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Abstract - The fusion of images is the process of combining 

two or more images into a single image retaining important 

features from each. Fusion is an important technique within 

many disparate fields such as remote sensing, robotics and 

medical applications. Wavelet based fusion techniques have 

been reasonably effective in combining perceptually 

important image features. Shift invariance of the wavelet 

transform is important in ensuring robust sub band fusion. 

Therefore, the novel application of the shift invariant and 

directionally selective dual tree complex wavelet transform 

(dt-cwt) to image fusion is now introduced. This novel 

technique provides improved qualitative and quantitative 

results compared to previous wavelet fusion methods. 
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1. INTRODUCTION  
 
In computer vision, Multisensory Image fusion is the 

process of combining relevant information from two or 

more images into a single image. The resulting image will be 

more informative than any of the input images. In remote 

sensing applications, the increasing availability of space 

borne sensors gives a motivation for different image fusion 

algorithms. Several situations in image processing require 

high spatial and high spectral resolution in a single image. 

Most of the available equipment is not capable of providing 

such data convincingly. Image fusion techniques allow the 

integration of different information sources. The fused 

image can have complementary spatial and spectral 

resolution characteristics. However, the standard image 

fusion techniques can distort the spectral information of the 

multispectral data while merging. 

In satellite imaging, two types of images are available. The 

panchromatic image acquired by satellites is transmitted 

with the maximum resolution available and the 

multispectral data are transmitted with coarser resolution. 

This will usually be two or four times lower. At the receiver 

station, the panchromatic image is merged with the 

multispectral data to convey more information. 

Many methods exist to perform image fusion. The very basic 

one is the high pass filtering technique. Later techniques are 

based on Discrete Wavelet Transform, uniform rational 

filter bank, and Laplacian pyramid .Multi-sensor data fusion 

has become a discipline which demands more general 

formal solutions to a number of application cases. Several 

situations in image processing require both high spatial and 

high spectral information in a single image. This is 

important in remote sensing. However, the instruments are 

not capable of providing such information either by design 

or because of observational constraints. One possible 

solution for this is data fusion. 

Image fusion methods can be broadly classified into two 
groups - spatial domain fusion and transform domain 
fusion. The fusion methods such as averaging, Brovey 
method, principal component analysis (PCA) and IHS based 
methods fall under spatial domain approaches. Another 
important spatial domain fusion method is the high pass 
filtering based technique. Here the high frequency details 
are injected into up sampled version of MS images. The 
disadvantage of spatial domain approaches is that they 
produce spatial distortion in the fused image. Spectral 
distortion becomes a negative factor while we go for further 
processing, such as classification problem. Spatial distortion 
can be very well handled by frequency domain approaches 
on image fusion. The multi resolution analysis has become a 
very useful tool for analyzing remote sensing images. The 
discrete wavelet transform has become a very useful tool 
for fusion. Some other fusion methods are also there, such 
as Laplacian pyramid based, curvelet transform based etc. 
These methods show a better performance in spatial and 
spectral quality of the fused image compared to other 
spatial methods. 

 

2. LITERATURE SURVEY 

 

Due to the compact and enhanced representation of 

information, image fusion has been employed in many 

medicalapplications.Forinstance,T1 weighted(T1W) and T2 

weighted(T2W) magnetic resonance imaging (MRI) scans 

were fused to segment white matter lesions [6] or cerebral 

iron deposits [7] and to guide neurosurgical resection of 
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epileptogenic lesions [8]. Computed tomography (CT) and 

MRI images were fused for neuron navigation in skull base 

tumor surgery [9]. Fusion of positron emission tomography 

(PET) and MRI images has proven useful for hepatic 

metastasis detection [10] and intracranial tumor diagnosis 

[11]. Single-photon emission computed tomography 

(SPECT) and MRI images were fused for abnormality 

localization in patients with tinnitus [12]. Multiple fetal 

cardiac ultrasound scans were fused to reduce imaging 

artifacts [13]. In addition, the advantages of image fusion 

over side-by-side analysis of non-fused images have been 

demonstrated in lesion detection and localization in 

patients with neuroendocrine tumors [14] and in patients 

with pretreated brain tumors [15]. Even if image fusion is 

not performed explicitly, e.g., by a CAD system, it is usually 

performed subconsciously by radiologists to compare 

images and better identify abnormalities [16]. 

A straight forward multimodal image fusion method is to 

overlay the source images by manipulating their 

transparency attributes [17], [18], or by assigning them to 

different color channels [6], [19].This overlaying scheme is a 

fundamental approach in color fusion, a type of image fusion 

that uses color to expand the amount of information 

conveyed in a single image [20], but it does not necessarily 

enhance the image contrast or make image features more 

distinguishable. 

The pyramid transforms (PT) and the wavelet transform 

(WT) are the two categories of MSD schemes that are most 

commonly employed in image fusion. Among different PT 

schemes, Laplacian pyramid transform (LPT) is one of the 

most frequently used. A Laplacian pyramid (LP) is 

constructed based on its corresponding Gaussian pyramid 

(GP) by subtracting two adjacent levels. Thus, a DET in the 

LP encodes the local variations at that scale. The ratio of 

low-pass pyramid (RoLP) is also constructed based on GP, 

but by taking the ratio of two adjacent levels. The gradient 

pyramid (either explicitly or implicitly constructed) is 

another type of PT, which is built by applying gradient 

filters of different orientations to each level of a GP. A 

standard WT scheme is the discrete WT (DWT), which 

decomposes a signal into an MSR using scaling (low-pass 

filtering) and wavelet (high-pass filtering) functions. One 

drawback of DWT is shift-variance, which tends to cause 

artifacts along edges in the fused images. Hence, WT 

schemes that provide shift-invariance, such as dual-tree 

complex WT (DTCWT), were also employed in image fusion. 

Although theoretically the decomposition of an image can 

be performed iteratively until there is only one coefficient at 

APX, this will result in serious bias and inaccuracy in the 

feature selection at low-resolution levels, which impairs the 

fusion quality. Typically, only a few decomposition levels 

are therefore used in practice. 

 

3. PROPOSED SYSTEM 

3.1Wavelet transform domain  

Using Fourier Transform (FT) only the global 

frequency content of a signal is retrieved, the time 

information is lost. By using wavelet analysis a multi-

resolution analysis is possible. The frequency and time 

content of a signal is retrieved by Wavelet Transform 

(WT).The types of wavelet transform are i) Continuous 

Wavelet Transform (CoWT) ii) Discrete Wavelet Transform 

(DWT) iii) Complex Wavelet Transform (CWT).By using 

Fourier transform and Short Time Fourier Transform a 

multi resolution analysis is not possible so there is a 

restriction to use these tools in image processing systems, 

particularly in image de-noising applications. The multi-

resolution analysis is possible by using wavelet analysis. A 

Continuous Wavelet Transform (CoWT) is calculated 

analogous to the Fourier transform (FT), by performing 

convolution between the signal and analysis function. The 

Discrete Wavelet Transform uses filter banks to perform the 

wavelet analysis.  

3.2 Complex Wavelet Transform  

A newly introduced technique of DWT, Orthogonal 

wavelet decompositions, based on separable, multi-rate 

filtering systems have been widely used in image and signal 

processing, largely for data compression. Dual-Tree 

complex wavelet transform [12] is introduced by Kingsbury 

which is a very elegant computational structure which 

displays near shift invariant properties. 

In image processing complex wavelets have not been 

used due to difficulty in designing complex filters which 

satisfy perfect reconstruction property. To overcome this 

Kingsbury proposed Dual-Tree implementation of the CWT 

(DT CWT) [14], in which two trees of real filters are used to 

generate the real and imaginary parts of the a wavelet 

coefficients separately. The DWT suffers from following two 

problems 1] Lack of shift invariance these results from the 

down sampling operation at each level. When the input 

signal is shifted slightly, the amplitude of the wavelet 

coefficients varies so much. 2] Lack of directional selectivity 

- as the DWT filters are real and separable the DWT cannot 

distinguish between the opposing diagonal directions. 
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First problem of DWT can be avoided if the output of the 

filter from each level are not down sampled but this may 

increase the computational cost significantly and resulting 

un-decimated wavelet transform still cannot distinguish 

between opposing diagonals since the transform is still 

separable. To distinguish opposing diagonals with separable 

filters the filter frequency responses are required to be 

asymmetric for positive and negative frequencies. The way 

to achieve this is to use complex wavelet filters which can be 

made to suppress negative frequency components. 

Compared to separable DWT complex DWT has improved 

shift-invariance and directional selectivity [13]-[14]. 

In wavelet transform applications filter bank plays an 

important role. It consists of two banks namely, analysis 

filter bank and synthesis filter bank. The one dimensional 

filter bank constructed with analysis and synthesis filter 

bank which is shown in Fig. 1. 

The analysis filter bank decomposes the input signal x (n) 

into two sub band signals, c (n) and d (n). The signal c (n) 

represents the low frequency part of x (n), while the signal d 

(n) represents the high frequency part of x (n). It uses filter 

banks to perform the wavelet analysis. The DWT 

decomposes the signal into wavelet coefficients from which 

the original signal can be reconstructed again. Using wavelet 

coefficient the signal can be represented in various 

frequency bands. Using the DWT attractive properties over 

linear filtering the coefficients can be processed in several 

ways. 

 

 

Fig -1: One dimension filter bank. 

 

3.2 Differences between the two DWT extensions 

The main differences between the dual tree Dwt and 

Double –Density are as follows. 1] The Dual-Tree and 

Double-Density DWTs are implemented with totally 

different filter bank structures. 2] The Dual-Tree DWT can 

be interpreted as a complex-valued wavelet transform 

which is useful for signal modeling and de-noising (the 

Double-Density DWT cannot be interpreted as such). 3] For 

the Dual-Tree DWT there are fewer degrees of freedom for 

design, while for the Double-Density DWT there are more 

degrees of freedom for design. 4] The Dual-Tree DWT can 

be used to implement two-dimensional transforms with 

directional wavelets, which is highly desirable for image 

processing [15].  

Complex wavelet transforms (CWT) concept is 

introduced so that we can achieve Dual-Tree Complex DWT 

system. We can achieve Double-Density Dual-Tree Complex 

DWT system by combining the Double-Density DWT and 

Dual-Tree Complex DWT. Complex wavelet transforms 

(CWT) use complex-valued filtering (analytic filter) that 

decomposes the real/complex signals into real and 

imaginary parts in transform domain. Amplitude and phase 

information are calculated by using the real and imaginary 

coefficients. 

3.3 Dual-Tree Complex WT (DTCWT)  

Kingsbury’s complex Dual-Tree DWT is based on 

(approximate) Hilbert pairs of wavelets [15].  Kingsbury 

found that the Dual-Tree DWT is n the second DWT [16]. 

Using two critically-sampled DWTs in parallel the Dual-Tree 

Complex DWT can be implemented as shown in early shift-

invariant when the low pass filters of one DWT interpolate 

midway between the low pass filters of the Fig. 3.For N-

point signal this transform gives 2N DWT coefficients. So 

this transform is known as 2-times expansive. The design of 

the filter is done 

 

Fig -2: Design implementation of Dual-Tree Complex DWT 

In such a way that the sub band signals of the upper DWT 

can be interpreted as the real part of a CWT and sub bands 

signals of the lower DWT can be interpreted as the 

imaginary part. For specially designed sets of filters, the 
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wavelet associated with the upper DWT can be an 

approximate Hilbert transform of the wavelet associated 

with the lower DWT. In this manner, the designed DTCWT is 

nearly shift-invariant than the critically-sampled DWT [10]-

[11] 

Wavelets are given by DTCWT in six distinct directions. 

There are two wavelets in each direction. In each direction, 

one of the two wavelets can be interpreted as the real part 

and the other wavelet can be interpreted as the imaginary 

part of a complex-valued two dimensional (2D) wavelet. The 

DTCWT is implemented as four critically sampled separable 

2D DWTs operating in parallel. Different filter sets are used 

along the rows and columns [10] [11].Fig4 shows the 

flowchart of Dual-Tree Complex DWT. This gives the steps 

of implementation of DTCWT. 

 

 

 Fig -3: Fusion of the wavelet transforms of two images. 

4. EXPERIMENTAL RESULTS 

 The following results depict the medical (MRI) images that 

are used for image fusion. 

 

 

 

Fig -4: Input image 1 

 

 

 

Fig -5: Input image 2 

 

                    

Fig -6: Fused Output image 

The correlation and SNR values are as follows: 

 Correlation between first image and fused image =0.959933  
 Correlation between second image and fused image 

=0.960828  
 SNR between first image and fused image =26.04 db 
 SNR between second image and fused image =26.15 db 
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Fig -7: Bar graph showing SNR values 

 

5. CONCLUSION 

In this paper, we proposed a DT-CWT based fusion rule, 

which selects an optimal set of coefficients for each 

decomposition level and guarantees intra scale and inter 

scale consistencies. Experiments on volumetric medical 

image fusion demonstrated the effectiveness and versatility 

of our fusion rule, which produced fused images with higher 

quality than existing rules. 
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