
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 07 | July-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1741

UVM BASED TEST BENCH TO VERIFY AMBA AXI4 SLAVE PROTOCOL

Smitha A P1, Ashwini S2
1M.Tech VLSI Design and Embedded Systems, ECE Dept.

 2Assistant Professor, ECE Dept. NCET, Bengaluru, India.

---***---
Abstract - The increasing amount of logic that can be placed
onto a single silicon die is driving the development of highly
integrated SoC designs. An important feature for any of the
SoC is based on how they interconnect. AMBA protocols are
today the de facto standard SoC bus because they are well
documented and can be used without royalties. The AMBA AXI
protocol supports high performance, high-frequency system
designs. It is suitable for high-bandwidth, low-latency designs
and provides high frequency operation without using complex
bridges. It provides flexibility in the implementation of
interconnect architectures and is backward-compatible with
existing AHB and APB interfaces. This paper is aimed to design
transaction between one master and one slave in Verilog and a
burst type transaction (INCR) of AMBA AXI4 Slave Interface is
verified using Universal Verification Methodology (UVM) and
simulation results are shown in cadence Incisive Enterprise
Simulator (IES).

Keywords: System-on-a-Chip (SoC), Intellectual property
(IP) Advanced Extensible Interface (AXI), ARM (Advanced
RISC Machines) Advanced Peripheral Bus (APB), AMBA
High performance Bus (AHB), Advanced Micro Controller
Bus Architecture (AMBA), Universal Verification
Methodology (UVM),Design under test (DUT), coverage
driven verification (CDV).

1. INTRODUCTION

Integrated circuits have entered the era of System-on-a-Chip
(SoC).SoC refers to integration of more different function
IP’s. The designers simply integrate their owned IPs with
third party IPs into the SoC to significantly reduce design
cycles. Now the common problem is communication among
IP’s. The interfaces to these IP’s differs from company to
company. To speed up SoC integration and promote IP
reusability, many bus-based communication architecture
standards have emerged over the past several years.
Some of the popular standards include ARM Microcontroller
Bus Architecture (AMBA) versions of 2.0, 3.0, and 4.0, IBM
Core Connect, STMicroelectronics STBus, Sonics SMARRT
Interconnect, Open Cores Wishbone, and Altera Avalon.
However, the main issue is that to ensure efficiently the IP
functionality, which works properly after integrating to the
corresponding bus architecture. The AMBA AXI4 protocol is
a standard bus protocol and most of the semiconductor
companies design supports AXI4 bus interface. AXI4
protocol is a complex protocol because of its ultra-high-
performance. On current projects, verification engineers are
maximum compared to designers, with the ratio reaching 2
or 3 to one for the most complex designs. Therefore an

efficient verification environment is needed. Verification of
such a complex protocol is challenging. This can be easily
verified using the UVM. This verification environment can
be reused for other IPs also. UVM is a complete verification
methodology that codifies the best practices for
development of verification environments targeted at
verifying large gate-count, IP-based SoC’s. It is mainly used
to write a test bench for all those designs which are
modelled in Verilog, VHDL, and System C. It has a System
Verilog class library which helps to achieve the reusability.
It supports constrained random coverage driven
verification. CDV is a combination of automatically
generation of test benches, self-checking of test benches and
coverage metrics.

2. AMBA AXI4 ARCHITECTURE

AXI4 is a part of the Advanced Microcontroller Bus
Architecture (AMBA) which is developed by ARM Company.
The AMBA AXI4 is used for high performance, high
frequency system designs. It also supports high bandwidth
and low latency designs. It allows high frequency operation
without use of complex bridges. AMBA AXI4 supports data
transfers up to 256 beats and unaligned data transfers using
byte strobes. In AMBA AXI4 system, 16 masters and 16
slaves are interfaced. Each master and slave has their own 4
bit ID tags. It satisfies the interface requirements of all
components. It supports memory controllers which has high
latency access. It is flexible in the implementation of many
interconnects. It is compatible with AHB and APB interfaces.

Main features of the AXI are:

1. Separate address/control and data phases
2. Unaligned data transfer using byte strobes
3. It supports for burst based mode of transactions

with the issue of start address
4. Separate read data channels and write data

channels
5. Provides multiple outstanding addresses
6. Supports for out-of-order transaction completion
7. Provides easy addition of registers for time closure

2.1AXI4 transaction channels

The AXI protocol supports burst based transactions. AXI
supports five independent transaction channels. Figure 1
shows read and write transaction using channels.

 Read address channel

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 07 | July-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1742

 Read data channel

 Write address channel

 Write data channel

 Write response channel

Figure 1. AXI4 channel architecture of read and write [3]

Read and write address channel: An address channel
read/write carries the control information that reports the
nature of data to be transferred. The transfer of data takes
place between master and slave either through write data
channel or read data channel.

Read data channel: It conveys both read data and read
response information from slave to master. The data may be
of size 8,16,32,64,128,256,512 or 1024 bits wide. A read
response signal indicates the completion of read transaction.

Write data channel: It is used to transfer data from master to
slave. Data size can be 8,16,32,64,128,256,512 or 1024 bits
wide. A byte lane strobe signal is generated for every eight
data bits to indicate which bytes of the data are valid.

Write Response channel: It provides a way for the slave to
respond to write transactions. All write transactions require
completion of signaling on the write response channel.

2.2. AXI4 handshake process

In AXI4 protocol, every transfer is done using hand shake
mechanism. Each channel uses the same VALID/READY
handshake to transfer control and data information. This
two way flow control mechanism enables both the master
and slave to control the rate at which the data and control
information moves. The source generates the VALID signal
to indicate when the data or control information is available.

The destination generates the READY signal to indicate that
it accepts the data or control information. Transfer occurs
only when both the VALID and READY signals are HIGH.
There must be no combinatorial paths between input and
output signals on both master and slave interfaces.

2.3AXI4 burst operation

The AXI protocol defines three burst types:

FIXED burst: In a fixed burst, the address is the same for
every transfer in the burst. This burst type is used for
repeated accesses to the same location such as when loading
or emptying a FIFO.

INCR burst: In an incrementing burst, the address for each
transfer in the burst is an increment of the address for the
previous transfer. The increment value depends on the size
of the transfer. For example, the address for each transfer in
a burst with a size of four bytes is the previous address plus
four. This burst type is used for accesses to normal
sequential memory.

WRAP burst: A wrapping burst is similar to an incrementing
burst except that the address wraps around to a lower
address if an upper address limit is reached.

2.4. AXI4 basic transaction

Read burst: Figure 2 shows a read burst of four transfers.
Here, the master drives the address, and the slave accepts it
one cycle later. After the address appears on the address
bus, the data transfer occurs on the read data channel. The
slave keeps the VALID signal low until the read data is
available. For the final data transfer of the burst, the slave
asserts the RLAST signal to show that the last data item is
being transferred.

Figure 2.Read address and data burst [3]

Write burst: Figure 3 shows a write transaction. The process
starts when the master sends an address and control
information on the write address channel. The master then
sends each item of write data over the write data channel.
When the master sends the last data item, the WLAST signal
goes high. When the slave has accepted all the data items, it

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 07 | July-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1743

drives a write response back to the master to indicate that
the write transaction is complete.

Figure 3.Write address and data burst [3]

3. ARCHITECTURE OF UVM TEST BENCH

Universal Verification Methodology (UVM) is used for
functional verification of hardware or any system.
Hardware or any system is written in Verilog, System c,
VHDL or System Verilog at any abstraction level.
Abstraction level may be behavioral or gate level or
register transfer level. UVM is a simulation based
verification methodology. UVM can also be used along
with Assertion based verification or emulation. UVM is a
constrained random coverage driven verification
(CDV).CDV is a combination of automatically generation of
test benches, self-checking of test benches and coverage
metrics. The main aim of CDV is

 Generation of random test vectors
 Supports thorough verification
 Early notification of error to minimise debugging

time

CDV flow is different from directed testing flow. In CDV,
verification goals are set with organized plan. Then creation
of test benches that generates legal stimulus and sends it to
the DUT.

Figure 4. UVM environment [10]

In order to test its functionality of DUT, there is a need of
interaction with DUT. A block by name sequencer
generates sequences of bits to be transmitted to the DUT.
Usually sequencers are not aware of the communication
bus. Sequencer permits the sequences of data to the block
by name driver. Driver takes care of the communication
bus. Driver feeds the data to the DUT generated from the
sequencer. But it does not do any validation of responses.
Monitor block listens to the broadcast between the driver
and the DUT. It determines the responses from the DUT.
Monitor samples the input and output of the DUT. Monitor
make a prediction of the expected result and send the

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 07 | July-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1744

prediction and result of the DUT to scoreboard block in
order to compare and evaluate. All these blocks constitute
a system which is used for verification.

Generally sequencer block, driver block and monitor block
comprise an agent. An agent and a scoreboard combine an
environment. All these blocks are controlled by greater block
test. Test block controls all the blocks and sub blocks of the
test-bench. The UVM blocks are shown in figure 4. By
manipulating a small number of lines in code, blocks can be
added, removed and can be overruled the blocks in the test
bench and different environment can be built without
rewriting the test benches again.

3.1. UVM Components

Top block and interface

 In a normal project, the development of the DUT is done
separately from the development of the testbench, so there
are two components that connects both of them:

 The top block of the testbench
 A virtual interface

The top block will create instances of the DUT and of the
testbench. Virtual interface will act as a bridge between
them. The interface is a module that holds all the signals of
the DUT. The monitor, the driver and the DUT are all going to

be connected to this module.

Sequencer and Sequences

Sequences signifies the input to the DUT, such as
instructions, networking packets and bus transactions. A
sequencer is a new stimulus generator that pedals the
sequences which are delivered to a driver for the purpose of
execution. Sequences are well-arranged assembly of
transactions. They shape transactions as per specification
and produce collection of them. Sequences main job is
creating multiple transactions. After creating those
transactions, the sequencer takes them to the driver.

Driver

The driver is a dynamic block that imitates logic and is used

to drive the DUT. A driver continually receives a transaction

from sequencer and drives the signal to the DUT by

sampling.

Monitor

A monitor is the passive element of the verification
environment and is independent to an application. It scans
the DUT signal to and from the interface without driving
them. It assembles the pin information in the form of a

packet and then transfers it to scoreboard and test
verification environment for coverage information.

Agent

An agent is a container which holds drivers, sequencer and
monitors. Monitors, sequencers and drivers can be used
independently. Verification components can contain more
than one agent. Some agents (master) initiate transactions
for the DUT, other agents (slave) respond to transactions.
Agents can be configured to act as passive or active. Active
agents initiate transactions. Passive agents observes activity
of DUT.

Scoreboard

Scoreboard is built to check the response from the DUT
against the expected response. It is done by comparing them
to the Reference Model. It keeps the track of how many times
the response matched and how many times it failed.

Environment

 The environment is in top of the UVM verification
environment. It instantiates the scoreboard and an agent and
joins them. It consists of one or more agents, and a bus
monitor. The environment enables to modify the topology
and performance to create reusable, flexible, extendable
verification environment.

Test

Test block is a top level block in UVM. It has 2 purpose

 Create the environment block
 Connect the sequencer to the sequence

By specifying in the test class which sequence will be going
to be generated in the sequencer, can be easily change the
kind of data transmitted to the DUT.

3.2. The UVM class library hierarchy

UVM component can be replaced easily without alteration of
entire test-bench. This is because of the classes and objects.
UVM blocks are represented as objects which are denoted as
objects which are derived from existing classes. A tree
structure of most vital classes of UVM shown in figure 5.
UVM library has a set of base classes and services that enable
the design of segmental, mountable, reusable verification
environment

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 07 | July-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1745

Figure 5.Partial UVM class tree [10]

3.3. UVM phases

There are different phases in UVM such as build phase,
connect phase, end of elaboration phase, start of simulation
phase, run phase, extract phase, check phase, report phase as
shown in figure 6. All these phases are executed in an
orderly manner. When a new class is derived, test bench
simulation go through these different phases in order to
build, configure and connect the components

Figure 6.Partial list of UVM phases [10]

Build phase: It is used for construction and configuration of
various components or ports or exports.

Connect phase: It is used for connecting various ports or
exports of components.

End of elaboration phase: It is used to provide fine-tuning in
the test benches, to print the topology and for opening the
files.

Start of simulation phase: It gives notification to DUT to
indicate that verification environment is completely
configured and is ready.

Run phase: It is the main phase for execution. In run phase
actual code is executed.

Extract phase: It is the phase where all information are
gathered.

Check phase: It is the phase where extracted information
results are checked.

Report phase: It is the phase where pass/fail status are
checked.

4. RESULTS AND DISCUSSIONS

Verification plays very important role in VLSI. It is
achieved by building test benches. The test benches are
built in UVM. Simulation is carried out in Cadence Incisive
Simulator tool. Here AXI4 slave is DUT written in Verilog
and AXI4 master is used as test bench.

4.1. Simulation result of write operation

Master drives the address, and the slave accepts it one
cycle later. The write starting address values are passed to
slave are 00001000, 00011000, 00021000, 00031000 and
00041000 with AWID 001,002,003,004,005 as shown in
figure 7. The data are sent as a burst from the master to
slave. The slave calculates the subsequent transfer address
based on the burst length, size and type as shown in figure
8. Five sequences of data are sent such as 00000001 to
00000004, 00010001 to 00010004, 00020001 to
00020004, 00030001 to 00030004 and 00040001 to
00040004.Each sequence has burst length of 4 (AWLEN +
1) and burst size of 4 bytes. The first sequence of write
operation is as shown in figure 9.As per UVM Irun log file
report, addresses are incremented by 4 according to burst
length and burst size specified. The BID value is matching
with the AWID value of the write transaction which
indicates that slave is responding correctly. BRESP signal
that is write response signal from slave is 0 which
indicates OKAY.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 07 | July-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1746

4.2. Simulation result of read operation

The read starting address values are passed to slave are
00001000, 00011000, 00021000, 00031000 and
00041000 with AWID 001,002,003,004,005 as shown in
figure 7. The data are sent as a burst from the slave to
master. The slave calculates the subsequent transfer
address based on the burst length, size and type as shown
in figure 10. Five sequences of data are sent such as
00000001 to 00000004, 00010001 to 00010004,
00020001 to 000020004, 00030001 to 00030004 and
00040001 to 00040004. Each sequence has burst length of
4 (ARLEN + 1) and burst size of 4 bytes. The first sequence
of read operation is as shown in figure 11.As per UVM Irun
log file report, addresses are incremented by 4 according
to burst length and burst size specified. The RID value is
matching with the ARID value of the read transaction
which indicates the slave is responding correctly. RLAST
signal from slave indicates the last transfer in a read burst.

Figure 7. Simulation result of read/write address

Figure 8. Simulation result of write transaction

Figure9.simulation result of first sequence of write

transaction

Figure10 simulation result of read transaction

Figure 11.simulation result of first sequence of read

transaction

4.3. UVM Irun log file report

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 07 | July-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1747

4.4.UVM report summary

5. CONCLUSION

The AMBA AXI4 specification signifies a major evolutionary
step in interconnect technology for System on-chip designs.
The read and write operation of AXI4 slave has been verified
for Single Master Slave implementing INCR burst type using
Universal Verification methodology. Simulation results are
shown in cadence Incisive Enterprise Simulator. The data is
to be read or written to the AXI4 slave is assumed to be given
by the AXI4 master and is read or written to a particular
address location of AXI4 slave. UVM provides a rich set of
base class library and features required for efficient
verification. It gives an environment that is robust, easy to
understand and thus, reusable by others vendors. Using
UVM, requires less time to generate a testbench as it offers
higher level of abstraction. It covers almost all the possible
scenarios and corner cases and thus, increases the functional
coverage.

 Acknowledgment

The author express sincere gratitude to Mrs. Ashwini S
Assistant Professor Dept. of ECE for continuous guidance
and support. The author is also thankful to Department of
Electronics & communication Engineering, NCET. The
mechanism is implemented using cadence tool which is
made obtainable by department.

 REFERENCES

[1]Samir Palnitkar, Verilog HDL: A Guide to Digital Design
and synthesis, 2nd Ed, Hall PTR Pub, 2003.

[2] ARM, AMBA Specifications (Rev2.0). [Online].Available at
http://www.arm.com,1999

[3] ARM, AMBA AXI Protocol Specification (Rev 2.0).
[Online]. Available at http://www.arm.com, March 2010

[4] Chien-Hung Chen, Jiun-Cheng Ju, and Ing-Jer Huang“A
Synthesizable AXI Protocol Checker for SOC
Integration,”IEEE, ISOCC 2010.

[5] Accellera Organization, “Universal Verification
Methodology (UVM) 1.1 Class Reference”, June 2011

[6]Manjula, R.B. ; Manvi, S.S. ; Kaunds, P. “Data transactions
on system-on-chip bus using AXI4 protocol” Recent
Advancements in Electrical, Electronics and Control
Engineering (ICONRAEeCE), 2011 International Conference,
15-17 Dec. 2011

[7]V.N.M.Brahmanandam K, Choragudi Monohar, “Design of
Burst Based Transactions in AMBA-AXI Protocol for SoC
Integration,” International Journal of Scientific &
Engineering Integration International Journal of Scientific &
Engineering Research Volume 3, Issue 7, July-2012

[8]Ms.Anusha Ranga, Mr. L. Hari Venkatesh,Mr.Venkanna,
“Design and Implementation of AMBA-AXI Protocol using
VHDL for SoC Integration,” in International Journal of
Engineering Research and Applications, Vol. 2,Issue4, July-
August 2012, pp.1102-1106.

[9] T. Ananth Kumar, DR.S. Saraswathi Janaki, “Design of
AXI Bus For 32-bit Processor using Bluespec”, ISSN: 2278 –
1323 International Journal of Advanced Research in
Computer

[10] Pedro Araujo. "Development of a Reconfigurable Multi-
Protocol Verification Environment Using UVM
Methodology",

