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Abstract— two performance parameters of MapReduce 
are job execution time and cluster throughput. 
Straggler machine impacts these parameters. 
Speculative execution overcomes this by backing up 
those slow tasks on alternative machines. The Paper 
introduces new strategy Maximum Cost Performance 
(MCP).MCP uses i) The progress rate and the process 
bandwidth within a phase to select slow tasks, ii) 
Exponentially weighted moving average (EWMA) for 
prediction of process speed and to calculate a tasks 
remaining time, iii) A cost-benefit model to determine 
which task to backup based on the load of a cluster 
using. To choose proper worker nodes for backup tasks, 
it considers both data locality and data skew. The 
second technique is Network levitated merge. This 
introduces merge without merge data without 
repetition and disk access. Hadoop-An acceleration 
framework that optimizes Hadoop with the plug-in 
component for fast data movement. This Hadoop will 
double the throughput. 
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1. INTRODUCTION 
 

1.1 Background  

MapReduce is a widely used parallel computing 
framework for large-scale data processing. The two major 
performance factors in this are job execution time and 
cluster throughput. Straggler machines are responsible for 
affecting these— machines on which execute slow. 
Speculative execution is a common way for dealing with 
the straggler problem which simply back-ups those slowly 
executing tasks on other nodes. Multiple solutions were 
proposed, but they have some lacking’s i) To identify slow 
tasks it uses average progress rate while in reality, the 
progress rate can be unstable and misleading, ii) If there 

exists data skew among the tasks, it cannot handle the 
situation properly iii) while choosing backup worker 
nodes it doesn’t consider finishing time of backup task. 

To address straggler's issue, add to another methodology, 
maximum cost performance (MCP), which enhances the 
effectiveness of speculative execution. In MCP: i) consider 
progress rate and process bandwidth to identify slow 
tasks, ii) Use exponentially weighted moving average 
(EWMA) to foresee process speed and figure out task's 
remaining time, iii) Determine which task to backup in 
given on  the cluster using cost-benefit model.  

To address the issue of serialization Hadoop-A is there, an 
acceleration framework. A novel network-levitated merge 
algorithm is been introduced. Also, a full pipeline is 
designed to overlap the shuffle, merge, and reduce phases. 

1.2 Motivations  
 

1.1.1 stragglers problem 
 

Google proposed MapReduce [3] in 2004,it’s a popular 
parallel computing framework for large-scale data 
processing. In a normal MapReduce, the master node 
divides the input into various map tasks, and then 
schedules map tasks and reduce tasks to worker nodes in a 
cluster to achieve parallel processing.  

Stragglers are the machines that complete the tasks in 
longer duration that a normal node can complete. This 
degrades the performance of Hadoop regarding job 
execution time and cluster throughput. Speculative 
execution strategy handles this problem.  

Microsoft Dryad is another parallel computing system 
which supports MapReduce. Its unique speculative 
execution procedure is like that in Google MapReduce [3]. 
Later, Mantri [6] proposes another speculative execution 
system for Dryad. The primary distinction in the middle of 
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LATE and Mantri is that Mantri utilizes process bandwidth 
the task's (processed data /time) to compute remaining 
time the task's (data left/process bandwidth).  

1.2.1 A Serialization in Hadoop Data Processing 

Hadoop endeavors to pipeline the data processing. It is, in 
reality able to do as such, especially for map and 
shuffle/merge stages. As shown in Fig., after a brief 
initialization period. For the rightness of the MapReduce 
programming model, it is important to guarantee that the 
reduce stage does not begin until the map stage completes 
all data splits. In any case, the pipeline, as shown in Fig., 
contains a certain serialization. 

 

Fig.1 Serialization between shuffle/merge and reduce 
phases. 

1.2.2 Repetitive Merges and Disk Access 

Hadoop Reduce Tasks blend data segments when the 
number of segments or their aggregate size goes over a 
limit. However, Hadoop’s current merge algorithm leads to 
repetitive merge, along with this comes additional disk 
access. Fig. Demonstrates a typical succession of merge 
operations in Hadoop. 

 
Fig 2. Repetitive merges. 

 
1.2.3 The Lack of Network Portability 

Hadoop only supports TCP/IP protocol;it does not support 
other transport protocols such as RDMA on InfiniBand [7] 

and 10-Gigabit Ethernet (10GigE). Hadoop-A has a C 
implementation which supports these networks.  

2. LITERATURE SURVEY 
 

Several speculative execution strategies were proposed in 
the literature, including MapReduce in Google [3], Hadoop 
[4], LATE [3], Dryad in Microsoft [3] and Mantri [6]. 

The 1st speculative execution strategy used in Hadoop-
0.20. It just identifies straggler when tasks progress is less 
than average progress. But some previous studies found 
that this is not worth in heterogeneous environment and 
proposed Hadoop-LATE [3]. This stores progress rate 
(process/time) of the task and calculates the remaining 
time and similarly selects the slow tasks 

Above study shows different studies done on Hadoop 
optimization and the limitations or lacking’s of those 
studies. Also gives the short explanation about techniques 
analyzed in these papers.  

These articles help to understand the working of Hadoop 
in different environments like, if data at local nodes how it 
behaves, also how it reacts to heterogeneous data.  

In this paper, we made changes in working in Map phase 
with the help of Maximum Cost Performance (MCP) 
mechanism. And in reduce phase with Network-Levitated 
Merge (NLM) algorithm. And to achieve better 
performance of NLM we implemented the Hadoop 
acceleration.  

3. PROPOSED MODEL 
 
Proposed model optimizes performance in two stages 
Hadoop as  

1. Map Phase.  
2. Reduce Phase. 

 
3.1 Map Phase:- 
 
This phase uses the speculative strategy proposed in this 
project. The proposed method uses the MCP technique for 
identifying the straggler machine. The working of this 
module is as follows. 
3.1.1 To Select Backup Candidates 

In MCP, we predict process speed of the task in the near 
future instead of using the previous average rate. In MCP, 
EWMA (exponentially weighted moving average) scheme 
is used which is expressed as follows: 

 ( )     ( )  (   )   (   )        …………………(1) 
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Where Z (t) is the estimated and Y (t) is the observed 
process speed at time t, respectively.   Reflects a tradeoff 
between stability and responsiveness.  

To show effect of EWMA to predict the process speed and 
the remaining time of the task, system runs a demo job like 
sort job in cluster and suddenly gives IO and CPU intensive 
jobs to worker node for better prediction  

3.1.2 To Identify Slow Tasks Using Per-Phase Process 
Speed 

Use of progress rate and process bandwidth together 
minimizes the limitations of each other. 

This solution, compares process speed of a task (both the 
processing bandwidth and the progress rate) and estimate 
its remaining time. Therefore, we use EWMA scheme to 
predict the process speed of each phase in a task, and to 
indentify the slow task we use this per-phase process. 
Meanwhile, we usethe process speed and the remaining 
data to process in a task to compute the remaining time of 
each phase in a task, and sum up the remaining time of all 
these phases to get total remaining time of the task.  

3.1.3 to Estimate Task Remaining Time and Backup 
Time 

In MCP, a task that has the longest remaining time can get 
the highest priority to be backed up. As watched, a task's 
remaining time is evaluated by the whole of the remaining 
time left of the every stage. When a task is running in some 
phasecp (i.e., the current phase), the remaining time left in 
cp is evaluated by the components of remain data and the 
processing bandwidth in cp. However, the remaining time 
of the accompanying stages is hard to compute as the task 
has not entered yet. Hence, we use the phase average 
process speed to calculate the remaining time of a phase 
(est_timep). The average process speed of the phase is the 
average process speed of task that has entered the phase. 
For that phase that no task has processed, no need to 
compute their remaining time, which is reasonable to all 
tasks. Since task might handle distinctive measure of data, 

adjusting
         

        
, this ration is of  the input size of this task 

to the average input size of all tasks. Now remaining time 
of the tasks is calculated as follows: 

                            

 
         

           
  ∑                          …………………...... (2) 

        
         

       
……………………………………………….. (3) 

To estimate the backup time of a slow task, use the sum of 
est_timep for each phase in this task as estimation. 
Therefore, calculate the backup time as follows: 

           ∑                   ………………………... (4) 

As seen, process speed in reduce phase decreases as time 
goes on. So process speed fluctuation will occur and 
impact the precision of time estimate. To avoid such 
impact, compute the remaining time of copy phase. 
Calculate the remaining time of the copy phase using the 
following equation: 

           
                                  

                
 ………………. (5) 

In the above equation, the process speedcopy is estimated 
by EWMA. 

3.1.4 Maximizing Cost Performance of Cluster 
Computing Resources 

Design a cost-benefit model that decides backing up of 
tasks and saves the status of both original and backup 
tasks i.e., two slots were used remTime and BackupTime. 
Therefore, define the profit of the two actions as follows: 

               (                    )      

          …………………………………………………...… (6) 

                                 …….………...……... (7) 

In above equation, rem_time and backup time are already 
known and   and   are the weight of benefit and cost, 
respectively. 

Then choose the action that gains more profit. And choose 
proper backup node. 

                              
        

           
 
    

   
 ……… (8) 

Where,   (
    

   
)   .To simplify this formula, we replace 

 

 
by  . Then the formula is

       

          
 
    

   
. fWhen a cluster 

is idle and has free slots, the cost or speculative execution 
is not considered, because it doesn’taffect other task’s 
performance. On the other hand, when the cluster is busy 
and has many pending tasks of other jobs, the cost is an 
important issue because backing up a task will take more 
time to do the job. We assume that g varies with the load of 

the cluster: 
    

   
gets its lowest value  (   ) when the load 

of the cluster is low while reaches its highest value .we set 
  to the load_factor of the Hadoop cluster: 
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………………….…….……(9) 

Where, 

numberpending_tasks= the number of pending tasks,  

numberfree_slots     = the number of free slots in the cluster.  

When the cluster is idle and has many free slots,   
decreases to 0 , so the backup condition becomes 
rem_time>backup_time. When the cluster is busy and has 

many pending tasks of other jobs,   increases and 
    

   
 

converges to 2 gradually. Then the backup condition will 
berem_time> 2 * backup_time. As a result, less tasks will be 
backed up. Hence, using load_factor as g works perfectly. 

After going through all the running tasks, we get the set of 
backup candidates. The candidate with longest remaining 
time are backed up finally. 

3.1.6 To Select Worker Nodes for Proper Backup 

To extract the better performance, we have to assign fast 
worker nodes to do backup tasks. To achieve this, use the 
moving average process bandwidth of Data-local map 
tasks completed on a worker node to represent the node’s 
performance.  

Also, consider the data-locality of map tasks when making 
the backup decisions. In MCP, while assigning the tasks to 
backup nodes, we estimate the time that this node will 
take to complete the task. We will give the backup task to 
the node if and only if it is estimated to finish faster. 

3.2 Reduce Phase:- 

During this stage system does the tasks like shuffling, 
merging. Here it lessens the time head required for doing 
these activities. For this reason, the system utilizes the 
Network levitated merge algorithm. The working of this 
algorithm is been characterized as follows. Likewise to 
handle the parallel processing inside of the system this 
proposition utilizes the pipelining system, i.e. this 
pipelines the shuffle, merge and reducing procedures. 

3.2.1 Network-Levitated Merge [NLM] 

This algorithm avoids the repetitive disk access while in 
processing. Also stays at local disks while processing the 
data.  

 

Fig 3.Network levitated merge 

In Fig. 3a, three remote segments S1, S2, and S3 are to be 
fetched and merged. Instead taking them to local disk NLM 
only takes header containing partition length, offset, and 
the first pair of <key,val>.These <key,val> pairs are 
sufficient to construct a priority queue (PQ) to organize 
these segments. This information is sufficient to form a 
priority queue (PQ) to organize these segments. This 
algorithm does not have to store or merge segments onto 
local disks. Instead of merging segments when the number 
of segments is over a threshold, we keep building up the 
PQ until all headers arrive and are integrated. As soon as 
the PQ has been set up, the merge phase starts. The leading 
<key,val> pair will be the beginning point of merge 
operations for individual segments, i.e., the merge point. 
This is shown in Fig. 3b. According to <key, value>pair the 
segments are merged as shown in fig. 3c. When merged the 
data will be seen as shown in fig. 3d. 

3.2.2 Pipelined Shuffle, Merge, and Reduce 

Instead of avoiding repetitive merges, this algorithm takes 
off serialization barrier occurring in merge and reduce. As 
in Section 3.1, the merged data have <key, val> pairs 
ordered in their final order and can be delivered to the 
Java-side ReduceTask as soon as they are available. Thus, 
the reduce phase no longer has to wait until the end of the 
merge phase.

 

Fig4 pipelined shuffle, merge and reduce 
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In view of the possibility to closely couple the shuffle, 
merge, and reduce phases, they can form a full pipeline as 
shown in Fig. 4. In this pipeline, MapTasks map data split 
as soon as they can. When the first MOF is available, 
ReduceTasks fetch the headers and build up the PQ. These 
activities are pipelined. Header fetching and PQ setup are 
pipelined and overlapped with the map function, but they 
are very lightweight, compared to shuffle and merge 
operations. As soon as the last MOF is available, completed 
PQs are constructed. The full pipeline of shuffle, merge, 
and reduce then starts. One may notice that there is still a 
serialization between the availability of the last MOF and 
the beginning of this pipeline. This is inevitable in order 
for Hadoop to conform to the correctness of the 
MapReduce programming model. Simply stated, before all 
<key,val> pairs are available, it is erroneous to send any 
<key,val> pair to the reduce function (for final results) 
because its relative order with future <key,val> pairs is yet 
to be decided. 

Therefore, our pipeline is able to shuffle, merge, and 
reduce data records as soon as all MOFs are available. This 
eliminates the previous serialization barrier in Hadoop 
and allows intermediate results to be reduced as soon as 
possible for final results. 

3.3 Software Architecture of Hadoop-A 

As fig.6 depicts architecture contains two components as 
MOFSupplier and NetMerger are threaded C 
implementations. This is to gain the support of RDMA. 
These two are developed as native C programs that are 
launched by TaskTracker. Use of this can be controlled by 
the user with help of parameter im the config. file. We can 
also run Hadoop without hadooop-A. 

Hadoop-A supports RDMA platforms, for Infiniband, 
TCP/IP interconnects. Infiniband supports zero-copy data 
transfer. RDMA gives us the advantage to access the 
remote processes’ memory buffers.  

While the other left half works as normal Hadoop 
architecture, which involves the tasks like shuffling, 
merging of data segments.  

Hadoop-A transport layer has a server in the MOFSupplier 
and client in the NetMerger, at client side one thread 
works for fetching/connection establishing request from 
remote server.at server side, one thread is dedicated to 
listen incoming request. 

 

 

4. Result and Discussion 

 

FIG. Without Joint of two method 

 

FIG. with joint of two methods 

From both the images we can see that the results before 
the methods are combined and after they are combined  

The graph for the results are shown in the blue line which 
is slighet straight which means the map and reduce tasks 
are in linear forms and the red line shows the combined 
method results of method . 
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Fig . results 

CONCLUSION 

The proposed model designed to provide the better 
performance while handling the straggler problem. By 
using MCP method and to minimize the overhead between 
map and reduce phases with help of network levitated 
merge algorithm and pipelining technique. This MCP uses 
EWMA for calculating the speed of worker nodes to 
identify the proper straggler. Network levitated merge, 
merges the partitioned data by just fetching the headers of 
each block of data. The system also uses the pipelining of 
shuffle, merge, and reduce phases which helps to parallel 
execution of shuffle merge and reduce phases to improve 
the performance. Proposed system is portable to any 
network protocol for this it uses the Hadoop-A 
implementation which is c based. 
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