
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 08 | Aug-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET ISO 9001:2008 Certified Journal Page 891

Malicious PDF – A Review

Gurjeet Singh1

1Student, Dept of CSE, Chandigarh University, Punjab, India

---***---

Abstract - Nowadays one of the serious threats to system
security is malicious PDF files. Attacks via malicious PDF files
usually occur through email communications. Various social
engineering techniques are being used by the attackers to
make users open malicious files. In this paper overview of PDF
file structure is provided and basic attacks that occur via PDF
files are discussed.

Key Words: PDF structure, Malicious PDF, Java script
attack, Code Obfuscation.

1. INTRODUCTION

Information security is often divided into the field of
computer security and network security. By computer
security, we mean measures taken to safeguard the
individual machine from attacks. When we discuss network
security, we mean measures taken to safeguard the complete
network, as well as connected systems and devices from
attacks. In a similar manner, computer systems attacks are
also conducted internally by the host, or remotely over the
network. We frequently talk over with the term latter as
network attacks. Usually, network attacks target at the
services running on the computers and servers and
therefore referred to as server-side attacks. These attacks
deem the target running services on the open port and
exploit vulnerabilities in these services. Server-side attacks
are generally conducted in five phases, described by Skoudis
et al. [4].
• Reconnaissance
• Scanning
• Exploitation
• Keeping Access
• Removing tracks
Even though we safeguard machine by default firewall set up
to block the new incoming traffic, attackers still have their
alternative tactics to evade the security. The firewall
generally blocks new in-bound connection attempt but
permit users behind the firewall to out-bound the
connection. Thereby allowing both parties with established
connections to communicate over the channel in both
directions [5]. This reality is exploited by attackers which we
call client-side attacks. Client-side attacks exploit
susceptibilities in user software, like e-mail applications,
web browsers, runtime environments, media players and
last however not least document viewers. The exploitation of
PDF document viewers has been vital for the last number of
years and appears to still be on a rise. PDF document

viewers are widely targeted for several reasons. First of all,
we have all got one, and PDF is the common standard for the
document exchange. Hence, we are all ready to open a PDF
document and expect to receive PDF documents from every
kind of sources. Secondly, PDF is an old format and at the
same time extremely versatile. This allows the attackers to
use the versatility to exploit a piece of code in a way that
could never be imagined. Further sections provide a deeper
look at the PDF format and how it can be exploited.

1.1 Portable Document Format (PDF)

The Portable Document Format (PDF) [6] is basically a file
format produced by Adobe Systems in 1993 and used to
exchange and present documents reliably, independent of
hardware, software, or operating system. In 2008, the PDF
format was officially declared as an open standard by ISO and
since the release, PDF is considered as the industry standard
for the file exchange. PDF files, instead of containing text and
images, the format also offers the embedding of JavaScript
and Flash, and has the flexibility to open external resources
from the native machine or the internet [7]. These features
are there how utilized by attackers to exploit vulnerabilities
in the PDF document viewers.

Fig -1: PDF Structure

1.2 Malicious Use of PDF Documents

As discussed earlier, PDF is the popular standard for
document exchange. Nearly everyone has a PDF reader
installed, or the owner can merely have a tough time to

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 08 | Aug-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET ISO 9001:2008 Certified Journal Page 892

participate in society. Covered with the actual fact that PDF
may be an extremely powerful and flexible format, it's
virtually a dream come true for an assaulter. In the following,
the foremost common strategies of malicious PDF
distribution are going to be mentioned. Following this can be
a superficial inspects some ways in which the exploits are
literally implemented.

1. Distribution of Malicious PDF

According to [9], there are main three channels for
distributing malicious PDF documents. These channels are
mass mailing, targeted attacks, and drive-by downloads.
These are the client-side attack methods. Mass mailing is
well known for malicious PDF distribution since the general
public is accustomed to receiving PDF attachments in e-
mails. In a mass mailing theme, massive spam campaigns
are set up to deliver e-mails containing malicious PDFs to a
large range of users. Social engineering tricks are used to
encourage the receiver to open up the attached document.
Typically, the content of these e-mail shows an ingress style
paragraph to a recent news event, with a promise of the
complete story and exciting details within the hooked up
PDF document. The popular subject includes:
• E-mail from the organization or a government

department.
• Politics.
• A recent incident (Accidents, disasters, war).
• Controversial/sexual subjects.

In mass mailing campaigns malicious PDFs are sent and
these can often contain embedded executable pay-loads,
which is extracted and also executed when the PDF is
opened in a susceptible environment. Due to the entrenched
feature of routinely opening PDF documents in most
browsers, drive- by downloads is additionally a well-liked
channel for malicious PDF distribution. A user might not
even notice that a PDF has been opened on their machine
once falling victim to a drive-by download. As hostile PDFs
sent through mass mailing, a web-hosted PDF can typically
be tiny and not contain any embedded executables. Instead,
they contain a tiny piece of code that, when successful
exploitation, can transfer and execute malicious executables
from the internet. Such a theme provides the assaulter good
flexibility, as they are going to be able to update the
malicious code that's downloaded at any time. A targeted
malicious PDF is targeting a personal or a corporation and is
specially crafted to achieve success against this target. The
possibility of success is boosted by fastidiously researching
the target and designing the attack. By gathering data on the
target the social engineering content of the attack may be
created in such how that the target goes to own high trust
within the received PDF document. Also, the exploit may be
chosen in such a way that it has a high probability of being
successful on the target system. With targeted attacks,
there's typically an extreme motivational and capable
organization responsible. Such threats might have access to

zero-day exploits which can greatly increase the likelihood of
their success. The value of targeted attacks is comparatively
low and attributable to its sophistication and concealment
several are most likely never reported because the victim is
unaware of the compromise.

2. Exploit Implementation

New vulnerabilities in PDF readers and associated plug-ins
and libraries emerge all the time, and with the newest
vulnerabilities follow an exploit. Totally different sorts of
exploits may be utilized in a malicious PDF, and one single
PDF might contain many exploits classified along. In [9] PDF
exploits are classified into two distinct classes; JavaScript
and non-JavaScript based exploits. JavaScript-based exploits
are created through the JavaScript support within the PDF
description. Attackers know the ability a scripting language
like JavaScript brings to the format. JavaScript is to exploit
vulnerabilities within the PDF JavaScript API and to fill the
PDF reader’s memory with malicious code, employing a
technique referred to as heap spray. A whole exploit
typically consists of code that initial heap sprays the reader’s
memory with shell code, and then perform a vulnerable
function. This might lead to the shell code being executed.
According to [9] malicious PDFs now a day use JavaScript in
one way or another. Non-JavaScript based exploits are much
rarer than the JavaScript-based exploits. An alternative to
JavaScript is to use PDF’s ability to enter Flash content. Such
content is also accustomed exploit vulnerabilities within the
Flash engine, or to place shell code within the heap of the
reader. There also exists a vulnerability within the approach
TIFF-images can handle, which may result in code execution
even while not a heap spray. In addition to such specific
vulnerabilities, the Portable Document Format has several
nice options which may facilitate the assaulter in building a
malicious PDF while not the utilization of any vulnerability
intrinsically. At Black Hat Europe 2008 Eric Filiol et al. given
a paper [10] on this subject. The options include practicality
to open different documents, open hyperlinks, amendment
document hierarchy placement, access resources outside the
active document, execute applications, open files, print
documents, access remote resources, submit resources to
remote and import information from the user. A deeper
verify a number of these options and their attainable misuse
follow:
• OpenAction - The OpenAction function let the creator of

a PDF document outline actions to trigger once the
document is opened. The perform doesn't do a lot itself,
however, once functions like Launch or ActionClass
space given as input, things will get ugly. The function is
maliciously accustomed run exploits as shortly because
the PDF document is opened, giving the victim no
likelihood to prevent it.

• AA - The Additional Action perform works in a similar
approach as OpenAction task. However, rather than
triggering on the document being opened, it triggers on
specific actions set by the PDF creator. Such actions

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 08 | Aug-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET ISO 9001:2008 Certified Journal Page 893

enclosed triggering once a precise page is opened or
closed, once clicking certain area, when the mouse is
over a specific area, when printing and so on.

• Action category - The Action group comprises numerous
functions that may be placed in an OpenAction or
AddidtionalAction function. Action category functions
are used for executing files, activating hyperlinks,
sending kind information and much more. These all
functions might aide the assaulter in making an
operating malicious PDF. These days’ threats are
alleviated by most PDF readers by showing the victim a
confirmation box whenever an action is triggered.
However, through social engineering and also the
restricted awareness of the general public, this threat
continues to be one to reckon with.

• The Launch is from the Action category function. It
permits execution of any file on the target system, with
no obligatory arguments. Before confirmation boxes
were enforced into PDF readers this was the only most
crucial vulnerability in PDF.

• SubmitForm is generally used for electronic forms. It
permits the creator of the PDF to send information from
the form element to a specified address. This provides a
wonderful information channel for an assaulter to
retrieve information from the target host.

1.3 Obfuscation of PDF Documents

Attackers use many ways to cover, or alter, the malicious
contents of a PDF document. Such ways are possible because
of the powerful and versatile nature of the PDF format.
Especially the JavaScript typically found in an exceedingly
malicious PDF document has large amounts of obfuscation
ways. Obfuscation is supposed to throw off the analyst
attempting to research the malicious content, and
additionally to evade detection by signature anti-virus
solutions or IDS. The techniques may fit on their own,
however typically a combination is employed to produce an
effective step against each detection mechanisms and human
analysts. In [11], Leif Arne Sand presents some common
techniques which are briefly mentioned below.

1. Separating Malicious Code over Multiple Objects
As in a coding language and in a malicious code of a PDF
document can be spread among many objects. The code is
then created in such a way that during execution
congregates itself into an entire code performing the
required actions [9]. By taking advantage of the flexibility to
seek advice from indirect objects spreading ways in an
exceedingly JavaScript embedded within the document.
Objects can build the work for analyst a lot of more durable
and throw of signature based IDS and antivirus.

2. Applying Filters
By applying filters the author is in a position to encode and
compress the streams of PDF document. Attackers will use
this feature so as to evade detection by security code. If the

code does not support the filters used it may never even, see
the malicious code. Applying filters would not evade a
knowledgeable human analyst, however, it will most
definitely build his job longer overwhelming.

3. White area randomisation
Since JavaScript ignores whitespace at run-time, it attainable
to insert as arbitrary amounts of whitespace characters
within the code [12]. Whereas this cannot fool the human
analyst, the signature primarily based detection mechanism
could simply be thrown off. Any detection mechanism
counting on the hash sum of the JavaScript also will be
fooled, as this will modify once whitespace characters are
inserted.

4. Block randomization
Block randomization involves ever-changing the structure of
the JavaScript in such a manner that it functions in the same
way, however, includes a different syntax. The instance
below shows three other ways of writing a loop that
performs precisely the same function [12].

5. Comment randomization
Comments also are unheeded by the JavaScript parser at
run-time. This implies that attacker could insert or edit
comments within the source code to alter its hash sum. This
can however only effect detection mechanisms counting on
the hash sum. The strategy has no impact on the human
analyst.

6. Variable Name Randomization
Since one will provide variables virtually any name one
would need, it's attainable for the wrongdoer to alter
variable names. This could fool signature primarily based
detection mechanisms searching for specific variable names,
however, will have very little impact on the human analyst.

7. String Obfuscation
The goal of string obfuscation is to alter strings in order to
appear insignificant and unreadable to the human analyst.
This may be achieved in many ways. The wrongdoer could
split the string into many substrings that are concatenated at
run-time. Additionally, the strings could also be encoded
using schemes like Unicode, hexadecimal, base64, and so on.
Finally, the attacker could alter the string using arbitrary
function over it, like XOR or substitutions. A de-obfuscation
performs would then be executed at run-time, revealing
actuality string simply before it is used. This technique
includes a large impact on the human analyst, which can
have to be compelled to pay plenty of their time revealing
actuality content of the strings. The strategy is additionally
effective for concealing, for instance, shell code from
signature based IDS.

8. Function Name Obfuscation
This technique is applied to cover the use of standard
functions, like the usually used unescape() and eval().

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 08 | Aug-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET ISO 9001:2008 Certified Journal Page 894

Creating pointers for such functions using arbitrary names,
can build a human analyst job more durable and can bypass
signature-based detection mechanisms searching for specific
functions.

9. Whole number Obfuscation
Integer obfuscation aims at representing numbers in an
exceedingly set of various ways. For example, if the
malicious code uses a suspicious memory address e.g.
0x08000000, detection mechanisms could check for this
address within the code. Using the integer obfuscation, the
wrongdoer could instead represent 0x08000000 as
16777216*8.

2. RELATED WORK

Tzermias et al. [15] introduced an approach called MDScan

which was both static as well as dynamic file scanner used to

identify the malicious PDF files. MDScan worked by

extracting all objects and embedded java scripts in objects

from the PDF file body. Then embedded JavaScript code was

examined by SpiderMonkey which is JavaScript engine.

During execution period the string variables are analyzed

and if address space of interpreter is found with a shellcode,

the file is classified as malicious.

Vatamanu et al. [16] introduced two clustering methods of

PDF files namely hash table and hierarchal bottom up

clustering on the basis of embedded JavaScript tokenization.

The basic approach was to detect obfuscated java scripts

using clustering methods and fingerprints are created for

every pdf file which is inspected. The dataset comprised

1333420 benign files and 997615 malicious files. According

to their results. The empirical results showed that java

scripts were found in 90 % of malicious files and about 5 %

in benign files also hash table clustering proved better than

bottom up clustering.

Lu et al. [22] presented a tool MPScan that integrated

dynamic java script obfuscation and static malicious PDF

detection. It was capable of dealing with both attacks- java

script based and non java script based. This tool is composed

of two modules namely multi level malware detection unit

and embedded code extraction unit. The proposed tool is

very effective against unknown obfuscation methods, heap

spraying and detection of shell codes.

Schmit et al. [18] presented tool, PDF scrutinizer which

detects malicious PDFs by using dynamic and static methods

of analyzing. The main focus of this tool is attacks based on

java scripts. The tool consisted of three modules namely

parser, action executor and action executor where parser

imitates the adobe readers’ way of parsing a document,

action executor Extracts JavaScript activities statistically and

action executor performs execution in JSengine on extracted

JavaScript code. The evaluation dataset consists 11,278

malicious and 6054 benign PDF files which were gathered

from honeypots, emails and websites. Empirical results

illustrate a detection rate of 90%. The authors also

contrasted their proposed tool with former existing PDF

analysis tools such as MDScan, Wepawet and PJScan.

3. CONCLUSIONS

The paper presents an overview of malicious PDF files, its
structure and common attacks methods. In order to detect
attacks via pdf files it is required to study PDF structure in
depth. Mostly javascripts and obfuscation techniques are
used as attack vectors in PDF files. Attackers either perform
mass mailing or target unique users to make them open
malicious PDF file via social engineering techniques.
Attachments as PDFs or word document are rarely filtered at
email gateway causing huge risks to systems. Thus it is
important to detect malicious PDFs and prevent them from
causing any harm to user systems.

REFERENCES

[1]http://netsecurity.about.com/cs/hackertools/a/aa03050

4.htm

[2]https://www.paloaltonetworks.com/documentation/glos

sary/what-is-an-intrusion-prevention-system-ips

[3]http://www.symantec.com/connect/articles/social-

engineering-fundamentals-part-i-hacker-tactics

[4] Skoudis, Ed, and Tom Liston. Counter hack reloaded: a

step-by-step guide to computer attacks and effective

defenses. Prentice Hall Press, 2005.

[5] Harper, Allen, Shon Harris, Jonathan Ness, Chris Eagle,

Gideon Lenkey, and Terron Williams. Gray Hat Hacking The

Ethical Hackers Handbook. McGraw-Hill Osborne Media,

2011.

[6]http://www.adobe.com/devnet/pdf/pdf_reference.html /

[7] Tzermias, Zacharias, Giorgos Sykiotakis, Michalis

Polychronakis, and Evangelos P. Markatos. "Combining static

and dynamic analysis for the detection of malicious

documents." In Proceedings of the Fourth European

Workshop on System Security, p. 4. ACM, 2011.

[8]http://www.adobe.com/content/dam/Adobe/en/devnet

/acrobat/pdfs/pdf_reference_1-7.pdf

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 08 | Aug-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET ISO 9001:2008 Certified Journal Page 895

[9]https://www.symantec.com/content/en/us/enterprise/

media/security_response/whitepapers/the_rise_of_pdf_mal

ware.pdf

[10] Blonce, Alexandre, Eric Filiol, and Laurent Frayssignes.

"Portable document format (pdf) security analysis and

malware threats." In Presentations of Europe BlackHat 2008

Conference, Amsterdam. 2008.

[11] Sand, L. A. "The portable document format-a study of

common distribution, exploit, evasion, mitigation and

detection techniques." Student paper in Information Security

at Gjøvik University College (2011).

[12] Feinstein, Ben, Daniel Peck, and I. SecureWorks.

"Caffeine monkey: Automated collection, detection and

analysis of malicious javascript." Black Hat USA 2007 (2007).

[13] Kononenko, Igor, and Matjaž Kukar. Machine learning

and data mining: introduction to principles and algorithms.

Horwood Publishing, 2007.

[14] Laskov, Pavel, and Nedim Šrndić. "Static detection of

malicious JavaScript-bearing PDF documents." In

Proceedings of the 27th Annual Computer Security

Applications Conference, pp. 373-382. ACM, 2011.

[15] Tzermias, Zacharias, Giorgos Sykiotakis, Michalis

Polychronakis, and Evangelos P. Markatos. "Combining static

and dynamic analysis for the detection of malicious

documents." In Proceedings of the Fourth European

Workshop on System Security, p. 4. ACM, 2011.

[16] Vatamanu, Cristina, Dragoş Gavriluţ, and Răzvan

Benchea. "A practical approach on clustering malicious PDF

documents." Journal in Computer Virology 8, no. 4 (2012):

151-163.

[17] Maiorca, Davide, Giorgio Giacinto, and Igino Corona. "A

pattern recognition system for malicious pdf files detection."

In Machine Learning and Data Mining in Pattern Recognition,

pp. 510-524. Springer Berlin Heidelberg, 2012.

[18] Schmitt, Florian, Jan Gassen, and Elmar Gerhards-

Padilla. "PDF SCRUTINIZER: Detecting JavaScript-based

attacks in PDF documents." In Privacy, Security and Trust

(PST), 2012 Tenth Annual International Conference on, pp.

104-111. IEEE, 2012.

[19] Smutz, Charles, and Angelos Stavrou. "Malicious PDF

detection using metadata and structural features." In

Proceedings of the 28th Annual Computer Security

Applications Conference, pp. 239-248. ACM, 2012.

[20] Šrndic, Ned, and Pavel Laskov. "Detection of malicious

pdf files based on hierarchical document structure." In

Proceedings of the 20th Annual Network & Distributed

System Security Symposium. 2013.

[21] Pareek, Himanshu, P. Eswari, N. Sarat Chandra Babu,

and C. Bangalore. "Entropy and n-gram Analysis of Malicious

PDF Documents." In International Journal of Engineering

Research and Technology, vol. 2, no. 2 (February-2013).

ESRSA Publications, 2013.

[22] Lu, Xun, Jianwei Zhuge, Ruoyu Wang, Yinzhi Cao, and

Yan Chen. "De-obfuscation and detection of malicious pdf

files with high accuracy." In System Sciences (HICSS), 2013

46th Hawaii International Conference on, pp. 4890-4899.

IEEE, 2013.

[23] Maiorca, Davide, Igino Corona, and Giorgio Giacinto.

"Looking at the bag is not enough to find the bomb: an

evasion of structural methods for malicious pdf files

detection." In Proceedings of the 8th ACM SIGSAC

symposium on Information, computer and communications

security, pp. 119-130. ACM, 2013.

[24] Pareek, Himanshu, P. R. L. Eswari, and N. Sarat Chandra

Babu. "Malicious PDF document detection based on feature

extraction and entropy." In International Journal Journal of

Security, Privacy and Trust Management, Volume 2, No 5,

2013.

[25] Maiorca, Davide, Davide Ariu, Igino Corona, and Giorgio

Giacinto. "An Evasion Resilient Approach to the Detection of

Malicious PDF Files." In Information Systems Security and

Privacy, pp. 68-85. Springer International Publishing, 2015.

