Selective Harmonics Elimination for Five Level Inverters with Unequal DC Sources

Miss. Mitalee Anil Kamble ${ }^{\mathbf{1}}$, Prof. K. Chandra Obula Reddy ${ }^{\mathbf{2}}$
${ }^{1}$ Student, Matsyodari Shikshan Sanstha's,College Of Engineering and Technology Jalana-431203 (MS) India
${ }^{2}$ Assistant Professor,Matsyodari Shikshan Sanstha's,College Of Engineering and Technology,Jalana-431203 (MS)

Abstract

In virtue of the use of a set of independent dc sources, multilevel inverters (MLI) are capable to operate at higher voltage levels and at lower switching frequencies than conventional inverters In order to limit losses and to increase converter efficiency, very low frequency modulation techniques should be adopted, such as selective harmonic elimination (SHE) at fundamental frequency operation. This paper proposes a modulation technique based on a harmonic elimination method developed for five level inverters with unequal dc link voltages. The approach is based on the analytical solution of nonlinear equations associated with the inverter. After a description of the method, an analysis on the computed switching angles and on their impact on total harmonic distortion is reported with the support of simulation result.

Key Words: Selective Harmonic Elimination (SHE), 5level cascaded inverter, Unequal dc sources, Total Harmonic Distortion(THD).

1. INTRODUCTION

In firmness of purpose for the use of independent DC sources, multilevel inverters (MLI), can be capable to operate at higher voltage levels and at lower switching frequencies than conventional inverters and similarly, to synthesize staircase output voltage waveforms ensuring better harmonic content and reduced electromagnetic interferences (EMI). For such reasons, nowadays, they are considered a very appealing solution for medium and high voltage power applications [1]. Very low frequency modulation techniques should be adopted In order to limit losses and to increase converter efficiency, one of which is selective harmonic elimination (SHE). In [2] the theory of symmetric polynomials has been applied. By increasing the number of levels, the polynomials degree tends to be high; hence the mathematical complexity of the SHE problem reaches a high level. The non-linear equations describing the problem can be solved using some iterative techniques such as the Newton-Raphson method, but they need a proper initial guess. Heuristic algorithms, such as genetic algorithm (GA) and particle swarm optimization (PSO) are very interesting because, for the range space where there is no analytical solution, they will find the nearest solution
providing a smooth data set [3]. However, they present the disadvantage of computationally intensive and timeconsuming equations. Therefore, switching angles are calculated offline. In [4] the Bee algorithm (BA) is applied to a 5 -level inverter for solving the equations and the superiority.

2. Analytical Procedure for Switching Angle Computation

A five-level cascaded inverter fed by two separate unequal dc sources $V 1$ and $V 2$ is shown in Fig. 1. For such an inverter the switching angles $\alpha 1$ and $\alpha 2.0<\alpha 1<\alpha 2<\pi$.that eliminates a harmonic from the output voltage waveform can solving the following system:

$$
\begin{gather*}
u_{1} \cos \left(\mathrm{k} \alpha_{1}\right)+u_{2} \cos \left(\mathrm{k} \alpha_{2}\right)=0 \\
u_{1} \cos \left(\alpha_{1}\right)+u_{2} \cos \left(\alpha_{2}\right)-\mathrm{m}_{1}=0 . \tag{1}
\end{gather*}
$$

Fig.1: Single-phase cascaded H-Bridge five level inverter with unequal dc sources.

Where, $k=3,5,7$ and m_{1} is modulation index.

a) By Eliminating $3^{\text {rd }}$ Harmonics :

By introducing Chebyshev polynomials:

$$
\begin{equation*}
\mathrm{T}_{1}\left(\mathrm{x}_{\mathrm{i}}\right)=\mathrm{x}_{\mathrm{i}}=\cos \left(\alpha_{1}\right) \tag{2}
\end{equation*}
$$

And $\mathrm{T}_{3}(\mathrm{xi})=4 \mathrm{xi}^{3}-3 \mathrm{x}_{\mathrm{i}}=\cos \left(3 \alpha_{1}\right)$
$\mathrm{I}=1,2$ by transforming polynomial system
$\left\{\begin{array}{l}v_{1} T_{3}\left(x_{1}\right)+v_{2} T_{3}\left(x_{2}\right)=0 \\ v_{1} T_{1}\left(x_{1}\right)+v_{2} T_{1}\left(x_{2}\right)-m_{1}=0 .\end{array}\right.$
The following final system can be obtained:
$\mathrm{a}_{3} \mathrm{X}^{3}{ }_{1}+\mathrm{a}_{2} \mathrm{X}^{2}{ }_{1}+\mathrm{a}_{1} \mathrm{X}_{1}+\mathrm{a}_{0}=0$

International Research Journal of Engineering and Technology (IRJET)
e-ISSN: 2395-0056
Volume: 03 Issue: 07 | July-2016 www.irjet.net p-ISSN: 2395-0072
$\mathrm{x}_{2}=-\mathrm{b}_{1} \mathrm{X}_{1}+\mathrm{b}_{0}$
The solutions of the system (5) are three, belonging to C2 but only one solution $(x 1, x 2)$ is valid because it has to satisfy the following two conditions:

- Each component of the solution should belong to the interval $[0,1]$, and
- $\quad x 1>x 2$.

The switching angles are computed as_1 $=\arccos (x 1)$ and a_{2} $=\operatorname{arecos}\left(\mathrm{x}_{2}\right)$ fig 2 shows curve for $k=3$. With two functions denoted by dash curve and continuous line.

Fig 2: Curves in implicit form of the system (1) for $k=3$.

b) By Eliminating $5^{\text {th }}$ Harmonics:

By considering the term,
$\mathrm{T}_{5}\left(\mathrm{x}_{\mathrm{i}}\right)=16 \mathrm{x}^{5} \mathrm{i}-20 \mathrm{x}^{3} \mathrm{i}+5 \mathrm{xi}=\cos \left(5 \boldsymbol{\alpha}_{1}\right) \mathrm{i}=1 ; 2$, in addition to T 1 (xi) and T3 (xi), the following polynomial system can be obtained:

$$
\begin{align*}
& \mathrm{v}_{1} \mathrm{~T}_{5}\left(\mathrm{x}_{1}\right)+\mathrm{v}_{2} \mathrm{~T}_{5}\left(\mathrm{x}_{2}\right)=0 \\
& \mathrm{v}_{1} \mathrm{~T}_{1}\left(\mathrm{x}_{1}\right)+\mathrm{v}_{2} \mathrm{~T}_{1}\left(\mathrm{x}_{2}\right)-\mathrm{m} 1=0 \tag{6}
\end{align*}
$$

Algebraic manipulations lead to the following system:

$$
\begin{align*}
& \mathrm{c}_{5} \mathrm{X}^{5}{ }_{1}+\mathrm{c}_{4} \mathrm{X}^{4}{ }_{1}+\mathrm{c}_{3} \mathrm{X}^{3}{ }_{1}+\mathrm{c}_{2} \mathrm{X}^{2}{ }_{1}+\mathrm{c}_{1} \mathrm{X}_{1}+\mathrm{c}_{0}=0 \\
& \mathrm{x}_{2}=-\mathrm{b}_{1} \mathrm{X}_{1}+\mathrm{b}_{0} \tag{7}
\end{align*}
$$

Where, $\mathrm{c}_{5}=16 v_{1}\left(1-\mathrm{b}_{1}{ }^{4}\right), \mathrm{c}_{4}=80 \mathrm{~m}_{1} \mathrm{~b}_{1}{ }^{4}, \mathrm{c}_{3}=20 v_{1}\left[\mathrm{~b}_{1}{ }^{2}\left(1-8 \mathrm{~b}^{2}{ }_{0}\right)-\right.$ 1], $\mathrm{c}_{2}=20 \mathrm{~m}_{1} \mathrm{~b}^{2}{ }_{1}\left(8 \mathrm{~b}^{2}{ }_{0}-3\right), \mathrm{c}_{1}=20 \mathrm{~m}_{1} \mathrm{~b}_{0} \mathrm{~b}_{1}\left(3-4 \mathrm{~b}^{2}{ }_{0}\right), \mathrm{c}_{0}=\mathrm{m}_{1}[5+$ $\left.4 b^{2}{ }_{0}\left(4 b^{2}{ }_{0}-5\right)\right]$, Among the five solutions of the system (7) in C 2 two at most valid. Figure 3 shows, for $\mathrm{k}=5$,

Fig 3: Curves in implicit form of the system (1) for $k=5$.

3. Application

A five-level cascaded inverter characterized by $\mathrm{v} 1=0: 55$ and $\mathrm{v} 2=0: 45$ has been considered and the proposed procedure has been applied for computation of the switching angles in two distinct cases:

Fig 4: $V k \%$ obtained eliminating the third harmonic for $m 1=$ 0.5 and $\alpha 1=0.49465 \mathrm{rad}, \alpha 2=1.53540 \mathrm{rad}$.

Fig 5: $V k \%$ obtained eliminating the third harmonic for $m 1=$ 0.83 for $\alpha 1=0.28436 \mathrm{rad}, \alpha 2=0.83483 \mathrm{rad}$

Fig 6: THD\% obtained eliminating the fifth harmonic.

Fig 7: Computed switching angles for fifth harmonic elimination.

Fig 8: THD\% obtained eliminating the fifth harmonic.

Fig 9: \% obtained eliminating the fifth harmonic for $m 1=$ $0.55, \alpha 1=0.38753 \mathrm{rad}, \alpha 2=1.48004 \mathrm{rad}$

Considering the unbalanced cases, for third harmonic elimination there are two intervals of the modulation index, in $[0 ; 1]$, where the solution exists. They become smaller if v 2 grows. In this case, the first interval moves to left. For fifth harmonic elimination, for unbalancing, there are three intervals of the modulation index in $[0 ; 1]$, where one or two solutions do exist. Also in this case, these intervals become smaller when v2 grows. As shown in Fig. 20, for modulation index values variable between about 0:35 and 0:5, the unbalancing gives better THD values.

4. Conclusion

In this paper a modulation technique based on the selective harmonic elimination method applied to multilevel converters with unequal dc link voltages has been presented. The analytical solution of the nonlinear equations corresponding to the mathematical model of the problem has been obtained in terms of switching angles and THD\%. Unbalancing, characterized by v1 < v2 and by v2 < v1 have been considered for either third or difference between v1and v2 increases.

References

[1] S. Kouro, M. Malinowski, K. Gopakumar, J. Pou, L. G. Franquelo, B. Wu, J. Rodriguez, M. A. Perez, and J. I. Leon,(2010) "Recent advances and industrial applications of multilevel converters," IEEE Trans. Ind. Electron., vol. 57, no. 8, pp. 2553-2580,
[2] J. N. Chiasson, L. M. Tolbert, K. J. McKenzie, and Z. Du, "A unifiedapproach to solving the harmonic elimination equations in multilevelconverters (2004)" IEEE Trans. Power Electron., vol. 19, no. 2, pp. 478-490,
[3] F. Filho, H.Z. Maia, T.H.A. Mateus, B. Ozpineci, L.M. Tolbert and J.O.P.Pinto (2013) "Adaptive selective harmonic minimization based on ANNs for cascade multilevel inverters with varying dc sources," IEEE Trans. Ind. Electron., vol. 60, no. 5, pp. 1955-1962,
[4] A. Kavousi, B.Vahidi, R. Salehi, M.K. Bakhshizadeh, N. Farokhnia, S. Hamid Fathi, (2012)"Application of the Bee algorithm for selective harmonic elimination strategy in multilevel inverters," IEEE Trans. Power Electron., vol. 27, no. 4, pp. 1689-1696,
[5] B. Diong, H. Sepahvand, K. A. Corzine (2013) "Harmonic Distortion Optimization of Cascaded H-Bridge Inverters Considering Device Voltage Drops Noninteger DC Voltage Ratios," IEEE Trans. Ind. Electron., vol. 60, no. 8, pp. 31063114,.
[6] H. Sepahvand, J. Liao, and M. Ferdowsi (2011) "Investigation on capacitor voltage regulation in cascaded H -bridge multilevel converters with fundamental frequency switching," IEEE Trans. Ind. Electron., vol. 58, no. 11, pp. 5102-5111,
[7] M. S. A. Dahidah and V. G. Agelidis (2008) "Selective harmonic elimination PWM control for cascaded multilevel voltage source converters: A generalized formula," IEEE Trans. Power Electron., vol. 23, no. 4, pp. 1620-1630, [8] L. M. Tolbert, J. N. Chiasson, Z. Du, and K. J. McKenzie (2005) "Elimination of harmonics in a multilevel converter with nonequal DC sources," IEEE Trans. Ind. Appl., vol. 41, no. 1, pp. 75-82,

