Vietnam.
Email: tmtuan@ictu.edu.vn.

mailto:tmtuan@ictu.edu.vn

