
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 09 | Sep -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET ISO 9001:2008 Certified Journal Page 105

Homomorphic Encryption Approach For Cloud Data Security

Suraj Sheshrao Gaikwad1, Amar R. Buchade2

1Department of Computer Engineering, Pune Institute of Computer Technology, Savitribai Phule Pune University,
Pune, India. Email: surajgaikwad2410@gmail.com

2 Department of Computer Engineering, Pune Institute of Computer Technology, Savitribai Phule Pune
 University, Pune, India. Email: amar.buchade@gmail.com

---***---
Abstract - Cloud computing is technique which has become
today’s hottest research area due to its ability to reduce the
costs associated with computing. In today’s internet world, it is
most interesting and enticing technology which is offering the
services to various users on demand over network from
different location and using range of devices. Since cloud
computing stores the data and propagate resources in the
open environment, security has become the main obstacle
which is hampering the deployment of cloud environments. So
to ensure the security of data, we proposed a method which
uses multilayer security for securing data using Homomorphic
Encryption in cloud computing. This system helps to secure
data for various cloud users.

Key Words: Cloud Computing, Privacy Preservation,
Homomorphic Encryption.

1. INTRODUCTION

Need of cloud to manipulate and manage data is increasing
rapidly for sharing resources [4, 18]. It is financially
beneficial to store data with a third party, the cloud provider.
However, storing data on third party infrastructure poses
risks of data disclosure during retrieval. Therefore, the data
is stored in encrypted form [9]. Encryption alone is not
sufficient, as it provides security but reduces usability. Major
advantage to be drawn from cloud computing is due to
delegation of computation, but encrypting data would
require sharing of keys with the third party performing
computation on it, thereby increasing vulnerability. Hence,
there is a need of feasible homomorphic schemes that allow
user to compute on encrypted data, to verify a computation
done by third party, to search an encrypted database, and so
on [16, 18]. Fully Homomorphic Encryption allows a third
party to evaluate arbitrary functions over encrypted data
without decrypting it [1, 2].
Cloud provides large shared resources where users can
enjoy the facility of storing data or executing applications.
instead of gaining benefit of large resources, storing critical
data in cloud is not secured [3, 4]. Hence, cloud security is
one of the important topic to make cloud useful at the
enterprise level. Data encryption is a primary solution for
providing discreetness to sensitive data. However,
processing of encrypted data requires extra overhead, since
repeated encryption-decryption need to be performed for
every simple processing on encrypted data [18]. Hence,

direct processing on encrypted cloud data is advantageous,
which is possible due to the use of technique called
Homomorphic encryption schemes [4, 5]. Homomorphic
Encryption provides a method to perform operations
directly on encrypted data.

1.1 Data Storage

One of the major concern while storing data at third party
data center is that user is unaware about the location of data
where exactly it is stored [13]. Users rely on services that are
non-transparent to them, and no information about the
servers operation is broadcast. Although this can improve
security by insignificance, it also undermines user trust [15,
18]. How the security of data is ensure at the server side
might not be clear to clients. Data retention is also a concern
for users. The cloud service provider can be able to keep
deleted data in backups or for some unpublished reason. For
example, Facebook is able to kept deleted data but removed
it from view.

1.2 Access Control

Most of the cloud systems include basic access control
[10, 11]. Almost every system has privileged users, such as
system administrators who is able to access user data and
all application over the machine. When data or processes are
outsourced to the third party data centers, possibly sensitive
data or processes are handed over for safe keeping [13, 18].
In a local setting, user know to whom they trust for their
data, but in a cloud environment users almost never know
the position of the cloud server, the people managing it at
the server side, and who has access to it.

1.3 Identity Protection

Data transmitted over the internet provides valuable
information about people. Search keywords, credit card
usage, and mobility patterns are some examples of
information that can be used to identify and track
individuals from apparently unsigned data, attackers can
easily gain this information [10]. This same data is available
practically without restrictions to cloud service providers.
For example, some cloud service providers business models

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 09 | Sep -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET ISO 9001:2008 Certified Journal Page 106

include targeted advertising that is based on monitoring
account traffic or data stored on user accounts [13, 18].

1.4 Privacy Preservation

One of the problem in public clouds is how to share
documents based on fine-grained attribute-based access
control policies (acps) [7, 10]. Solution is to encrypt
documents which satisfy different policies with different
keys using a public key cryptosystem such as attribute-based
encryption, and/or proxy re-encryption [18].

2. RELATED WORK

To provide security to the data is always having a
importance issue because of the critical nature of the cloud
and very large amount of complicated data it carries, the
need is even important. Therefore, data security and privacy
issues that need to be solved have they are acting as a major
obstacle in adopting cloud computing services.
The main security issues of cloud are:

2.1 Privacy and Confidentiality

Once user outsources data over the cloud there should be
having some guarantee that data is accessible only to the
authorized user and unauthorized access are prevented as
well as data is protected from cloud service provider also
[10, 12]. The cloud user should be confident that data stored
on the cloud will be confidential [18].

2.2 Security and Data Integrity

Data security can be provided using different encryption and
decryption techniques. With providing security to data,
cloud service provider should also implement technique to
monitor integrity of data on the cloud [18].

2.3 Basics about Encryption

Encryption schemes are, first and foremost, designed to
preserve confidentiality. In cryptography, encryption is the
art of changing or converting messages or information in
such a way that only legitimate user can access and read the
original message [6, 18]. Encryption itself is not enough
prevent interference with data, but denies the message
content to the interceptor.

2.4 Symmetric Encryption Scheme

 In symmetric crypto system encryption as well as
decryption both can be performed with the single key.
Hence, the sender and the receiver have to use same key
before performing any private communication. Therefore, it
is not possible for two different people who never met each
other to use such schemes directly [6, 18].

2.5 Asymmetric Encryption Scheme

In relation with previous scheme, asymmetric schemes
introduce a fundamental difference between the abilities to
encrypt and to decrypt. The encryption key is public, as the
decryption key remains private. When Bob wants to send an
encrypted message to Alice, she uses her public key to
encrypt the message. Alice will then use her private key to
decrypt it. Such schemes are more functional than symmetric
ones since there is no need for the sender and the receiver to
agree on anything before the transaction [6, 18].

2.6 Data Security with Homomorphic Encryption

Homomorphic encryption is technique to perform operation
on encrypted data which is also known as ciphertext, which
can generate an encrypted result, which, when decrypted,
produce the result which is exactly same as like operations
are performed on plaintext data. This can be a major
advantage for applications that outsource encrypted data to
the cloud [15, 18].
One Such example of concatenation of two string using
homomorphic encryption is as shown in following figure [1],
this show the owner encrypt two different strings and
upload it to data collection server (DCS) and upon user
request DCS perform the string concatenation, here
operations are performed on encrypted data so, no
information disclosure and result will be same as like
performing operation on plaintext data.

Fig -1: Homomorphic concatenation of two strings.

Homomorphic encryption technique is striking for many
applications, but it has some serious limitation: the
homomorphic property is typically restricted to only one
operation, which is usually addition or multiplication [14].
Methods which have the homomorphic property for both
addition and multiplication operation concurrently lead us a
step closer to real-life applications.

Ronald Rivest and his associate introduced the concept of
fully homomorphic encryption which they called as privacy
homomorphism in 1978, but in 2009 Craig Gentry proposed
a first fully homomorphic encryption (FHE) scheme. Gentrys
scheme allowed random number of additions and
multiplications on encrypted data while providing the

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 09 | Sep -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET ISO 9001:2008 Certified Journal Page 107

assurance that the outcomes were precisely indicate in the
decrypted data [18].

3. PROPOSED FRAMEWORK

After the survey it is found that even if data owner encrypt
the data before uploading to the cloud in order to ensure
data confidentiality from that of the cloud. Data uploaded is
not safe at cloud because once data owner upload the data
item, it drops the command over the data and cloud service
provider becomes the ultimate data handler. Hence to
prevent from various attacks at cloud which includes insider
attack also it very important to encrypt the data item before
uploading.
Now once owner encrypt the data owner’s data is secure but
what if user want to perform certain operation over that
data, traditionally when user request to perform certain
operation, data owner needs to download the data perform
the user requested operation on the data, again encrypt the
data and upload it to the cloud, but this put computational
overhead on data owner and computational facility of cloud
remains underutilized.
So to take the advantage of computation facility owner
should have some mechanism that allow CSP to perform
operation of encrypted data without data owners
intervention. And this is possible with homomorphic
encryption technique. Hence using these technique we
proposed a model for securing data at third party that cloud
service provider. Under the proposed framework we have
four entity and that are Data Owner, Cloud, User and Identity
Provider as shown in following figure [2].

Fig -2: Proposed Framework.

 Data owner perform Homomorphic encryption on
data and upload it to the cloud.

 User can send data access request or operation
request to the CSP.

 CSP perform user requested operation and send the
encrypted data.

 To decrypt the data user need secrete key that user
can access from data owner through secure
communication channel like SSL. To obtain the
secrete key user need to have identity token that it
can get from identity provider which is trusted third
party which takes user attribute and return identity
token.

4. METHODOLOGY

1)Owner: Perform KeyGen function of homomorphic
encryption to obtain (Pk, Sk)
KeyGen: Downer→ KeyGen (Pk, Sk)
encrypt the data and upload it to data collection server
with public information as,
Enc: ForAll di(Downer(E(Sk(di))) → DCS)
hence, Ct = E(Sk(di))
The upload function is used to upload the encrypted data
to the cloud as,
fs (upload()): ForAll Cti(Downer(Cti)) →DCS

2) Cloud: Evaluate Function (Eval) allow DCS to perform
operations on encrypted data when user request by
performOP function receive. Server has a function f for
doing evaluation of cipher text Ct and performed this as
per the required function using Pt.
EvalPk (f, ESk(a), ESk(b))
EvalPk (f, Ct1, Ct2)

3) User: Request to perform operation on data eg. To
concatenate two strings and download the encrypted data
from DCS, request Data owner a secret key to decrypt it.
Secret sharing requires identity token that should be taken
from identity provider which is trusted third party.
fs(performOP()): Eval(f, Cti, Ctj)
fs(download()):user →DCS(ESk(Cti, Ctj))
fs(keyreq()): keyshare=keyreq→Downer
hence, keyshare=Sk ←Downer
fs(download()):
Result= Dec(Sk(EvalPk(f, ESk(a), ESk(b))))
hence, Result=Dec(Sk(EvalPk(f, Ct1, Ct2)))
PT=Dec(Sk(Pk, Ctij))

Fig -3: Set Mapping between Data Owner, DCS and User.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 09 | Sep -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET ISO 9001:2008 Certified Journal Page 108

Figure [3] shows the mapping between data owner and
Cloud Service Provider (CSP) and CSP to data user.
Following figure [4] explain the detain flow of homomorphic
encryption function.

Properties of Homomorphic Encryption

An encryption is called as homomorphic, if [14]: from Enc (a)
and Enc(b) it is possible to compute Enc(f(a, b)), where f
can be: +, ×, ⨁, ⨂ and without using the private key. Among

Fig -4: Homomorphic Encryption Function

the Homomorphic encryption we distinguish, according to
the operations that allows to assess on raw data, the
additive Homomorphic encryption (only additions of the
raw data) is the Paillier and Goldwasser Micalli
cryptosystems, and the multiplicative Homomorphic
encryption (only products on raw data) is the RSA and El
Gamal cryptosystems.
There are two main properties of Homomorphic Encryption:

 Additive Homomorphic Encryption: A
Homomorphic encryption is additive, if [14]:
Ek (Pt1 ⨁ Pt2) = Ek(Pt1) ⨁ Ek(Pt2) where Pt1 and
Pt2 are plaintext messages, ⨁ denotes the additive
homomorphic operation.

 Multiplicative Homomorphic Encryption:
Homomorphic encryption is multiplicative, if:
Ek (Pt1⨂ Pt2) = Ek(Pt1) ⨂ Ek(Pt2) where Pt1 and
Pt2 are plaintext messages, ⨂ denotes the
multiplicative homomorphic operation.

The encryption function is semantically secure this tells the
fact that an opponent/data hacker cannot get any auxiliary
information about the plaintext from corresponding
ciphertexts and given public key [15].

5. DATASETS AND IMPLEMENTATION

5.1 Dataset

This system requires the dataset which consist numerical
data and text data. As system Perform three homomorphic

operations. Additive and multiplicative homomorphic
encryption is perform on encrypted numerical data.
Concatenation of encrypted strings is perform on encrypted
text data. Numerical data is stored in Numerical Data. text
file and text data is TextData.txt files, both contains
encrypted data and both are stored on cloud in appropriate
owner directory.
Sample text dataset as shown in following table 1 consist
plaintext data which is normal data that any one can access
and read, encrypted data which is different from plaintext.
Sample numerical dataset is as shown in table 2 consist plain
numerical data and encrypted numerical data.

Table -1: Sample Text Dataset

Sr.No Plaintext Data Encrypted Data
1 Hello w6 == @

2 World (@C = 5

3 GoodMorning v@@5j@C? :?8

4 GoodAfternoon v@@5p7E6C?@@?

5 PICT !xr%

6 Pune !F?6

Table -2: Sample Numerical Dataset

Sr.No Plaintext

Data
Encrypted Data

1 123456 4625346219536757076128192762
43252737734824373410338535850

9491835672872691857
2 654321 397994930755525368652105150290

0780558183635078895979023
104160501900403146231

3 777777 1469871364107543559880310895428
045533562468177207799565230

834351447685279743
4 10000 2009030352426170570783970946

1571302353549456248327523177011
0349294123236990

5.2 Homomorphic Addition using Paillier
Cryptosystem

1) Key Generation
 Choose two large prime numbers p and q randomly

and independently of each other such that
gcd (pq, (p-1)*(q-1)) = 1.

 Compute n = p*q and lambda = lcm ((p-1), (q-1)).
 Select random integer g in Zn^2 where gcd (L

(g^lambda mod n^2), n) = 1. with µ =(L(g^lambda
mod n^2)) mod inverse n, where function
L (µ)=µ -1/n.
Hence,
The public (encryption) key is (n, g).
The private (decryption) key is (lambda, µ).

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 09 | Sep -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET ISO 9001:2008 Certified Journal Page 109

2) Encryption
 Let Pt be a plaintext to be encrypted,

where Pt ∈ Zn.
 Select random r, where r ∈ Zn.
 Compute ciphertext as: C = g^m.r^n mod

n^2.
3) Decryption

 Let C be the ciphertext to decrypt, where
C ∈ Zn^2.

 Compute plaintext Pt = L(C^lambda mod
n2).µ mod n.

5.3 Homomorphic Multiplication RSA Cryptosystem

1) Key Generation
 Select two prime numbers p and q.
 Compute n=p*q.
 Compute ϕ (n) = (p-1)* (q-1).
 Compute e such that, gcd (ϕ (n), e) =1.
 Compute d such that, d.e mod ϕ (n) =1.

Hence,
The public key is (e, n)
The private key is (d, n)

2) Encryption
 Encryption of plaintext is done as, Ct = (Pt)^e mod

n. Where, Pt is plaintext and Ct is ciphertext.
3) Decryption
 Decryption of ciphertext is done as, Pt = (Ct)^d

mod n. Where, Pt is plaintext and Ct is ciphertext.

5.4 Homomorphic Concatenation using rotate47
Caesar Cipher

Rotate47 Caesar Cipher algorithm is used for string
encryption, upload and decryption. Rotate47 uses a larger
set of characters from the common character encoding
known as ASCII. Specifically, the 7-bit printable characters,
excluding space, from decimal 33 ’!’ through 126 ’~’, 94 in
total, taken in the order of the numerical values of their
ASCII codes, are rotated by 47 positions, without special
consideration of case.

public String rotate (String value)
{
int length = value.length();
StringBuilder result = new StringBuilder();
for (int i = 0; i < length; i++)
{
char c = value.charAt(i);
if (c != ’ ’) f
c += 47;
if (c > ’~’)
c -= 94;
}
result.append(c);
}

6. RESULTS

1) Operation without homomorphic encryption
While performing operation without homomorphic
encryption, upon each user request owner needs to
download the data, decrypt it, perform user requested
operation on it again encrypt it and upload it to the
cloud. This involves repeated encryption and uploads
action. Hence it is time consuming process for owner
and it is also a computational overhead. Hence, total
time required for single operation can be calculated as:

Required time = (Enc_time*2) + (Up_time*2) +
(Exe_time) + (Down_time) + (Dec_time)

Where,

Enc_time = Encryption time
Up_time = Upload time
Exe_time = Execution time
Down_time = Download time
Dec_time = Decryption time

Following figure 5 shows time required to perform
operation on normal data without homomorphic
encryption.

Fig -5: Without Homomorphic Encryption

2) Operation with homomorphic encryption
With homomorphic encryption time required for single
operation can be calculated as:

Required time = (Enc_time) + (Up_time) +
(Exe_time) + (Down_time) + (Dec_time)

Following figure 6 shows time required to perform
operation on encrypted data using homomorphic encryption.
Total times required by each operation in both cases are
given in figure 7 as shown below. The unit of measurement
for time is millisecond (msec).

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 09 | Sep -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET ISO 9001:2008 Certified Journal Page 110

Fig -6: With Homomorphic Encryption

Fig -7: Total time in both cases

7. EXPERIMENTAL SETUP

The experimental setup for the proposed system will
consider data collection server (DCS), Data owner, User who
will access the information from data collection server and
request DCS to perform certain operation on encrypted data.

The particulars about platform and technology are as follows
which are used to build proposed system :

Base Operating System: Windows 7 and above, Ubuntu
14.04.
Web Server: Apache-tomcat-7.0.67 Server.
Languages: Java Servlet, JSP, JavaScript, HTML, CSS.
Database: Mysql Distribution 5.5.46 and Mysql workbench
development IDE
Browser: Google Chrome, Opera, IE8 & above, Mozilla Firefox
Etc.
This system is tested on Amazon EC2 cloud platform with
t2.micro instance with 64-bit Microsoft Windows Server, 1
vCPU, High Frequency Intel Xeon Processors with Turbo
up to 3.3GHz and 1GB of RAM. This instance is balance of
compute, memory, and network resources.

8. CONCLUSION

The concept of cloud computing security root on
Homomorphic encryption, which is a new concept of

security that allow to provide results of operations on
encrypted data without disclosing the plaintext data upon
which the operations was carried out, with respect of the
data confidentiality. In this paper we show a state of the art
on homomorphic encryption schemes discuss its
parameters, its additive, multiplicative property and
performances also discuss the data security issues in cloud
computing.
The application of Homomorphic encryption for data
security in Cloud Computing is key concept, more generally,
we the user outsource the calculations on confidential data
to the Cloud server and keep the secret key that can used to
decrypt the result of calculations. So, data and computation
security problem is overcome through the application of
Homomorphic algorithm. Data security as well as personal
information privacy is achieved by this algorithm. Benefits
with this approach is enhanced information privacy,
enhanced data security, utilization of computational power
of server and removing the burden of calculation from data
owner.

REFERENCES

[1] Ayantika Chatterjee and Indranil Sengupta,

“Translating Algorithms to handle Fully Homomorphic
Encrypted Data on the Cloud,” IEEE Transactions on
Cloud Computing, Volume: pp, Issue: 99, pp: 1,
September 2015.

[2] David W. Archer and Kurt Rohloff, “Computing with
Data Privacy: Steps toward Realization,” IEEE
Computer and Reliability Societies, Volume: 13, Issue:
1, pp:22-29, February 2015.

[3] Zahir Tari, Xun Yi, Uthpala S. Premarathne, “Security
and Privacy in Cloud Computing: Vision, Trends, and
Challenges,” IEEE Cloud Computing, Volume: 2, Issue:
2, pp: 30-38, June 2015.

[4] Chao FENG and Yang XIN, “Fast key generation for
Gentry-style homomorphic encryption,” The Journal of
China Universities of Posts and Telecommunications,
Volume: 21, Issue: 6, pp: 37-44, December 2014.

[5] Payal V. Parmar and Shraddha B. Padhar, “Survey of
Various Homomorphic Encryption algorithms and
Schemes,” International Journal of Computer
Applications, Volume: 91, Issue: 8, pp: 26-32, April
2014.

[6] Shashank Bajpai and Padmija Srivastava, “A Fully
Homomorphic Encryption Implementation on Cloud
Computing,” International Journal of Information &
Computation Technology, Volume: 4, Issue: 8, pp: 811-
816, December 2014.

[7] Dr C. P. Gupta and Nitesh Aggarwal, “Fully
Homomorphic Symmetric Scheme Without
Bootstrapping,” IEEE International Conference on
Cloud Computing and Internet of Things, pp: 14-17,
December 2014.

[8] Bharath K. Samanthula and Yousef Elmehdwi, “A
secure data sharing and query processing framework

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 09 | Sep -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET ISO 9001:2008 Certified Journal Page 111

via federation of cloud computing,” Information
Systems, Volume: 48, pp:196-212, August 2013.

[9] Mohamed Nabeel and Elisa Bertino, “Privacy
Preserving Delegated Access Control in Public Clouds,”
IEEE Transactions on Knowledge and Data
Engineering, Volume: 26, Issue: 9, pp: 2268-2280,
April 2013.

[10] Mohamed Nabeel and Ning Shang, “Privacy Preserving
Policy-Based Content Sharing in Public Clouds,” IEEE
Transactions on Knowledge and Data Engineering,
Volume: 25, Issue: 11, pp: 2602-2614, November
2013.

[11] Jiadi Yu and Peng Lu, “Toward Secure Multikeyword
Top-kk Retrieval over Encrypted Cloud Data,” IEEE
transactions on dependable and secure computing,
Volume: 10, Issue: 4, pp: 239-250, August 2013.

[12] Monique Ogburn and Claude Turner, “Homomorphic
Encryption,” Procedia Computer Science, Volume: 20,
pp: 501-509, November 2013.

[13] Jian Li, Danjie Song and Sicong Chen, “A simple fully
Homomorphic encryption scheme available in cloud
computing,” IEEE 2nd International Conference on
Cloud Computing and Intelligence Systems, Volume: 1,
pp: 214-217, October 2012.

[14] Craig Gentry and Shai Halevi, “Implementing Gentrys
Fully-Homomorphic Encryption Scheme,” Annual
International Conference on the Theory and
Applications of Cryptographic Techniques, pp: 129-
148, February 2011.

[15] Craig Gentry, “A Fully Homomorphic Encryption
Scheme,” Ph.D. dissertation, Stanford University,
September 2009.

[16] Craig Gentry, “Computing Arbitrary Functions of
Encrypted Data,” Communications of the ACM,
Volume: 53, Issue: 3, pp: 97-105, September 2008.

[17] Murat Kantarcioglu and Wei Jiang, “A Cryptographic
Approach to Securely Share and Query Genomic
Sequences,” IEEE Transactions on information
technology in biomedicine, Volume: 12, Issue: 5, pp:
606-617, September 2008.

[18] Suraj S. Gaikwad and Amar R. Buchade, “Survey on
Securing Data using Homomorphic Encryption in
Cloud Computing,” International Journal of Computer
Sciences and Engineering, Volume: 4, Issue: 1, pp: 17-
21, January 2016.

