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Abstract -The dynamic response of a pre stressed bowstring 
reinforced concrete (RC) type arch bridge under seismic 
loading is under investigation using finite element model. The 
bridge named as New Kozhencherry Bridge, Kerala, India was 
selected for the study. The bridge is a proposed work of the 
Public Works Department, Kerala. This paper deals with static 
analysis and  seismic analysis of the bridge with and without 
the provision of a damping systems and comparison of the 
results. The studie presented in this paper are a possible 
suggestion for design improvements to the structure under 
consideration. 
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1.INTRODUCTION 
 
A Tied Arch Bridge is a type of arch bridge in which the 
outward-directed horizontal forces of the top chord, are 
carried as tension by the bottom chord. This elimination of 
horizontal forces at the abutments allows tied-arch bridges 
to be constructed with less robust foundations. Therefore, 
tied arch bridges can be situated atop elevated piers or 
constructed in areas having unstable soil. Since the structure 
do not depend on horizontal compressive forces for its 
integrity, tied-arch bridges can be prefabricated offsite, and 
subsequently assembled at site. 
 
Of the many methods employed for the optimum 
performance of structures during seismic events, the use of 
dampers have proven to give promising results. Structures 
try to passively resist excitations through minor 
deformations, energy absorptions through plastic hinges etc. 
But these mechanisms cannot provide the required level of 
damping to resist a strong seismic vibration. Therefore we 
have to employ supplementary damping mechanisms: 
provision of dampers. Although the effect of dampers are 
well studied and recorded in the case of buildings, studies in 
the field of bridges are quite rare. Buildings and bridges 
excite very differently in seismic events. Studies exist on 

existing bridges being retrofitted with dampers, but this 
study focuses on a proposed governmental work. 
 
Philippe Duflot and Doug Taylor (2008) [9] retrofitted a 
footbridge named The Millennium Bridge with fluid viscous 
dampers. Peak accelerations were reduced from 0.25 g 
undamped to 0.006 g damped.  
 
Maria Q. Feng et al. (2000) [18] studied the effect of  
dampers in mitigating the seismic responses of bridges using 
a two-dimensional finite element model and found that the 
provision of dampers offered a practical solution to mitigate 
seismic vibrations. 
 
 

2. STRUCTURE SELECTED FOR THE STUDY 
 
The bridge is proposed to be constructed downstream of the 
the existing Kozhenchery Bridge across the Pamba River 
connecting Thiruvalla and Pathanamthitta under 
Pathanamthitta Division. The new bridge is proposed have 
six spans of 32.08+m and two spans of 23.40 m (Arch beams 
on both side). The MFL is +93.050 vertical clearance of the 
bridge above the MFL is proposed to be 5m for playing 
Beaked Boat. The total width of the bridge is 8.5 m. The 
carriageway has a width of 7.5 m and the superstructure 
consists of two prestressed tie members as bottom chords, 
fourteen cross girders, two bows and two bracings. Fig-1 
shows the location of the proposed bridge. 
 

 
Fig-1: Location of the proposed bridge. 
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3. FLUID VISCOUS DAMPER 
 
A damper can be defined as an element which can be added 
to a system to provide forces which causes energy 
dissipation during vibrations. 
The damping equation can be characterised as, 

F = C . V α 
Where F is the output force in kN or MN, V the relative 
velocity across the damper in mm/s, C is the damping 
coefficient and α is a constant which usually has a value 
between 0.3 and 2. 
 
The energy dissipation by dampers take place through fluid 
flow through orifices. This flow through tight orifices 
absorbs energy, which is dissipated into the atmosphere as 
heat.  
 
Fluid viscous dampers can operate in a wide range of 
temperatures. The length of the damper and the required 
damping force are customer controlled attributes. Fig-2 is a 
schematic illustration of a fluid viscous damper and Fig-3 
shows one under commission. 
 

 
 
Fig-2: Schematic diagram of a Fluid Viscous Damper 
 
 

 
Fig-3:A fluid viscous damper installed on a bridge 

4. MODELLING OF THE STRUCTURE 
 
The bridge was modelled using Design Modeller of ANSYS 
16.2 Workbench platform according to the data as shown in 
table 1. 
 
Member                                                            Dimensions 
Deck slab thickness                            225 mm 
Tie member dimension  600 X 600 mm  
End Cross girder dimension                      600 X 950 mm 
Intermediate Cross girder dimension    300 X 850 mm 
Bow dimension                             600 X 1000 mm 
Bracing dimension                            300 X 600 mm 
Hanger diameter                            72 mm 
Pier Diameter                                                1500 m 

Table-1: Section Properties 
 
Diameter of rebars used are 32 mm, 25 mm, 20 mm, 12 mm, 
10 mm and 8 mm. 12 T 13 strands were used for pre 
stressed members. The deck slab consists of 12 mmdiabars 
@ 200 mm c/c+16 mm dia  bars @ 200 mm c/c as top and 
bottom steel and 10 mm dia bars as distributors.  
 
The Bow consists of 36 no.s of 25 mm dia bars with 10 mm 
dia bars at 150 mm c/c as shear reinforcements. The 
bracings are 8 no's of 25 mm dia bars. The cross beams with 
8 no's  of 25 mm dia bars at top and 4 no's of 25 mm dia bars 
at bottom and shear reinforcement of 10 mm dia bars. 
 
The pier consists of 34 no.s of 32 mm dia bars with a shear 
reinforcement of 8 mm dia bars at 200 mm c/c.The damper 
was modelled to have a length of 0.7 m as a longitudinal 
damper connecting the pier to the deck. 
 
The models are shown in Fig-4 and Fig-5. 
 

 
 

Fig-4: Model of the bridge in ANSYS 16.2 
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Fig-5: Damper provided between pier and deck 

 

4.1 Material Data 
 

M40 grade concrete is designated to be used for construction 
of the bridge along with Fe500 grade steel bars. The concrete 
is modelled using solid elements and the rebars, hangers and 
pre stressing cables are modelled as beam elements. The 
hangers used are Macalloy tension rods M76 of 72 mm 
nominal diameter. A brief material description is given in 
Table-2. 

Table-2: Material description 

Concrete 

Compressive strength 40 MPa 

Density 24 kN/m3 

Poissons Ratio 0.17 

Structural Steel 

Tensile Strength 500 N/mm2 

 

The hangers have a minimum yield load of 1756 kN and a 
minimum breaking load of 2329 kN. 

 

5. ANALYSIS 

Coupled Static, modal and transient structural analysis of the 
models are completed. Two different earthquake ground 
acceleration data namely The North-Ridge Earthquake and 
The Kashmir Earthquake are used for the seismic model. The 
analyses of the structure are done with and without the 
provision of dampers and the deformation values and 
resultant acceleration are compared. ANSYS Workbench 16.2 
offers a wide selection of solvers. The Sparse MAPDL solver 
was used for the FE analyses. 

A final mesh of 228387 nodes and 128216 elements were 
generated during the user controlled meshing process. 

Further fine meshing proved unnecessary since required 
convergence criteria were met after the initial trials. 

The ground acceleration data of North-ridge earthquake and 
Kashmir Earthquake are as shown in Fig-6 and Fig-7. 

 

Fig-6: North-Ridge earthquake ground motion data 

 

Fig-7: Ground motion data of Kashmir earthquake 

The North-Ridge earthquake 0f 1994 January 17 is of 
magnitude 6.7. The Kashmir earthquake of October 8th 2015 
is of magnitude 7.6. 
 
 

6. RESULTS AND DISCUSSIONS 
 
The results and inferences of the analysis are as described 
below. 
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6.1 Static Analysis Results 
 
The static analysis is used to find the deformation under the 
dead load of the structure. The only load applied in this case 
is the Earth’s gravity. Fig-8 and Fig-9 shows the static 
analysis results. 
 

 
Fig-8: Deformation of the bridge without dampers  

 
The maximum deformation is found out to be 5.7947 mm at 
the middle portion of the deck slab. 
 

 
Fig-9: Deformation of the bridge with dampers 

 
Here maximum deflection is found out to be 4.9230 mm and 
the deflection values have decreased to almost zero near the 
supports. 
 

6.2 Modal analysis 
 
A total of ten modes were identified prior to the transient 
analysis through a modal analysis. The mode numbers and 
respective frequencies and maximum deformations are 
given in Table-3. A mode shape is shown in Fig-11. 
 

Table-3: Modal analysis results 
 

Mode 
Number Frequency(Hz) Deformation(mm) 

1 4.0998 0.09549 
2 4.482 0.089641 
3 6.3421 0.09384 
4 6.6588 0.09072 
5 6.9986 0.1096 
6 7.6317 0.145 
7 8.4496 0.1158 
8 9.0376 0.11297 
9 10.739 0.7234 

10 10.96 2.3916 
 

 
 

Fig-10: Second mode shape for frequency 4.482 Hz 
 

6.3 Dynamic analysis results for North-Ridge            
earthquake 
 

 
Chart-1: North-Ridge earthquake Deformation 
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Chart-2: Northridge earthquake acceleration 

 
 

6.4 Dynamic analysis results for Kashmir 
earthquake 
 

 
Chart-3: Kashmir earthquake deformation 

 

 
Chart-4: Kashmir earthquake acceleration 

 

6.4 Comparison of results of Bridge with and 
without dampers for North-ridge earthquake 
 

 
Chart-5: Deformation comparison for North-Ridge 

earthquake 
 

 
Chart-6: Acceleration comparison for Northridge 

earthquake 
 
The deformations and accelerations became negligible after 
20 seconds when the analysis was done on the damped 
structure. 
 

6.4 Force dissipated by the damper during 
Northridge earthquake excitation 
 
A significant amount of force was found to be dissipated by 
the damper. As mentioned above this energy will have been 
dissipated as heat energy. The energy dissipation 
characteristics of a single damper is depicted in chart-7. The 
result is obtained from the North-Ridge earthquake analysis. 
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Chart-7 Force dissipated by a single damper 
 

6.5 Comparison of results of Bridge with and 
without dampers for Kashmir earthquake 
 

 
Chart-8: Deformation comparison for Kashmir earthquake 
 

 
Chart-9: Acceleration comparison for Kashmir earthquake 

 
 

7. DISCUSSIONS 
 

[1]. Significant reduction in response can be obtained by 
the implementation of supplementary damping 
devices. 

[2]. Buildings sometimes tend to exhibit increased 
acceleration due to extra stiffening effect caused by 
dampers but no such trend is observed in this case. 

[3]. The response and acceleration are significantly 
reduced. 

[4]. The passive damping device tested has significantly 
enhanced the energy dissipation in the structure. 

[5]. Due to the architectural peculiarity of the bridge 
only a longitudinal configuration of dampers would 
be effective. 

[6]. Although the installation of dampers will incur extra 
costs, on the long run they will protect the bridge 
from de-commissioned due to vibrational hazards. 

[7]. The installation of dampers can also result in a 
more economic design of the structure 

[8]. A decrease of about 40% was recorded in the 
response of the bridge fitted with dampers 

 
 

8. CONCLUSION 
 
The results and discussions show that displacement and 
acceleration are significantly reduced with the application of 
dampers. The longitudinal configuration can be chosen as 
the optimum configuration of damping devices. For 
improved results the effects of type and number of dampers 
should also be investigated. 
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