
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 09 | Sep-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 438

Maximize Execution Performance Analysis of Parallel Algorithm over
Sequential using OpenMP

S.N. Sheshappa,
 Associate Professor, Dept. of ISE, Sir MVIT, Bangalore-562157

Email:sheshappasn@gmail.com

---***---

Abstract – Parallel programming represents the next
turning point in how software engineers write software.
Today, low-cost multi-core processors are widely available
for both desktop computers and laptops. As a result,
applications will increasingly need to be paralleled to fully
exploit the multi-core-processor throughput gains that are
becoming available. Unfortunately, writing parallel code is
more complex than writing serial code. This is where the
OpenMP programming model enters the parallel computing
picture. OpenMP helps developers create multi-threaded
applications more easily while retaining the look and feel of
serial programming. The term algorithm performance is a
systematic and quantitative approach for constructing
software systems to meet the performance objectives such
as response time, throughput, scalability and resource
utilization. The performances (speed up) of parallel
algorithms on multi-core system have been presented in this
paper. The experimental results on a multi-core processor
show that the proposed parallel algorithms achieves good
performance compared to the sequential.

Keywords: Multi-core, Multiprocessor, OpenMP, Parallel
programming.

1. INTRODUCTION
Parallel computers can be roughly classified as

Multi-Core and Multiprocessor. A core is the part of the
processor, which performs reads and executing of the
instruction. However, as the name implies, Multicore
processors are composed of more than one core. A very
common example would be a dual core processor. The
advantage of a multicore processor over a single core one is
that the multi-core processor can either use both its cores to
accomplish a single task or it can spawan threads which
divided tasks between both its cores, so that it takes twice
the amount of time it would take to execute the task than it
would on a single core processor. Multicore processors can
also execute multiple tasks at a single time [1]. Performance
is the activity of collecting the information about the
execution characteristics of a program. One of the
parameters to measure performance is the execution time
[2]. Hence a change in the design from sequential to parallel
approach may result in lesser execution time and is
demonstrated through coding practices in OpenMP in the
case studies: Matrix Multiplication and Floyd Warshell
algorithm. The Rest of the paper is organized as follows.
Section 2 giving detailed description of related work, section
3 explains programming in openmp, section 4 is about

detailed implementation details of algorithms, section 5
focuses on result and analysis, paper is concluded by
mentioning future research in the field.

2. RELATED WORK
In 2009, Han Cao1a, Fei Wangb, Xin Fang, Hong-lei

Tu [5] proposed the idea to apply the non hierarchical
algorithm such as Dijkstra’s algorithm to different levels and
the entrance points and exit points(node E) between high-
level and low-level are obtained by the heuristic directing
search approach. The algorithm procedure to find the
satisfactory path, in terms of the minimum travel time based
on the Manhattan distance and travel speed associated with
the edges in the network.

In 2012, Songmin Jia, Xiaolin Yin, and Xiuzhi Li [7]
proposed an effective Simultaneous Localization and Map
Building (SLAM) technique for indoor mobile robot
navigation based on OpenMP. Particle Filter (PF) based
SLAM provides an effective indoor mobile robot navigation
framework, but real-time performance of PF needs
improving due to their inherent complex and intensive
computation. OpenMP is the product of the multi-core
technology development and has been widely accepted by
both industry and academia. We propose a multi-thread
particles filter algorithm based on OpenMP to reduce
computation time of PF and execution time of SLAM. The
results in real experiments and simulations show that the
parallel PF-SLAM algorithm based on OpenMP could reduce
the SLAM execution time while guaranteeing the accuracy of
SLAM.

3 PROGRAMMING IN OPENMP

OpenMP is an API (application program interface)
used to explicitly direct multi-threaded, shared memory
parallelism. OpenMP was introduced in 1997 to standardize
programming extensions for shared memory machines as
shown in figure 1 [2]. In OpenMP the user specifies the
regions in the code that are parallel [5]. The user also
specifies necessary synchronization like locks, barriers etc.
to ensure correct execution of the parallel region. At run
time threads are forked for the parallel region and are
typically executed in different processors sharing the same
memory and address space.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 09 | Sep-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 439

 Figure 1: Fork-Join model for OpenMP Program

Advantage of having multiple cores is that we could
use these cores to extract thread level parallelism in a
program and hence increase the performance of the single
program. A lot of research has been done on this area. Many
techniques rely on hardware based mechanisms and some
depend on compiler to extract the threads.
Some the advantages of OpenMP includes: good
performance, portable (it is supported by a large number of
compilers), requires very little programming effort and
allows the program to be paralleled incrementally. OpenMP
is widely available and used, mature, lightweight, and ideally
suited for multi-core architectures. Data can be shared or
private in the OpenMP memory model. When data is private
it is visible to one thread only, when data is public it is global
and visible to all threads. OpenMP divides tasks into threads;
a thread is the smallest unit of a processing that can be
scheduled by an operating system. The master thread
assigns tasks unto worker threads. Afterwards, they execute
the task in parallel using the multiple cores of a processor
[1].

4. IMPLEMENTATION DETAILS

4.1 Objective

We are implementing the sequential algorithm and
parallel algorithm, for this threading concept is used.
Program divided into number of threads and each thread is
executed independent of other Thread. As number of threads
executed simultaneously, time required to execute that
program reduces. Main objective of this approach is to save
the time required to execute the programs.

4.2 Overview of Proposed Work

We describe the techniques and algorithm involved
in achieving good performance by reducing execution time
through OpenMP Parallelism on multi-core. We tested the
algorithms by writing the program using OpenMP on multi-
core system and measure their performances with their
execution times as shown in figure 2.

Figure 2: Overview of Proposed Work

4.3 Working Modules
There are some numerical problems which are large

and complex. The paper solutions of which takes more time
using sequential algorithm on a single processor machine or
on multiprocessor machine. The fast solution of these
problems can be obtained using parallel algorithms and
multi-core system. In this, we select two numerical problems
as follows:

4.3.1 Matrix Multiplication.

In the matrix multiplication algorithm, there is no
task dependency hence thread and kernel instances parallel
running reduces execution time. The Matrix multiplication
problem also solved using openMP. It will give best result by
executing it sequentially rather than parallel when number
of rows and columns are less, but as number of rows and
columns (i.e matrix A[500][500]) increases sequential
algorithm’s performance decreases where role of parallel
programming comes into play.
Algorithm for it given as follows:

Matrix_Multiplication(int size, int n)

Step 1 : Size represents size of matrix
Step 2: Declare variables to store allocated memory
Step 3: Declare variables to input matrix size and variables
to be used by OpenMP functions a_r, a_c, b_r, b_c, nthreads,
tid, chunk.
Step 4: Declare variable to calculate the time difference
between the parallelism.
Step 5: Accept number of rows and columns. Step 6: Allocate
memory for matrix one
Step 7: Allocate memory for matrix two
Step 8: Allocate memory for sum matrix

{

c(int *) malloc(10*a_r) for(i=0;i< b_c; i++)
{

c[i]=(int *) malloc(10*b_c)
}

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 09 | Sep-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 440

}
Step 9: Start the timer

double start = omp_get_wtime()

Step 10: Here Actual Parallel region starts #pragma omp
parallel shared(a,b,c,nthreads,chunk) private(tid,i,j,k)

{

tid = omp_get_thread_num() if (tid == 0)

{

nthreads = omp_get_num_threads()

print Starting matrix multiple example with number of
threads

}

Step 11: Initializing first matrix. Step 12: Initializing second
matrix.

Step 13: Print Thread starting matrix multiply. #pragma omp
for schedule (static, chunk) for(i=0;i<a_r; i++)

{
for(j=0;j<a_c; j++)

{

for(k=0;k<b_c; k++)

{
c[i][j]=c[i][j]+a[i][k]*db[k][j]

} } }

Step 14: end the timer

double end = omp_get_wtime() Step 15: Store the difference

dif = end – start Step 16: Free memory
for(i=0;i<a_r; i++)

{
 free(a) free(b)

free(c)
}

Step 17: Print the time required for computation.

4.3.2 Floyd-Warshell Algorithm

The Floyd–Warshall algorithm compares all possible
paths through the graph between each pair of vertices. It
does so by incrementally improving an estimate on the
shortest path between two vertices, until the estimate is
optimal. In this algorithm, each thread has given a chunk
size which specifies number of iterations that thread
executes. If w(i, j) is the weight of the edge between vertices
i and j, we can define shortestPath(i, j, k + 1) in terms of the
following recursive formula: shortestPath(i, j, 0) = w(i, j);
Algorithm: Floyd_Warshell(int nthreads, int nodes)

Step 1: Start Enter number of thread and number of
nodes(n). Step 2: Initialize matrix

if(i==j) then mat[i][j]=0

else generate random between 0-10. Step 3: Start clock using

start = clock(); Step 4: Set chunk size.

Step 5: Compute shortest path between two vertices in
parallel section #pragma omp parallel for private(i,j)
shared(k)

for (i = 0; i < n; ++i){ for (j = 0; j < n; ++j){
if ((dist[i][k] * dist[k][j] != 0) && (i != j))

if ((dist[i][k] + dist[k][j] < dist[i][j]) || (dist[i][j]==0)){
dist[i][j] = dist[i][k] + dist[k][j];}
} }

Step 6: End time.

Step 7: Print the time required for computation.

5. Experimental Results

There are two algorithms and each has two
versions: sequential and parallel. Both the programs
executed on intel@i4 proessor machine. We analyzed the
result and derived the conclusion.

In both the experiment execution time for
sequential and parallel program are recorded to compare the
results of sequential vs parallel. Execution time is recorded
against different data set to analyze the speedup of parallel
algorithm against sequential. Table 1 shows the time
required for parallel matrix multiplication algorithm and
sequential algorithm. Table 2 shows the time required for
Floyd Warshell parallel and sequential algorithm.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 09 | Sep-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 441

Table 1: Comparison Chart for Matrix Multiplication
Algorithm

Table 2: Comparison Chart for Floyd Warshell

Algorithm

Figure 3: Performance Analysis of Matrix
Multiplication Algorithm

Figure 4: Performance Analysis of Floyd Warshell
Algorithm

From Fig. 3 and 4 we can see initially sequential algorithm
requires less time than parallel, but as dataset increases
performance of parallel algorithm increases.

6. CONCLUSION

The algorithms with a small data set gives good
performance when executed by a sequential
programming.The data set increases performance of
sequential execution falls down where parallel execution is
used for large data set then it gives best results than
sequential execution.

REFERENCES
[1] Daniel Lorenz, Peter Philippen, Dirk Schmidl and

Felix Wolf. "Profiling of OpenMP Tasks with Score-
P". International Conference on Parallel Processing
Workshops, German Research School for Simulation
Sciences, 52062 Aachen, Germany, 2012.

[2] D. Dheeraj, B. Nitish, Shruti Ramesh, "Optimization of

Automatic Conversion of Serial C to Parallel OpenMP",
International Conference on Cyber-Enabled Distributed
Computing and Knowledge Discover, PES Institute of
Technology Bangalore, India, Dec 2012.

[3] Suneeta H. Angadi, G. T. Raju Abhishek B,

"Software Performance Analysis with Parallel
Programming Approaches",
International Journal of Computer Science and
Informatics, ISSN (PRINT): 2231 -5292, Vol-1, Iss-4,
2012.

[4] Sanjay Kumar Sharma, Dr. Kusum Gupta,

"Performance Analysis of Parallel Algorithms on
Multi-core System using OpenMP Programming
Approaches", International Journal of Computer

Data
Sequenti

al
Parallel Parallel
Progra
m with

Program
with 4

Set program

2thread
s Thread

50 0.00286
0.003

20 0.00467

60 0.00457
0.003

45 0.00772

70 0.00729
0.005

18 0.00504

80 0.01079
0.007

35 0.00702

Data Sequential

Parallel Parallel

Program with Program with 4

Set program

2threads Thread

200 0.0555 0.0529 0.0435

400 0.4236 0.3212 0.3507

600 1.5991 1.1313 1.2182

800 5.9626 3.3564 3.0578

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 09 | Sep-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 442

Science, Engineering and Information Technology
(IJCSEIT),
Vol.2, No.5, October 2012.

[5] Han Cao1a, Fei Wangb, Xin Fang, Hong-lei Tu,
"OpenMP Parallel Optimal Path Algorithm and Its
Performance Analysis", Jun Shi World Congress on
Software Engineering, DOI 10.1109, WCSE, 2009.

[6] Javier Diaz, Camelia Munoz-Caro, and Alfonso Nino, "A

Survey of Parallel Programming Models and Tools in
the Multi and Many-Core Era" IEEE Transactions on
Parallel and Distributed Systems, Vol. 23, No. 8, AUG
2012.

[7] Songmin Jia, Xiaolin Yin, and Xiuzhi Li, "Mobile Robot

Parallel PF-SLAM Based on OpenMP", IEEE,
International Conference on Robotics and Biomimetics,
December 2012.

[8] Paul Graham, Edinburgh, "A Parallel Programming
Model forShared Memory Architectures", Parallel
Computing Center, The University of Edinburgh,
March 2011.

