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Abstract - Shortest path algorithm find  minimum distance 

path between source to destination .we use graph to solve 

shortest path distance problem . Graph is set of Edges and 

vertices. A graph is a pictorial representation of a set of objects 

where some pairs of objects are connected by links. Formally, a 

graph is a pair of sets (V, E), where V is the set of vertices 

and E is the set of edges, connecting the pairs of vertices.  

undirected graphs have edges that do not have a direction  . 

The edges indicate a two-way relationship, in that each edge 

can be traversed in both directions. Directed graphs have 

edges with direction. The edges indicate a one-

way relationship, in that each edge can only be traversed in a 

single direction. Edges contain Wight which is used to 

calculate shortest path from source to destination .consider 

example Airline route maps. Vertices represent airports, and 

there is an edge from vertex A to vertex B if there is a direct 

flight from the airport represented by A to the airport 

represented by B. There are different shortest path algorithm 

which solve shortest path problem. They are Dijkstra’s ,Floyd –

Warshall ,Bellman Ford Algorithm.  

Key Words:  Graph ,Dijkstra’s Algorithm,Floyd-Warshall 

Algorithm ,Bellman –Ford Algorithm 

 

1.RESEARCH OBJECTIVES 

        To determine representation of graph in computer  with 

basic terms also find problem of shortest path problem .To 

discuss general aspect of ,Dijkstra’s Algorithm,Floyd-

Warshall Algorithm ,Bellman –Ford Algorithm 

  

 

 

2. LITERATURE REIVEW 

A graph can be used to represent a map where the cities are 

represented by vertices and the routes or 

roads are represented by edges within the graph. In these 

paper brief descriptions and implementations of the three 

shortest path algorithms being studied are presented2.1 

Representation Of Graph.Graph can be represented using  

adjacency matrix and adjacency list . Consider 2D array  will 

be adj[][], a slot adj[i][j] = 1 indicates that there is an edge 

from vertex i to vertex j. Adjacency matrix for undirected 

graph is always symmetric. Adjacency Matrix is used to 

represent weighted graphs. If adj[i][j] = w, then there is an 

edge from vertex i to vertex j with weight w. Removing an 

edge takes O(1) time. Queries like whether there is an edge 

from vertex ‘u’ to vertex ‘v’ are efficient and can be done 

O(1). Consumes more space O(V^2). Even if the graph 

contains less number of edges, it consumes the same space. 

Adding a vertex is O(V^2) time. We also use  linked lists for 

representation of graph .Let the array be a[]. An entry a[i] 

represents the linked list of vertices adjacent to the ith vertex. 

This representation can also be used to represent a weighted 

graph. The weights of edges can be stored in nodes of linked 

lists. 

2.2 DIJKSTRA’S ALGORITHM :EXPLANATION AND 

IMPLEMENTATION  

                      Volume: 03 Issue: 08 |Aug -2016                       www.irjet.net                                                 p-ISSN: 2395-0072 

         Dijkstra's algorithm is used  for finding the shortest 

paths between nodes in a graph, which may represent, 

for example, road networks. we can use a priority queue in 

which vertices are sorted by their increasing dist[] value. 

Then at each iteration, we will pick the vertex, u, with 

smallest dist[u] value and call relax(u,v) on all of ts 

neighbours,  The only difference is that now we add 
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the weight of the edge (u, v) to our distance instead 

of just adding 1. However, the algorithm only works as long 

as we do not have edges with negative weights. Otherwise, 

there is no guarantee that when we pick u as the closest 

vertex, dist[v] for some other vertex v will not become 

smaller than dist[u] at some time in the future. There are 

several ways to implement Dijkstra's algorithm. The main 

challenge is maintaining a priority queue of vertices that 

provides 3 operations –inserting new vertices to the queue, 

removing the vertex with smallest dist[], and decreasing the 

dist[] value of some vertex during relaxation. We can use a 

set to represent the queue. Dijkstra's algorithm is very fast, 

but it suffers from its inability to deal with negative edge 

weights. 

2.3 Bellman –Ford Algorithm :Explanation And 

Implementation  

  Having negative edges in a graph may also introduce 

negative weight cycles that make us rethink the very 

definition of "shortest path". Fortunately, there is an 

algorithm that is more tolerant to having negative edges –the 

BellmanFord algorithm . That is why, a graph can contain 

cycles of negative weights, which will generate numerous 

number of paths from the starting point to the final 

destination, where each cycle will minimize the length of the 

shortest path .The Bellman Ford algorithm is a Dynamic 

Programming algorithm that solves the shortest path 

problem. It looks at the structure of the graph, and 

iteratively generates a better solution from a previous one, 

until it reaches the best solution. Bellman Ford can handle 

negative weights readily, because it uses the entire 

graph to improve a solution. The idea is to start with a base 

case solution S0, a set containing the shortest distances from 

s to all vertices, using no edge at all. In the base case, d[s] = 0, 

and d[v] = ∞ for all other vertices v. We then proceed to 

relax every edge once, building the set S1. This new set is an 

improvement over S0, because it contains all the shortest 

distances using one edge –ie. d[v] is minimal in S1 if the 

shortest path from s to v uses one edge. Now, we repeat this 

process iteratively, building S2 from S1, then S3 from S2, and 

so on..Each set Sk contains all the shortest distances from s 

using k edges –ie. d[v] is minimal in Sk if the shortest path 

from s to v uses at most k edges. we have the best solution 

after n1 iterations . The algorithm above basically 

implements this idea.  We start with a base case S0, and 

repeatedly relax every edge to generate Sk+1 from Sk. Note 

that in the relaxation step, we don't relax an edge if dist[u] is 

infinity, or otherwise we may get overflow in the addition 

(conceptually we never want to relax such an edge anyway). 

Also the order of using the edges can affect the intermediate 

sets Sk, because we may first relax an edge (u,v), then relax 

another edge (v,w) in the same step, while choosing the 

reverse order of these two edges may not relax them both. 

However, we now show that Sn1 is unique, and contains 

the shortest distance possible from s to any vertex v. the 

Bellman Ford algorithm is correct, but does it always 

terminate? It does, as we only have two loops, one running n-

1 iterations, and the other going through all edges. Hence, 

the algorithm always terminates, and has a run time of 

O( n*m ). While the Bellman Ford algorithm can handle 

negative weight edges readily, the correctness of the 

algorithm breaks down when negative weight cycles exist 

that is reachable from s. However, the nature of the 

algorithm allows us to detect these negative weight cycles. 

The idea is that, if a negative weight cycle exist, then Sn1 will 

be the same as Sn, Sn+1, Sn+2,  If we run the iteration step more 

than n1 times, we will not be changing the answer. On the 

other hand, if a negative weight cycle exist, then one of its 

edges must have negative weight, and any such edge can be 

relaxed further even after n1 iterations, decreasing some 

of the distances. Hence, to detect negative weight cycles, we 

just need to run the Bellman Ford algorithm, and when it 

terminates, check whether we can relax any edges. If we can, 

then that edge is reachable from a negative weight cycle, and 

the cycle is also reachable from the source.  
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2.4 Floyd–Warshall Algorithm :Explanation And 

Implementation  

The Floyd-Warshall algorithm improves upon this algorithm, 

running in Θ(n3) time. The genius of the Floyd-Warshall 

algorithm is in finding a different formulation for the 

shortest path sub problem than the path length formulation 

introduced earlier. At first the formulation may seem most 

unnatural, but it leads to a faster algorithm. As before, we 

will compute a set of matrices whose entries are d(k) ij . We 

will change the meaning of each of these entries. 

For a path p = hv1, v2,...,v`i we say that the vertices v2, 

v3,...,v`−1 are the intermediate vertices of this path. Note that 

a path consisting of a single edge has no intermediate 

vertices. We define d(k) ij to be the shortest path from i toj 

such that any intermediate vertices on the path are chosen 

from the set {1, 2,...,k}. In other words, we consider a path 

from i to j which either consists of the single edge (i, j), or it 

visits some intermediate vertices along the way, but these 

intermediate can only be chosen from {1, 2,...,k}. The path is 

free to visit any subset of these vertices, and to do so in any 

order. Thus, the difference between Floyd’s formulation and 

the previous formulation is that here the superscript (k) 

restricts the set of vertices that the path is allowed to pass 

through, and there the superscript (m) restricts the number 

of edges the path is allowed to use. If the value of d(32)
(k)   

changes as k varies. The final answer is d(n) ij because this 

allows all possible vertices as intermediate vertices. Again, 

we could write a recursive program to compute d(k) ij , but 

this will be prohibitively slow.This  algorithm can be easily 

modified to detect cycle .If we fill negative infinity value at 

the diagonal of matrix and  run algorithm than matrix of 

predecessors will contain also all cycles in the graph (the 

diagonal will not contain only zeros ,if there is a cycle in the 

graph). 

 

 

2.5 Time complexity  

The time complexity for each algorithm is illustrated in Table 

I; n represents the total number of vertices, and m is the total 

number of edges. 

Name Time complexity  

Dijkstra’s Algorithm  n2+m 

Bellman Ford   Algorithm  O(n3) 

Floyd–Warshall 

Algorithm  

nm 

 

3. CONCLUSIONS  AND FUTURE WORK 

               Algorithms are acceptable in terms of their overall 

performance in solving the shortest path problem. All of 

these algorithms produce only one solution. improved in 

finding the shortest path or distance between two places in a 

map that The computed time complexity for each of the 

Dijkstra’s, Floyd-Warshall and Bellman-Ford algorithms 

show that these represents any types of networks. In 

addition, other artificial intelligence techniques such as fuzzy 

logic and neural networks can also be implemented in 

improving existing shortest path algorithms in order to 

make them more intelligent and more efficient.                      
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