
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 07 | July-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 515

TEXT AND KEYWORD DRIVEN AUTOMATION TESTING USING
SELENIUM WEB DRIVER

Mr. Dashrath Mane1; Gaurav Bhadekar2 & Santosh Salunkhe3
Department of MCA

Vivekanand Education Society’s Institute of Technology

Chembur, Mumbai 400074.

Abstract - Nowadays in Software industry manual testing
is replaced by automation testing at very large scale.
Software testing using automation software tools can
increase depth and scope of testing process to improve
software product quality. Testers have to write a code in
automated software tools like ‘Selenium Web Driver’ to
automate whole software test process. By using automation
tools, testing is become more efficient and repetitive.

 Selenium Web-Driver is widely used automation software
tool basically used to test web elements present on the
screen. Testers have to write a code in selenium web driver
to locate web element on a screen and perform testing on
them according to the test scenario. But, still some problems
faced in selenium web driver for locating web element on
the screen. In this paper will be focused on Automation
testing using Selenium web driver, problems faced in
selenium web driver and its solution using our research.

Key Words: Manual Testing, Automation Testing,
Selenium Web Driver, etc.

1. INTRODUCTION

The software testing is a process of evaluating system
software and its components to find out whether they are
meeting actual requirements of system or not. The main
objective of software testing is that to create such a test
scenarios or that verifies whether the system software
satisfies System /Business requirement specifications.

For the process of software testing, testers have to
follow some process to achieve this process. Figure
defines the various stages in STLC (Software Testing Life
Cycle). One of most important steps in this is to plan
various test conditional scenarios and write down various
test cases. Test cases are nothing but set of documents
with test data, preconditions, expected results, various
conditions developed for a particular test scenario to
verify specific requirements. Executions of test cases are
depending on number of times test cycles are going to
repeat.

Fig -1: Software Testing Life Cycle

2. AUTOMATION TESTING

Automation testing is a process of testing software and
its components using automated tools. By using
automated tools, we can take control whole test process
and can easily compare actual outcome with predicted
outcomes. Automated software testing can increase depth
and scope of test to help improve software quality.
Lengthy tests can be executed easily by using automated
testing. They can be run on multiple computers of
different configurations at a same time. Automated
software testing method can test an application and see
memory contents, data tables, file contents, and internal
program current status to determine if the product is
behaving as expected. Test automation can easily execute
thousands of various test cases during every test-case run
providing coverage that is impossible with manual tests.
There are various tools are available in market for
automation testing with multiple programming language
compatibility. Following are list of automated software
tools widely used:

 Selenium Web Driver, QF-Test
 Windmill, Rational,
 Functional Tester
 Tellurium, Ranorex

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 07 | July-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 516

3. SELENIUM WEB DRIVER

Selenium is automation testing framework that used
for web applications allows us to write tests scenarios in
many programming languages like Java, C#, Groovy, Perl,
PHP, Python and Ruby. WebDriver is a web automation
framework that allows you to execute your tests scenarios
against different browsers. Selenium-WebDriver makes
direct calls to browser using every browser’s local support
for automation. You are now able to make powerful tests
because WebDriver can use in any programming language
which helps in designing your tests. Selenium web driver
basically locates the web element on the screen by its
position. After locating element on the screen testing is
done accordingly on those web elements.

Following are the ways to locate elements on the screen
in selenium web driver.

 className
 cssSelector
 id
 linkText
 name
 partialLinkText
 tagName
 xpath

Fig -2: Architecture of Selenium Web Driver

The above figure illustrates the architecture of

selenium web driver. Here we are writing our test in any
programming language using common selenium API and
that language binding is sending commands across this
common interface. Now other side is listening a driver, it
interprets those commands and runs them on the actual
browser and return result backup using the API. Basically
in programming terms Web driver is the name of key
interface against which there are many methods are
present. These methods are executed as various action
steps on the web elements to perform test operations
using selenium web driver. Following are some methods
in selenium web driver:

findElement(), getCurrentUrl() getTitle(),
getPageSource(), close(), quit()

Let us see simple Example with code snippet how
testing is done in Selenium web driver. Here we will Login
to Gmail account and will automate the below scenarios.

1. Open A Browser.
2. Navigate to the URL.
3. Enter the User Name.
4. Click On Next Button
5. Enter Password
6. Sign-In to the Gmail Account.
7. Click on compose button.
8. Sign-Out from the Gmail account.
9. Close the browser.

Fig -3: Gmail Login Page

WebDriver driver = new FirefoxDriver();
//NaviGate URL
driver.get("https://mail.google.com/");
//Enter UserName,Click On Next Button
driver.findElement(By.id("Email")).sendKeys("YOUR
USER NAME");
driver.findElement(By.id("next")).click();
//Enter Password,Click On SignIn Button
driver.findElement(By.id("Passwd")).sendKeys("YOUR
PASSWORD");
driver.findElement(By.id("signIn")).click();
//Click On Compose Button.
driver.findElement(By.xpath("//*[@id=":gr"]/div/div")).c
lick();
//Logout
driver.findElement(By.xpath("//*[@id="gb"]/div[1]/div[1
]/div[2]/div[4]/div[1]/a/span")).click();
driver.findElement(By.linkText("Sign out")).click();
//Close the browser.
driver.close();
}}

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 07 | July-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 517

4. PROBLEMS FACED WHILE USING SELENIUM
WEB DRIVER

 The basic work of selenium web driver is to locate web
element on a screen and perform testing on to that web
elements. We have to write code in such a way that first it
locates element and then performs various test scenarios
on them. But following problems we are faced during use
of selenium web driver:
1] Problem with this technology is that small change done
in a web element designing code causes rewrite the whole
code in selenium the code is not reusable.
2] If web element changes its position slightly on the
screen we have to change our selenium web driver code
for that web element.
3] In some cases, web elements cannot directly have
located using selenium web driver because in that case
web designer not use id or xpath to develop that web
element so it’s difficult to locate web elements. 4] In case
of dynamic grids or say dynamic web elements it is
difficult to locate them using id, class or xpath because
their id, class, xpath are also dynamic so it changes
frequently.
5] Nowadays web-site designers try to design their web-
sites using responsive web designing techniques using
Bootstrap and WordPress. In responsive web designing
size of the website is changed automatically according to
different screen sizes. So, web elements also relocate their
position accordingly to the screen size. In this scenario it is
difficult to write a code to locate that web elements on the
screen.
6] In new programming languages like Angular JS it’s
difficult to locate web elements directly.
7] Every time new Web element is added to screen new
set of code have to add in web driver. For every new test
cases testers have to write code in background.

5. TEXT DRIVEN APPROACH TO LOCATE WEB
ELEMENT

 The problem faced by us in selenium web driver to
locate the web element. This is because of changes in id,
class, xpath and other locating methods of web elements.
So, to overcome to that problem we are try to replace id,
xpath, class by using text driven approach.
 In text driven approach we have try to locate web
elements on the screen on the basis of text. Every web
element displayed on the screen by using some text. Ex
Username, Password, etc. So, using text driven approach
web elements are located by text present on the screen.
Following techniques that we are used in text driven
approach:
1] Contains: By using 'contains' function in XPath, we can
extract all the elements which matches a particular text
value.
Example: Here we are searching a web element displayed
as UserName

 "[contains(text(),'UserName')]"

2] Following: Using following keyword, we can fetch a web
element on the which is next to some other element.
Example: Here we locate textbox on the basis of following
keyword.

"//ul/li[contains(text(),'UserName')]/
following-sibling::input"

3] Preceding: Using Preceding keyword, we can fetch a
web element on the which is preceding siblings to some
other element.
Example: Here we locate Gmail image on the basis of
Preceding keyword.

"//ul/li[contains(text(),'UserName')]/
preceding-sibling::input"

4] Title: Using title tag it is very easy to locate web
element using that particular title
Example: Here we are searching a web element whose
title is UserName.

"//*[@title = '"UserName"']"

 These techniques we are using in text driven approach
to replace id, class. Also, getAbsolutexpath(), ancestor()
are helpful to locate web elements on the screen. This
approach solves the problem of locating web elements.
Following are some advantages of text driven approach:
1] The main benefit of keyword driven approach is that it
is easy to locate web element on the screen because search
of the web elements is done on the basis of new
techniques.
2] Change of position of web element on the screen,
hidden web elements, code change of web elements does
not affect test process using automating automation.
3] No additional code has to write to locate web element
on the screen and it is guaranteed method to locate
element on the screen.
4] This technique is work with web driver code written in
java, C#, python and many more programming languages.

6. KEYWORD DRIVEN APPROACH TO OPTIMIZE
AUTOMATION PROCESS

The idea behind the Keyword Driven approach in
automation testing is to separate the coding from the test
case & test step. This method helps a non-technical person
to understand the automation very well. With this method
without changing code in background we can add new test

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 07 | July-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 518

cases on web element as per different test scenarios. In
keyword driven test framework, all the operations and
instructions are written in some external file like CSV file.
We have to just add different test scenarios on web
elements by using this CSV files. So, by using this method
no need to change code in background and code
reusability is also achieved.

The main concept behind this approach is web
elements and actions performed on them. The common
web elements used in selenium web driver are

 Button
 Link
 Navigation
 Text Box
 Radio Button
 Check Box
 Drop Down
 Wait

Actions that also called keywords performed on them are
 Click – Perform the click option
 Navigate – Navigate to URL
 Select – Select the value from input
 Sendkeys – Provide the input to the web element
 waitForElement – Dynamic wait for web element

So, by locating web element on the by using various
locators, actions are performed on them as per test
scenario in this test case. Following is the architecture of
keyword driven approach

Fig -4: Architecture of Keyword Driven Approach
Let us see example of Gmail login using keyword driven

techniques.
The external CSV file is passed to the selenium web

driver code is as follows:

Table -1: Example of External CSV file

After Passing CSV external file to java code java following
steps are done in Keyword driven approach:

 Read the test steps from the CSV file one row at a
time

 Execute the keyword corresponding to the
current step in the test case

 Record the results in another CSV file.

Resulted Output file looks like follows:

Table -2: Example of Generated Result CSV file

Test Case ID Result Error Log

1 Pass

2 Pass

3 Pass

4 Pass

5 Pass

6 Pass

7 Pass

8 Pass

 Java uses CSV reader for read the CSV file line by line.

Each line is considered as one test case and java code

executes that test case. We have to add just add keywords and

locators with parameters as test new test cases adds in

scenario.

 Resulted output file contains test results with error log for

the reference. So, it is difficult to know the tester which test

case is passed and which is failed so tester can able to make

changes in CSV file.

Keyword Locator LocatorValue Parameter
Navigate https:

//mail.
google.com/

SendKeys xpath [contains(text(),
'Enter your email')]

YOUR
USER
NAME

Click xpath [contains(text(),'Next')]
SendKeys id Passwd YOUR

 PASS
WORD

Click xpath Sign in
Click xpath [contains(text(),

'COMPOSE')]

Click linkText Google Account: User
(username@gmail.com)

Click linkText Sign out

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 07 | July-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 519

6.1 Advantages of keyword driven approach

1] Keyword driven technique doesn’t require the user to
acquire programming knowledge.
2] Code reusability is achieved at large scale; no new code
has to written for new web element.
3] A single keyword can be used across multiple test
scripts.
4] Keyword driven techniques can be uses as a testing
framework to a multiple project.
5] Large number of test cases are designed and executed
in less time rather than manual testing.
6] Output files are created with the logs so it is easy to
know test results.

6.2 Disadvantages of keyword driven approach

1] The user should be well known with the Keyword
creation mechanism to be able to efficiently use this
approach as a framework.
2] This method becomes complicated gradually as it grows
and a number of new keywords are introduced.

7. CONCLUSIONS

Automated Software testing is the best technique to
improve the effectiveness, efficiency and coverage of
software testing and Selenium is a framework comprises
of many tools used for testing web applications. In this
research paper we are focused on some new approaches
used in the automation testing to improve its efficiency
and overcome some problems. The main aim of
Automating automation is mostly some efforts which we
are taking while automation testing is reduced and
automation testing done in more optimal ways.

Text driven approach and keyword driven approach

are finds very helpful in automation testing. These two
approaches help in speed up the testing process and
improve efficiency in selenium web driver tool.

8. REFERENCES

[1]. http://seleniumhq.org/

[2]. http://guru99.com/automation-testing.html

[3]. http://softwarequalitymethods.com/papers

[4]. https://en.wikipedia.org/wiki/Test_automation

[5]. http://www.origsoft.com/whitepapers/software-
testing-glossary/glossary_of_terms.pdf

[6]. Sherry Singla, Harpreet Kaur, “Selenium Keyword
Driven Automation Testing Framework”, International
Journal of Advanced Research in Computer Science and
Software Engineering, Volume 4, Issue 6, June 2014.

[7]. Chandraprabha, Ajeet Kumar, Sajal Saxena, “Data
Driven Testing Framework using Selenium WebDriver”,
International Journal of Computer Applications (0975 –
8887), Volume 118 – No. 18, May 2015.

[8]. Vishawjyoti, Sachin Sharma, “Study and Analysis of
Automation Testing Techniques”, Journal of Global
Research in Computer Science, Volume 3, No. 12,
December 2012.

[9]. R.S. Pressman, “Software Engineering a Practitioner’s
Approach”, McGraw-Hill International Edition, ISBN 007-
124083-7.

9. BIOGRAPHIES

Mr. Dashrath Mane – Assistant Professor, Department of
Master in Computer Application, Vivekanand Education
Society’s
Institute of Technology - Mumbai, Maharashtra.
Email: dashrath.mane@ves.ac.in

Mr. Gaurav Bhadekar – Student,
Department of Master in Computer Application,
Vivekanand Education Society’s
Institute of Technology - Mumbai, Maharashtra.
Email: gaurav.bhadekar@ves.ac.in

Mr. Santosh Salunkhe – Student,
Department of Master in Computer Application,
Vivekanand Education Society’s
Institute of Technology - Mumbai, Maharashtra.
Email: santosh.salunke@ves.ac.in

http://www.origsoft.com/whitepapers/software-testing-glossary/glossary_of_terms.pdf
http://www.origsoft.com/whitepapers/software-testing-glossary/glossary_of_terms.pdf
mailto:dashrath.mane@ves.ac.in
mailto:gaurav.bhadekar@ves.ac.in
mailto:santosh.salunke@ves.ac.in

