
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 09 | Sep-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 443

HOW TO DESIGN AND TEST SAFETY CRITICAL SOFTWARE SYSTEM

Anjaly Joy1, Nadiya Abdul Kalam2, Aswathy M3

1Anjaly Joy, M TECH Student, Rajadhani Institute of Engineering and Technology, Trivandrum, Kerala, India
2Nadiya Abdul Kalam, Aswathy M, M TECH Students, Rajadhani Institute of Engineering and Technology,

Trivandrum, Kerala, India
3HOD, Dept. of Computer Science & Engineering, Rajadhani Institute of Engineering and Technology, Kerala, India

---***---
Abstract - Safety is the foremost need that every human
being desire. Nowadays software is associated with almost
every field, so system demands more and better safety systems
and mechanisms. Any system whose failure can
catastrophically impact human lives, environment and
equipment can be called as Safety Critical System (SCS).These
kinds of risks are handled using safety engineering techniques.
Today industries have designed various different standards for
the development of these Safety Critical Systems like ISO
9000,IEN 61508,RTCA/DO 178B.The designing of a SCS system
identifies the hazards and constraints as early as possible.
Basically two approaches are used to design a SCS; they are
Formal method based approach which is a mathematical
based model and the Prevention and recovery based approach
which uses bottom up structure to check the error. Various
techniques like Probabilistic Risk Assessment (PRA), Failure
Mode and Effect Analysis (FMEA) and Fault Tree Analysis
(FTA) are explained here

Key Words: Safety Critical System, Ada, Failure,
Malfunction.

1. INTRODUCTION

A safety-critical software system is a system whose failure or
malfunction can severely harm people's lives, environment
or equipment. These kinds of risks are managed using
techniques of safety engineering. Safety-critical systems are
widely used in various different fields such as medicine,
nuclear engineering, transport, aviation, aerospace, civil
engineering, industrial simulation, process control, military
devices, telecommunications, infrastructures, etc. Safety-
critical systems consist of hardware equipment and software
equipment and both of them have to be secure in order to
ensure that the whole system is fully secure. The main aim is
to provide a brief overview of safety-critical software
systems and describe the main techniques or approaches
used to design and test these kinds of systems. For this,
consider the broader notion of testing which comprises all
the development cycle of a software product without limiting
the scope of testing only to the testing of code. The first
section focuses on the basic standards used and applied in
different fields for the development of safety-critical
systems. The next section focuses on the programming
features and languages recommended, then will go on to

describe different approaches on designing safety-critical
software systems. Two main approaches will be considered.
Finally, it will then outline the main techniques used to test
these kinds of particular systems and also examples of tools
used to test real systems as well as companies or institutions
using the techniques mentioned will be provided. There are
basically three approaches to achieving reliability in a safety
critical system:

1. Testing.
2. Formal Specification and Verification
3. Automatic Program Synthesis

1.1 Testing

Testing is the process of identifying defects, where a defect is
any variance between actual and expected results. Testing in
Safety Critical System is the process of executing a software
system to determine whether it matches its specification and
executes in its intended environment.

1.2 Formal Specification and Verification

Verification is the act of proving the correctness of intended
algorithms. Verification is the process of determining that a
system or module meets its specification. Formal methods
may be used to give a description of the system to be
developed, at whatever level(s) of detail desired. This formal
description can be used to guide further development
activities (see following sections); additionally, it can be used
to verify that the requirements for the system being
developed have been completely and accurately specified.
The motivation for proving the correctness of a system is not
the obvious need for re-assurance of the correctness of the
system, but a desire to understand the system better.
Consequently, some proofs of correctness are produced in
the style of mathematical proof: handwritten (or typeset)
using natural language, using a level of informality common
to such proofs. A "good" proof is one which is readable and
understandable by other human readers.

1.3 Automatic Program Synthesis

Program synthesis is a special form of automatic
programming that is most often paired with a technique
for formal verification. The goal is to construct automatically

https://en.wikipedia.org/wiki/Automatic_programming
https://en.wikipedia.org/wiki/Automatic_programming
https://en.wikipedia.org/wiki/Formal_verification

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 09 | Sep-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 444

a program that provably satisfies a given high-
level specification. In contrast to other automatic
programming techniques, the specifications are usually non-
algorithmic statements of an appropriate logical calculus.

2. STANDARDS OF SAFETY CRITICAL SYSTEM

Industries have designed various different standards for the
development of these safety critical systems. Various
standards like ISO 9000, IEC 61508 , RTCA/DO 178B are
used in the development of Safety Critical System.

2.1 ISO 9000

The International Standardization Organization (ISO) has
released the ISO 9000 series of standards that are related to
Quality Assurance and Quality Management in general. ISO
9000 requires the organization to “say what it does, do what
it says, and be able to demonstrate it”.
The main standards are:

Table -1: ISO Sub Standards
ISO Standard DOMINE

ISO9002

Model for quality assurance
in design, development,
production, installation,
servicing.

ISO9002

Model for quality assurance
in production,
Installation and servicing.

ISO9002

Model for quality assurance
in final inspection and test.

ISO 9001 focuses on product conformity to international
standards throughout the product lifecycle. Emphasis is put
on the design element and performance factors. This
standard is the most stringent of the ISO 9000 series.

ISO 9002 does not include a design or R&D component. It is
focused on the production, installation and servicing of
products.

ISO 9003 covers product inspection and testing of ready-
made components .For the development of software ISO
9003 is important because it guide the application of ISO
9001 to the development, supply and maintenance of
software.

2.2 IEC 61508
IEC 61508 is a standard developed by the IEC (International
Electro technical Commission), a worldwide organization

consisting of IEC National Committees in more then 60
countries of the world. IEC prepares and publishes
international standards for all electrical, electronic and
related technologies. These server as a basis for national
standardization and as reference when drafting international
contracts.

IEC 61508, titled “Functional safety of
electrical/electronic/programmable electronic safety-
related (E/E/PE) systems” is a generic standard and consists
of 7 parts:

1. IEC 61508-1: General Requirements

2. IEC 61508-2: Requirements for el electrical /
electronic /programmable electronic safety-
related systems.

3. IEC 61508-3: Software Requirements.

4. IEC 61508-4: Definitions and abbreviations.

5. IEC 61508-5: Examples of methods for the
determination of safety integrity levels.

6. IEC 61508-6: Guidelines on the application of
IEC 61508-2 and IEC 61508-3

7. IEC 61508-7: Overview of techniques and
measures.

The standard aims of IEC 61508 is:

A. Release the potential of E/E/PE technology to
improve both safety and economic performance

B. Enable technological developments to take
place within an overall safety Framework.

C. Provide a technically sound, system based
approach, with sufficient flexibility for the future.

D. Provide a risk-based approach for determining
the required performance of safety-related
systems.

B. Provide a generic standard that can be used
directly by industry but can also help with
developing sector standards (e.g. chemical plants,
medical, or railway) or product standards (e.g.
drive-by-wire).

F. Provide a means for users and regulators to
gain confidence when using computer-based
technology.

G. Provide requirements based on common
underlying principles to facilitate by improved
efficiencies in the supply chain for suppliers of
subsystems and components to various sectors and
also by improvements in communication and
requirements.

https://en.wikipedia.org/wiki/Specification
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Formal_system

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 09 | Sep-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 445

2.3. BS EN 50128 (Railway Industry)

The EN 50128 standard was developed to identify “methods
which needs to be used in order to provide software which
meets the demand of safety and integrity”. The standards
were adopted to define a process for the specification and
demonstration of dependability requirements for the
railway industry and to promote a common understanding
and approach to the management of dependability. EN
50128 provide Railway Authorities and the railway support
industry,
Throughout the European Community, with a process which
will enable the implementation of a consistent approach to
the management of Reliability, Availability, Maintainability
and Safety. EN 50128 introduces software integrity levels
(SILs), where each level associated with a degree of risk when
using the software system.

Table -2 SIL Levels

SIL Level RISK

0 Non safety related

1 Low

2 Medium

3 Very High

2.4. RTCA/DO 178B

 The Requirements and Technical Concepts for Aviation
(RTCA) DO 178B is officially a “guidance document” but
widely accepted as an international standard. It was first
issued in the United States in the 1980s and relates to civil
aircraft. The last
Released version is a major revision from 1992.The standard
is compatible with the European Organization for Civil
Aviation Electronics (EUROCAE) standard ED-12B. The
intent of DO-178B is to describe the objectives of software
life-cycle processes, describe the process activities, and to
describe the evidence of compliance required at different
software levels. The software levels are chosen by
determining the severity of failure conditions on the aircraft
and its occupants (DO-178B).

The verification objectives for DO-178B are set in place to
detect and report errors that may have been introduced
during the software development processes. Software
verification objectives are satisfied through a combination of
reviews and analyses, the development of test cases and
procedures, and the subsequent execution of those test
procedures. Reviews and analysis provide an assessment of
the accuracy, completeness, and verifiability of the software
requirements, software architecture, and source code. Most

software code is written in a high level language such as C,
C++ or Ada, and the coverage achieved by any given test is
usually measured against high-level source code (also
referred to as Structural Coverage).
The development of test cases may provide further
assessment of the internal consistency and completeness of
the requirements. The execution of the test procedures
provides a demonstration of compliance with the
requirements. Software test cases should be based primarily
on the software requirements and developed to reveal
potential errors. Software coverage analysis is used to
determine which requirements were not tested. This is
supported by the structural coverage analysis objectives
required by DO-178B that are intended to determine what
software structures (e.g. statements or decisions) were not
exercised as a result of these verification activities. This, in
turn, reveals requirements that may have been in error, tests
that were lacking adequate coverage for these structures, or
dead code. Structural coverage analysis is performed to the
degree required by the criticality of the software. Structural
coverage analysis may be performed on the source code;
unless the software level is A and the compiler generates
object code that is not directly traceable to source code
statements. Additional verification should then be
performed on the object code to establish the correctness of
such generated code sequences.

3 .SAFETY CRITICAL SYSTEM PROGRAMMING
PLATFORM

The design of safety critical system should be kept as simple
as possible. This approach depends on the choice of
programming language used to develop the source code of
the software.
Most of the modern programming are quite efficient in terms
of time and complexity however when it come for
developing safety related system these high end languages
are mostly avoided. The reasons for avoiding such high level
languages are:

i. Dynamic allocation / de-location of memory.

ii. Use of pointers

iii. Use of unstructured programming constructs
like

iv. Go to.

v. Multiple entry and exit points in a loop,
procedure
vi. Functions.

vii. Recursion

viii. Procedural parameters

On the other hand, other programming features which
provide reliability and are less likely to lead to errors are:

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 09 | Sep-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 446

Among the programming languages with the good features
required mentioned above, Ada stands out as one of the most
reliable and secure, however, as none programming
language is perfect, the common approach is to use a small
subset of it in order to avoid the risky features and make the
most of the reliable ones. The Ada subset most commonly
used for safety-critical software systems is called SPARK.

The Ada language defines many run time checks that are
required to raise exceptions if they fail. As any Ada
programmer knows, these checks and resulting exceptions
are enormously valuable in finding errors in the early stage
of testing, rather than later on in the development process.
The issue of whether such checks should be enabled in the
final product is an interesting one. On the one hand, it would
prefer to demonstrate that a program is free of any
possibility of run time errors. On the other hand, it provides
an extra safety belt in case of a problem sneaking through
our careful procedures. But for sure such run time checking
is invaluable during the testing process. Ada is an example of
a language that is designed with this criterion in mind.
Programmers learning Ada for the first time often comment
that it is hard work to get the compiler to accept a program,
but when it does, the program is far more likely to run
correctly the first time. That characteristic may be a bit
annoying for rushing out programs rapidly where reliability
is not paramount, but for safety-critical programming it is
just what we want. Ada achieves this partly by implementing
a much more comprehensive type system, in which for
example there are multiple integer types, and the compiler
can check at compile time that you are not doing something
that makes no sense like adding a length to a time.

 The languages like C, and Java and C++ are not suitable for
writing safety-critical software. The extended functionality
of modern programming languages does make it easier to
write code in the first place, but we have to worry about
demonstrating that the resulting code is error-free; so that
the programs should be written in a very well understood
subset of the chosen language, which avoids unnecessarily
complex semantics. For instance, in Ada, we most likely
avoid using the full power of Ada tasking. In C, we exclude
some of the C library routines which are unlikely to be
available in a safety-critical environment. For C++ we avoid
the complex use of templates. For Java, we avoid the use of
dynamic features that allow the program to modify itself
while it is running.

4. DESIGNING SAFETY CRITICAL SYSTEMS

The basic idea of designing safety-critical software systems
is to identify hazards as early as possible in the development
life-cycle and try to reduce them as much as possible to an
acceptable level.
Mainly two approaches they are:

Formal method based approach.
Prevention and recovery based approach.

The first approach considered is to formally prove that the
system does not contain errors by construction by means of
formal methods. Formal methods are mathematical
techniques and tools used to specify, design and verify
software systems. The prevention and recovery based
approach assumes that errors do exist in the system and the
ultimate aim is to design a prevention and recovery based
mechanism that can protect the system from the stated
hazards
.

4.1 Formal method based approach.

Formal method based approach is the first approach which is
used to formally prove that the system that is being designed
does not contain any construction errors by the help of
formal methods. Formal methods are mathematical
techniques and tools used to specify, design and verify
software systems. Specifications are written as well-formed
statements using logic mathematical language and formal
proves are logic deductions using rules of inference.
Mathematical proofs can also be faulty. So whereas
verification might reduce the program-testing load, it cannot
eliminate it. It is also almost impossible to formally prove
everything used to develop the system such as the compiler,
the operating system in which the system will ultimately
operate and in general every underlying program used to
build the target critical system. That makes necessary the
use of specialized tools to help with formal specifications
and proves. There are already some tools for that but they
are not completely satisfactory up to date and it remains as a
developing task. For small systems, where formal
specifications and proves are easier to deal with, the
approach can be very successful. The technique used to
overcome problems with large scale systems is to try to
separate the critical functionality of the system from the
other non-critical parts. This way of using components with
different safety integrity levels works well providing it is
proved that the non-critical components cannot affect the
high integrity ones or the whole system.

In Specifying software a hands-on introduction by R.D.
Tennent, gives an example of formal methods applied to a
real case with successful results. The program used to
control the NASA space shuttle is a significant example of
software whose development has been based on
specifications and formal methods.

As of March 2000 the program was some 420,000 lines long.
The specifications for all parts of the program filled some
40,000 pages. To implement a change in the navigation
software involving less than 2% of the code, some 2,500
pages of specifications were produced before a single line of
code was changed. Their approach has been outstandingly

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 09 | Sep-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 447

successful. The developers found 85% of all coding errors
before formal testing began, and 99.9% before delivery of
the program to NASA. Only one defect has been discovered
in each of the last three versions. In the last 11 versions of
the program, the total defect count is only 17, an average of
fewer than 0.004 defects per 1,000 lines of code.
Formal based approach consist of 3 levels:

 LEVEL 0:

Formal specification may be undertaken and then a program
developed from this informally this is the most cost-effective
option in many cases. Proofs may be undertaken to confirm
property by assuming that the result is true.

LEVEL 1:

Formal development and formal verification may be used to
produce a program in a more formal manner. For example,
proofs of properties or refinement from the specification to a
program may be undertaken. Formal methods used to
develop process by using Rules and Design calculus. This
may be most appropriate in high-integrity systems involving
safety or security.

 LEVEL 2:

Theorem provers may be used to undertake fully formal
machine-checked proofs. This can be very expensive .In this
level maximum number of error is eliminated.(e.g., in critical
parts of microprocessor design).

4.2. Prevention and recovery based approach.

The Prevention and recovery based approach assumes that
errors do exist in the system and the ultimate aim is to
design a prevention and recovery based mechanism that can
protect the system from the stated hazards.

The Prevention and recovery based approach follows a
bottom up structure in which smaller modules or functions
are first checked for errors and traversing these smaller
parts the complete system is scanned for possible threats. In
order to recover data and information sometime we may
follow what is called is redundancy approach in which data
related to critical parts or modules is replicated.
Redundancy techniques systems mainly used in aircrafts,
where some parts of the control system may be replicated.
An example of redundancy focusing only in the software part
of a critical-system is the N-version programming technique
also known as multi-version programming.

 In this approach, separate groups develop independent
versions of the same system specifications. Then, the outputs
are tested to check that they match in the different versions.
However, this is not infallible as the errors could have been

introduced in the development of the specifications and also
because different versions may coincide in errors.

5. TESTING SAFETY CRITICAL SYSTEM

Quality of software work product depends on the amount
and quality of testing being done, software reliability,
scalability and performance are some of the factors that are
very much valued by the customer. Testing of safety critical
system will use all or part of existing legacy software testing
techniques, in addition to the existing testing techniques we
have to supplement some special techniques in order to
minimize the risk and hazard associated with safety of
software and environment.

It should be remember and empathized that when testing
software at different stages of its development, tests are
always performed to verify correct behavior against
specifications, not against observed behavior. For this
reason, design of test cases for coding, should be done before
coding the software system. Otherwise, software developers
are tempted to design test cases for the behavior of the
system which they already known, rather than for the
specified behavior.

Some well-known techniques used to generate test cases to
test these kinds of systems are white box and black box
testing and reviews. However, they are taken to a further
level of detail than with typical systems. For instance,
according to IPL, reviews become more formal including
techniques such as detailed walkthroughs of even the lowest
level of design and also the scope of reviews is extended to
include safety criteria. If formal mathematical methods have
been used during the specification and design, then formal
mathematical proof is a verification activity indeed. To give a
real example, Hewlett-Packard generates test cases using
white box and black box techniques to test their patient
monitors of the HP Omni Care Family.

Complex static analysis techniques with control and data
flow analysis as well as checking that the source code is
consistent with a formal mathematical specification are also
used. Tools such as SPARK Examiner are available for that.
Dynamic analysis testing and dynamic coverage analysis are
also performed using known techniques such as equivalence
partitioning, boundary value analysis and structural testing.
IPL has developed tools such as Ada test and Cantata to give
support for dynamic testing and dynamic coverage to the
levels of functionality required by standards for safety-
critical software.
The two important factors that distinguish legacy software
testing techniques from safety critical testing techniques are:

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 09 | Sep-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 448

 Degree

 The degree of rigor is the amount of formality involved in
testing a system. The degree of rigor for safety critical
system is more than the normal system.

Organizational structure:

 Independent verification is usually required in those
systems by means of a separate team within the overall
project structure or verification team supplied by an external
company who may not ever meet the development team,
depending on the criticality of the system.

5.1 Techniques for testing and verifying Safety
Critical System

 Some of the specific techniques from safety engineering to
test and verify safety-critical software system are explained
below.

5.2.1 Probabilistic Risk Assessments (PRA).

Probabilistic Risk Assessment is a systematic methodology
to evaluate risk associated with a complex engineering
technologies entity (such as an airliner or a nuclear power
plants). The steps involved in PRA for testing Safety Critical
System are:

1. Perform a primary hazard analysis to find out the
predefined hazard on Safety Critical System.

2. The severity of each impact is calculated. The severity
levels can be classified as

a. Catastrophic
b. Hazardous
c. Major
d. Minor
e. Not safety related.

3. The probability of occurrence is then calculated and it can
also be classified as:

a. Probable
b. Remote
c. Extremely remote
d. Extremely improbable

4. The assessment of risk is calculated by combining both
impact and probability of occurrence in matrix.

 For this evaluation we use different risk criteria like risk-
cost trade-offs, risk benefit of technological options, etc.
Risks that fall into the unacceptable category (e.g.: high
severity and high probability), that is to say, are
unacceptable, must be mitigated by some means such as
safeguards, redundancy, prevention and recovery
mechanisms, etc., to reduce the level of safety risk.
Probabilistic risk assessment also uses tools such as cause

and effect diagrams. For instance, HP applies these
techniques to their patient monitors naming it as risk and
hazard analysis and they consider it to be a grey box method.

5.2.2 Failure Modes and Effect Analysis (FMEA).

Failure modes and effect analysis (FMEA) is a procedure for
analysis of potential failures within a system for
classification by severity or determination of the effect of
these failures on the system.
Failure modes can be defined as any errors or defects in a
process, design or item, especially those that affect the
customer and can be potential or actual. Effects analysis
refers to studying the consequences of these failures. Failure
modes, effects and criticality analysis (FMECA) is an
extension to this procedure, which includes criticality
analysis used to chart the probability of failures against the
severity of their consequences.

5.2.3 Fault Tree Analysis (FTA).

Fault trees analysis is a graphical technique that provides a
systematic description of the combinations of possible
occurrences in a system which can result in an undesirable
outcome (failure). An undesired effect is taken as the root of
a tree of logic. Each situation that could cause that effect is
added to the tree as a series of logic expressions. Events are
labelled with actual numbers about failure probabilities. The
probability of the top level event can be determined using
mathematical techniques.
FTA can be used to:

a) Understand the logic leading to the top event /
undesired state.

b) Show compliance with the (input) system safety
/ reliability requirements.

c) Prioritize the contributors leading to the top
event – Creating the Critical
Equipment/Parts/Events lists for different
importance measures.

d) Monitor and control the safety performance of
the complex system.

e) Minimize and optimize resources.

f) Assist in designing a system. The FTA can be
used as a design tool that helps to create (output /
lower level) requirements.

g) Function as a diagnostic tool to identify and
correct causes of the top event.

6. CONCLUSIONS

A basic overview of safety-critical software systems has been
given and some standards to cope with the development of
Safety Critical System are also named. Programming features
and languages related to these kinds of systems have also
been mentioned. Then, the two main approaches like Formal

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 09 | Sep-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 449

method based approach and Prevention and recovery based
approach; used when designing safety-critical software were
explained. Finally, some techniques used to test safety-
critical software have been described, general techniques
also used to test typical software systems and special
techniques from safety engineering aimed at safety-critical
software. The main idea behind the testing techniques
mentioned is to reduce risks of implementation errors

REFERENCES

[1] J. D. Lawrence, Workshop on Developing Safe

Software – Final Report, FESSP, Lawrence
Livermore National Laboratory, 1992.

[2] Robert Traussnig, "Safety-Critical Systems:
Processes, Standards and Certification" Seminar
“Analysis, Design and Implementation of Reliable
Software”, 2004.

[3] IPL Information Processing Ltd, an Introduction to
Safety Critical Systems, Testing Papers

[4] Marcos Mainar Lalmolda, "Testing safety-critical
software systems", Quality Assurance and Testing
report, University of Nottingham, 2009.

[5] IPL Information Processing Ltd, an Introduction to
Software Testing, Testing Papers.

[6] Ahmed, Syed Usman and Azmi, Muhammad Asim,
“A Novel Model Based Testing (MBT) approach for
Automatic Test Case Generation”, International
Journal of Advanced Research in
Computer Science, 4(11), pp 81-83, 2013.

