
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 07 | July-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 2210

AMBA Compliant Programmable Interrupt Controller

V Bhagyalakshmi1, Chandan G N 2

1Assistant Professor, Dept. Of EC Engineering, GSSSIETW, Mysuru, Karnataka, India
2Assistant Professor, Dept. Of EC Engineering, ATME, Mysuru, Karnataka, India

---***---

Abstract - Advanced Microcontroller Bus Architecture (AMBA)
specification defines an on-chip communication standard for
designing high performance embedded microcontrollers. The AMBA
specification includes three distinct buses, namely AHB (Advanced
High-performance Bus), ASB (Advanced System Bus) and APB
(Advanced Peripheral Bus).As our design involves PIC
(Programmable Interrupt Controller) which is low-power peripheral
device and do not require the high performance of pipelined bus
Interface. Hence we make use of APB which is optimized for minimal
power consumption and reduced interface complexity to interface
with PIC. APB interface is basically a communication protocol
between processor and peripheral devices. In this project the design
of the protocol is implemented for the Processor PIC interface. AMBA
was designed for use in System-On-Chip (SOC) designs. The main
advantage of AMBA on-chip specification (version 2.0) is that the
standard is well documented and is exempted from royalties. The
AMBA-AHB is for high-frequency system modules like processors and
memories. The AMBA-APB is for low-power peripheral devices. One
more main advantage of this design is that the controller is
programmable so that the address and data widths can be
programmed. This makes the design compatible with any processor.
AMBA-based SOC’s maximize the efficiency of data movement and
storage, thus delivering the performance they need at the lowest
power and cost. This design can be used in generic mobile phones,
PDA’s (personal digital assistant) mobiles System-On-Chip
Architecture.

Key Words: ASIC, EDA, Interrupt, FPGA, Verilog .

1. INTRODUCTION

The APB is part of the AMBA 3 protocol family. It provides a
low-cost interface that is optimized for minimal power
consumption and reduced interface complexity .The APB
interfaces to any peripherals that are low-bandwidth and do
not require the high performance of a pipelined bus
interface. The APB has un pipelined protocol. Signal
Transitions are only related to the rising edge of the clock to
enable the. Every transfer takes at least two cycles. The APB
can interface with the AMBA Advanced High performance
Bus Lite (AHB-Lite) and AMBA Advanced Extensible
Interface (AXI). We can use it to provide access to the
programmable control registers of peripheral devices. The
APB bus is used to interface to any peripheral device which
are low bandwidth and do not require the high performance
of a pipelined bus interface. The APB slave interface acts as a
bridge between the APB bus and the peripheral device to
which the bus is connected. It receives the APB bus signals
and converts them to a form in which is understood by the
connected peripheral device. Most common applications of

the APB interface for read and write registers of the
connected device. The Peripheral devices connected to the
APB bus could be UART, Timer, Keypad, etc. Compatible with
8-bit as well as 16-bit processors. Manage 8 interrupts
according to the instructions written into the control
registers can mask each interrupt request individually. Read
the status of pending interrupts, in-service interrupts and
masked interrupts. Accept either the level triggered or the
edge triggered interrupt request The Advanced
Microcontroller Bus Architecture (AMBA) specification
defines an On chip communications standard for designing
high-performance embedded microcontrollers.

Three distinct buses are defined within the AMBA
specification:
• The Advanced High-performance Bus (AHB)
• The Advanced System Bus (ASB)
• The Advanced Peripheral Bus (APB)

Our design can be used in any embedded systems with
AMBA bus architecture to serve the hardware interrupts.
This is mainly used in mobile phones, laptops, PDA, touch
screen controller etc. This design can be part of SOC design
to serve hardware interrupts.

1.1 Literature Survey

APB stands for Advanced Peripheral Bus which provides the
communication between the processor and peripheral
devices. The APB is part of the AMBA hierarchy of buses and
is optimized for minimal power consumption and reduced
interface complexity. The AMBA APB appears as a local
secondary bus that is encapsulated as a single AHB or ASB
slave device. APB provides a low-power extension to the
system bus which builds on AHB or ASB signals directly. The
APB Bridge appears as a slave module which handles the bus
handshake and control signal retiming on behalf of the local
peripheral bus. The AMBA APB should be used to interface to
any peripherals which are low bandwidth and do not require
the high performance of a pipelined bus interface. The latest
revision of the APB is specified so that all signal transitions
are only related to the rising edge of the clock. This
improvement ensures the APB peripherals can be integrated
easily into any design flow, with the following advantages:

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 07 | July-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 2211

High-frequency operation is easier to achieve.

a) Performance is independent of the mark-space ratio
of the clock.

b) Static timing analysis is simplified by the use of a
single clock edge.

c) No special considerations are required for
automatic test insertion.

d) Many Application Specific Integrated Circuit (ASIC)
libraries have a better selection of rising edge
registers

These changes to the APB also make it simpler to interface it
to the new AHB. An AMBA APB implementation typically
contains a single APB bridge which is required to convert
AHB or ASB transfers into a suitable format for the slave
devices on the APB. The bridge provides latching of all
address, data and control signals, as well as providing a
second level of decoding to generate slave select signals for
the APB peripherals. All other modules on the APB are APB
slaves. The APB slaves have the following interface
specification:

• Address and control valid throughout the access
(unpipelined)

• Zero-power interface during non-peripheral bus activity
(peripheral bus is static when not in use)

• Timing can be provided by decode with strobe timing
(unlocked interface)

•Write data valid for the whole access (allowing glitch-free
transparent latch implementations)

The AMBA AHB is for high-performance, high clock
frequency system modules. The AHB acts as the high-
performance system backbone bus. AHB supports the
efficient connection of processors, on-chip memories and off-
chip external memory interfaces with low-power peripheral
macro cell functions. AHB is also specified to ensure ease of
use in an efficient design flow using synthesis and automated
test techniques.

The AMBA ASB is for high-performance system modules.
AMBA ASB is an alternative system bus suitable for use
where the high-performance features of AHB are not
required. ASB also supports the efficient connection of
processors, on-chip memories and off-chip external memory
interfaces with low-power peripheral macro cell functions.

The AMBA APB is for low-power peripherals. AMBA APB is
optimized for minimal power consumption and reduced
interface complexity to support peripheral functions. APB
can be used in conjunction with either version of the system
bus.

1.2 DESIGN METHODOLOGY

Figure 1 gives the overall view of the project. It consists of
APB controller, logic, programmable interrupt controller
logic, registers, bridge, and APB bus. The APB bus is used to
interface to any peripheral device which are low bandwidth
and do not require the high performance. We require a
bridge to convert all the AHB signals to APB signals so that it
can be compatible. The bridge buffers address and controls
the data from the AHB, drives the APB peripherals and
returns data and response signals to the AHB. Interface
operates when the APB and AHB clocks have the same
frequency and phase. Pclk, Pwrite, Penable, Psel, Preset,
Paddr, Pwdata are the input to the APB controller logic and
Prdata is the output of APB controller logic. The rising edge
of Pclk (bus clock) is used to time all transfers on the APB.
When Pwrite is high APB indicates write access and when
low read access. Enable signal is used to indicate the second
cycle of an APB transfer. The rising edge of the Penable
occurs in the middle of the APB transfer. Psel acts as enable
for selecting the particular device (similar to chip select).
The APB bus reset signal (preset) is active low and this will
normally be connected directly to the system bus reset
signal. Paddr [31:0] is the APB address bus, which may be up
to 32 bits wide and is driven by the peripheral bus bridge
unit. Pwdata is an input data bus from APB bus. Pr data is the
output data bus to the APB.

Fig. 1: Block Diagram AMBA

In this system there are 32 registers each of width 32 bits,

Register0 is considered as IRR(interrupt request register) in

which interrupt will be stored if any of the interrupt pin goes

high. Register1 is considered as IMR (interrupt mask

register), if we need to mask any interrupt we need to store

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 07 | July-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 2212

that value in the IMR accordingly those interrupts will not be

served. But software interrupts cannot be masked and has to

be served. We assign the priority for serving the interrupt

highest priority interrupt will be served first. Depending

upon the value of IMR and IRR the INT signal will change. If

any of the interrupt pin is high and if the interrupt is not

masked then INT signal goes high. If the corresponding bit in

IMR is masked then the INT signal will not go high even when

the interrupt bit is high.

Fig 2 - General block diagram

The Fig 2 shows the general block diagram. It consists of
decoder, multiplexer and registers. A decoder is a device
which does the reverse of an encoder, undoing the encoding
so that the original information can be retrieved. The same
method used to encode is usually just reversed in order to
decode. In digital electronics, a decoder can take the form of a
multiple-input, multiple output logic circuit that converts
coded inputs into coded outputs, where the input and output
codes are different. For example: n to 2n decoder, binary-
coded decimal decoders. Enable inputs must be on for the
decoder to function, otherwise its outputs assume a single
"disabled" output code word. Decoding is necessary in
applications such as data multiplexing, 7 segment display and
memory address decoding.

If there is any interrupt occurring, it will be captured in the
IRR register. If we need to mask any interrupt the
corresponding bit in the IMR register is made high. The
corresponding bit in IRR and IMR are given to the AND gate,
i.e. IRR[0] and IMR[0] are given to the AND[0] gate, this
repeats for all the eight interrupts. All the eight AND gates
output signals are given to the OR gate. If there is any
interrupt, the output of OR gate i.e. INT signal goes high.
AMBA Compliant Programmable Interrupt Controller
30Department of E & C Engineering, NHCE 2009-10Consider

a case where interrupt request ir [2] is gone high, then the
value in IRR register will be 00000100 and suppose IMR
content is 00000100 then AND[2]= IRR[2]& ~IMR[2] , which
will be zero in this case. Since all other bits are zero the input
to the OR gate are 00000000, therefore output of OR gate is
low, which means the INT signal will not go high. It seems
that even though the interrupt has occurred the INT signal is
not high, since the interrupt is masked by writing the
appropriate value in the mask register.

Fig 3 - INT signal generation

Let us consider an another case where interrupt requests
ir[0] and ir[3] goes high, then IRR will have 00001001 and
suppose IMR will have all zeros then AND[0] =IRR[0] & ~
IMR[0] = 1, AND[3] = IRR[3] & ~IMR[3]= 1, rest all AND
output are zero. It is given to the OR gate and hence the
output goes high, indicating that interrupt has occurred and
needs to be served. In this case as there are two interrupts
occurring simultaneously the priority in which the interrupts
has to be served is decided by the processor as per user
requirements.

Step 1: If the behavioral description of the system is available
go to step 3; otherwise, formulate a flowchart for the
behavior of the system.
Step 2: Use the flowchart to write a behavioral description of
the system. We should make sure to review the instructions
of the synthesis tools to see if there are constraints on any of
the behavioral statements that are used.
Step 3: Simulate the behavioral code and verify that the
simulation correctly describes the system are acceptable
Step 4: Map the behavioral statements into components or
logic gates. We should make sure that the components used
are acceptable to our synthesizer.
Step 5: Write a structural or gate-level description of the
components and logic gates of step3. Simulate the structural

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 07 | July-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 2213

description, and verify that this simulation is similar to that of
step 3.
Step 6: Use the CAD tools to download the gates and
components of step 4 into the electronic chip usually an FPGA
chip.
Step 7: Test the chip by giving signals to the input pins of the
chip, and observe the output from the output pins.

 Fig 4 - Synthesis steps

Synthesis process is shown in Fig 4. The decoder used here is
32:232. Input to the decoder is 32 bits (Paddr) and output is
232 bits (sel [31:0]). Here out of 232 combinations we are
making use of only 32 bits. A multiplexer, sometimes referred
to as a "multiplexor" or simply "mux", is a device that selects
between a number of input signals. In its simplest form, a
multiplexer will have two signal inputs, one control input,
and one output. An everyday example of an analog
multiplexer is the source selection control on a home stereo
unit Multiplexers are used in building digital semiconductors
such as CPUs and graphics controllers. In these applications,
the number of inputs is generally a multiple of2 (2, 4, 8, 16,
etc.), the number of outputs is either 1 or relatively small

multiple of 2, and the number of control signals is related to
the combined number of inputs and outputs.

For example, a 2-input, 1-output mux requires only 1 control
signal to select the input, while a 16-input, 4-output mux
requires 4 control signals. The MUX used here has 232 inputs
and one output and 32 control signals. Here out of 232 inputs
we are just making use of 32 inputs. Depending upon the
control signal we are getting the output.
The input to the decoder is a Paddr. Depending upon the
Paddr the sel line is chosen, if the Paddr is 32’b 0 then sel [0]
is high, then depending up on the signals Pwrite, Penable,
Psel, Preset the data is written into or read from the register
through APB.

In computer architecture, a processor register (or general
purpose register) is a small amount of storage available on
the CPU whose contents can be accessed more quickly than
storage available elsewhere. Typically, this specialized
storage is not considered part of the normal memory range
for the machine. Most, but not all, modern computers adopt
the so-called load-store architecture. Under this paradigm
data is 'shuffled' from subordinated memory be it L1, L2
cache or RAM into registers, 'crunched' therein by running
instructions from the instruction set, then transferred out.

A common property of computer programs is locality of
reference: the same values are often accessed repeatedly; and
holding these frequently used values in registers improves
program execution performance. Processor registers are at
the top of the memory hierarchy, and provide the fastest way
for a CPU to access data. Here we are using 32 registers each
of size 32 bits.

2. RESULTS

The verification process consists of static/structural and
dynamic/behavioral aspects. E.g., for a software product one
can inspect the source code (static) and run against specific
test cases (dynamic). Establishing properties of hardware or
software designs using logic, rather than testing or informal
arguments. This involves formal specification of the
requirement, formal modeling of the implementation, and
precise rules of inference to prove, that the implementation
satisfies the specification.

Formal verification can be helpful in proving the correctness
of systems such as: cryptographic protocols, combinational
circuits, digital circuits with internal memory, and software
expressed as source code. The verification of these systems is
done by providing a formal proof on an abstract
mathematical model of the system, the Correspondence
between the mathematical model and the nature of system
being otherwise known by construction.

Examples of mathematical objects often used to model
systems are: finite state machines, labeled transition systems,

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 07 | July-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 2214

Petri nets, timed automata, hybrid automata, process algebra,
formal semantics of programming languages such as
operational semantics, denotation semantics, axiomatic
semantics and Hoare logic.

Fig 5- write transfer

In the above Fig 5, waveform shows the write operation for
the example considered. We can observe that the required
data is written into the required register.

Fig 6- Read Transfer

In the above Fig 6, waveform shows the write operation for
the example considered. We can observe that the data in IRR
register is read through prdata.

Fig 7-Int signal generation

In the above Fig 7, the waveform shows the interrupt signal
generation. Since int is generated the interrupts will be
served as per priorities. In our design ir[0] has the highest

priority and ir[7] has least priority. Hence ir[0] will be served
first then ir[2] and so on.

Fig 8-Interrupt servicing

In Fig 8, the waveform shows that interrupt ir[0] has been
served and the corresponding bit is resetted.

Fig 9- All interrupts serviced and resetted.

In Fig 9, the waveform shows the reset condition after

serving all the interrupts.

Table -1: Synthesis Results

Clk
period

(ns)

Timing
slack
(ps)

Area
(μm)

Number of
cells

2 -6 24855 2048
2.1 5 24722 2037
2.2 1 24735 2045
2.4 33 24703 2041
2.6 70 24664 2031
2.8 239 24667 2031
3 145 24664 2031
4 1266 24632 2031

The optimal output is obtained for clock period of 2.2ns
which is shown in Table 1.

3. CONCLUSIONS

Design of programmable interrupt controller used in cell
phones, laptops is done and coded in Verilog HDL
maintaining industry standard coding guidelines. After
coding the design, a verification plan describing verification
strategy for the design is developed. This is followed by
verification environment development and simulation of

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 07 | July-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 2215

design. Once design is cleared through functional verification,
synthesis strategy is developed. Synthesis scripts are added
and design is synthesized on 180nmtechnology and timing
checks are performed. Synthesis report with final working
frequency, gate count and chip area for different design
constraints are implemented.

a) Test bench can be more modular.
b) If the full system is available, system level testing

environment can be generated.
c) Capability to extend to 64-bit and 128-bit

interrupts.
d) Internal priority rotation schemes can be added.

The designed controller is generic and compliant with AMBA;
hence it can be used in any embedded system employing
AMBA bus architecture. In this project we are configuring 32-
bit register of a QAM chip, but depending on the requirement
we can extend this to configure any 8 bit, 16- bit or 64-bit
register modes of any chip. Future implementation of the
design on FPGA can be carried and tested for real time
communication.

REFERENCES

[1] VLSI Design Techniques for Analog and Digital Circuits,

R. L. Geiger, P. E. Allen, and N. R. Strader, McGraw-Hill,
1990.

[2] [2]. Analysis and Design of Digital Integrated Circuits,
Third Edition, David A. Hodges, Horace G. Jackson, and
Resve A. Saleh, McGraw-Hill, 2004.

[3] [3]. Basic VLSI Design, Douglas Pucknell &Eshragian,
PHI, 3rd Edition, 2009.

[4] [4]. Priyanka Gandhani, Charu Patel “ Moving from
AMBA AHB to AXI Bus in SoC Designs: A Comparative
Study” Int. J Comp Sci. Emerging Tech Vol-2 No 4
,pp.476-479 August, 2011.

[5] [5]. Fundamentals of Modern VLSI Devices,Yuan Taun
Tak H Ning Cambridge Press, South Asia Edition 2003,

[6] [6]. ModernVLSI Design, Wayne wolf, Pearson Education
Inc. 3rd edition, 2003.

[7] [7]. Introduction to CMOS VLSI Design-A Circuits and
Systems Perspective, Neil Weste,Pearson Education.3rd
Edition.2015.

[8] [8]. K. Goossens, O. P. Gangwal, J. Rover, and A. P.
Niranjan, "Interconnect and memory organization in
SOCs for advanced settop boxes and tv-evolution,
analysis, and trends", in J. Nurmi, H. Tenhunen, J. Isoaho,
and A. Jantsch, Editors, Interconnect-Centric Design for
Advanced SoC and NoC, Chapter 15, pp. 399-423,
Kluwer, 2004.

[9] [9]. Y. Hu and B. Yang, "Building an amba ahb compliant
memory controller", Proceedings of the Third
International Conference on Measuring Technology and
Mechatronics Automation, Vol. 01, 2011, pp. 658-661.

[10] [10].YOO,S.J.; NICOLESCU,G., LYONNARD,D., BAGHDADI,
A.,JERRAYA,A.A.,:’A generic wrapper architecture for
multi-processor SOC co-simulation and design’,
Hardware/Softerware Codesign, 2001.CODES

2001.Proceedings of the Ninth International Symposium
on,2001 pp. 195-200.

