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Abstract— The Cloud environment, with its extensive resources 

has become a good choice for organizations to keep their data 

and access it on demand. When the organization’s need is to just 

upload their data and use it as and when required from the cloud, 

the cloud service itself encrypts that data with its own 

credentials or in some cases, for maintaining the confidentiality, 

the data owners encrypt their data prior to outsourcing it. But 

there is no provision for processing some data within the cloud 

environment and at the same time maintain data confidentiality 

and privacy of user query. As a consequence, for classification, 

either the data needs to be decrypted by the cloud at some point 

of time and then processed to take proper classification decision 

or the data owner has no choice but to perform the same task at 

his/ her end partially or fully. Since the data used for 

classification is encrypted and placed onto a cloud, the 

conventional privacy preserving classification methods are not 

suitable. Some recent work has been done in this direction, but it 

is proven to be computationally costly and also not very 

practical. Our proposed system is an effort towards resolving this 

very problem of classifying encrypted user queries over 

encrypted data in a more effective and time efficient manner. 

This is achieved re- designing the existing privacy preserving 

protocol from a different perspective and by leveraging the 

properties of homomorphic cryptosystem. Our approach is 

computationally inexpensive and does not compromise the 

privacy of user query or the confidentiality of the database 

outsourced by the data owner.  

Keywords— encrypted database, homomorphic 
cryptosystem, k- nearest neighbors, security 

1. INTRODUCTION 

The recent trends in cloud services have revolutionized 
the outlook of organizations towards leveraging the 
benefits of outsourcing their data. Cloud computing, with 
its platform as a service (PaaS) feature, has seriously 
grabbed the attention of organizations desiring to 
completely outsource their valuable data along with the 
some data management tasks. But, despite of various 
facilities that cloud avails, there are still some data 
confidentiality and privacy issues that keep the 

organizations from utilizing them. When data is straight 
away uploaded to the cloud, the cloud itself encrypts it, for 
securing it from any third party theft and then stores it. By 
doing so, the data is open for the cloud service providers 
at the first place which can be threat. If the data contains 
very sensitive information such as medical records of 
patients, then somewhere down the line the patients’ 
privacy gets compromised. To avoid this, the first solution 
that organizations use is to encrypt their data, prior to 
uploading it to the cloud. But what when the use of this 
data is just not limited to its retrieval? To perform some 
processing over this encrypted data at the cloud without 
ever decrypting it is very difficult task. 

The privacy issues involved in this kind of situations can 
be explained by the example. Consider that a hospital 
keeps their patients encrypted database on cloud along 
with the data mining task. Now, when a doctor wants 
assert about symptoms of a disease of the patient, which 
he/ she cannot affirmatively treat, the doctor can use 
relative classification process and find out the disease with 
which the patient is suffering. For getting a precise 
response, the doctor needs to trigger a query for the 
classification process on cloud, which would contain 
patient’s highly personal information. So, it is very obvious 
that this query must be encrypted prior to sending it to the 
cloud, in order to protect the patient’s privacy. Thus, it is 
important to consider the privacy of the users’ query when 
it is involved in the data mining task. Also, any cloud 
malfunction activity can determine useful information 
about data access patterns although data are always 
encrypted. Therefore, we can say that, while performing a 
classification or any other data mining task on encrypted 
data in an outsourced environment as cloud, the data 
owner’s confidentiality, user query’s privacy and 
preventing the cloud from learning any access patterns 
must be the foremost objectives. 

In this paper, we have proposed some methods which 
collaboratively solve the secure classification over 
encrypted data problem assuming that encrypted data and 
the classification process are outsourced. Although each of 
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the classification techniques has their own pros and cons, 
our work concentrates only on the k-nearest neighbor 
technique; it being the most suitable for our work. 

1.1 Problem Definition 
Consider a data owner having a database with m 

attributes and n records where the first attribute 

(practically kept as    ) is the identifier, I, for the record 

and     attribute refers to the class label, c. The database 
is encrypted attribute- wise by the data owner, such that, 

   (    ) corresponds to an encrypted record value, for 1 ≤ 

i ≤ n and 0 ≤ j ≤ m, where t is a tuple. The encryption 

function,     belongs to a semantically secure encryption 

scheme [1]. The data owner then outsources his/her 
encrypted database, denoted by EDB along with the 
classification process and hereafter has no intervention in 
the classification process. 

Any authorized user with query, denoted as 

Q=(  …….    ), will query this EDB in order to gain the 

class label, denoted as,   , for the query. 

1.2 Our Contributions 

In this paper, we present an improvised privacy 
preserving k- NN classifier [2] which works over 
semantically secure encrypted data. This improvised 
classifier is considerably inexpensive in terms of 
computational cost and proves to be a practically more 
feasible solution to the classification over encrypted data 
problem. As mentioned in [2], following are the privacy 
requirements for a privacy preserving k- NN protocol: 

 User’s query should not be disclosed to the cloud 
i.e. it should remain encrypted throughout the 
classification process. 

 The actual database contents or the intermediate 
results of the process must not be revealed to the 
cloud. 

 The records corresponding to the k- nearest 
neighbors of Q must neither be revealed to cloud 
nor to the user. 

 The resulting class label,   , must be only revealed 

to the user. 

Our efforts in this paper are motivated by the work of 
Samanthula, Elmehdwi and Jiang in [2]. As mentioned in 
[2] about the scope for improvements in the efficiency of 

      protocol, we concentrate on improving the time 
requirements of SMIN and some other sub- protocols. On a 
practical note, it has been observed that Paillier 
cryptosystem is not very effective in handling negative 
values as result of any Paillier addition. This problem 
might occur while performing attribute- wise subtraction 
in secure squared Euclidean distance (SSED) protocol [3]. 
To address this situation, we have proposed a new 
solution to securely compute the squared Euclidean 

distance. It is worth mentioning that, during our 
improvised protocols, all the above mentioned privacy 
requirements are satisfied as, the cloud remains unaware 
of which database records correspond to the derived 
nearest neighbors. Also, any intermediate values that are 
computed and are visible to the cloud are either encrypted 
random values or random numbers. Moreover, the final 
output is not known to cloud. 

2. EXISTING RELATED WORK 

Here, it is worth mentioning that any data mining task 
over encrypted data can be performed with comparatively 
less efforts using fully homomorphic cryptosystems [4], as  
this cryptosystem supports any number of arbitrary 
functions on encrypted data without having to decrypt it. 
But, these cryptosystems are very expensive in terms of 
computation and hence, their use may require extensive 
hardware support. 

2.1 Privacy Preserving Protocols and their 

Limitations 

In the recent past, there have been a few systems 
proposed for privacy preservation in data mining 
applications such as data perturbation by Agrawal and 
Srikant [5] and data distribution by Lindell and Pinkas [6]. 
The former one is the first decision tree based solution 
but, is not suitable for semantically secure encrypted data 
while, the later one is first decision tree solution that 
works in a two party setup, but it considers that data is 
distributed in plaintext form over many parties and not 
encrypted. 

The SCONDB model proposed in [7] is a secure query 
processing model where, the nearest neighbors of the 
query are given to the user, who then decrypts uses the 
conventional k- NN technique to find the most relative 
class label. However, this model reveals the k- NN to the 
user out writes our objective. 

In the most recent work [2], the k- nearest neighbors 
are not revealed to the cloud nor to the user. In [2], 
Samanthula, Elmehdwi and Jiang propose the PPkNN 
protocol and many new the security primitives along with 
their solutions and supporting security proofs, namely, 
secure minimum (SMIN), secure minimum from n 
numbers (     ), secure frequency (SF). PPkNN protocol 
intially uses the secure squared Euclidean distances 
(SSED) protocol to determine the encrypted distance 
   (d) of each record in the database from the user query. 

The Secure Bit Decomposition protocol then converts 
these       ) values to [  ], denoting the encryption of 

binary bits of   . The SMIN protocol then computes the 
encrypted bits of the minimum [  ] and corresponding 
class label,       ). It is observed that computational cost 

of this SMIN protocol is very high and it incurs almost 67 
% of the total computational cost.  
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Our primary aim is to reduce this computational cost 
without compromising on the security and privacy 
objectives mentioned in [2]. In this paper, we propose an 
improvised version of the PPkNN protocol by re- 
designing the SMIN protocol and removing the overhead 
incurred by SBD and SBOR protocols. We also present 
experimental results to support our predictions. Also, it is 
our observation that in the SSED protocol mentioned in 
[2], whenever a negative value result from a Paillier 
addition, these values cannot be deduced to their correct 
plaintext form. This is because Paillier addition does not 
support negative values as the result. Our work addresses 
this issue by seeing the SSED problem from a different 
perspective. 

2.2 Paillier Cryptosystem 

Paillier cryptosystem [1] is additively homomorphic in 
nature. It is a probabilistic public key encryption scheme 
that provides semantic security. If we assume     is an 

encryption function with public key pk given by (N, g), 
where N is product two large prime and g is a generator in 
   

 . Also,     is the decryption function with secret key sk, 

then for any two plaintexts x and y    , the Paillier 
encryption scheme has the following properties: 

a) Homomorphic Addition 

                  (                  ) 

b) Homomorphic Multiplication 

   (        )      (       
        ) 

3. IMPROVISED PRIMITIVES FOR PRIVACY 
PRESERVATION 

In this section we discuss the working of some sub- 
protocols that act as the building blocks for computing the 
k- nearest neighbors in a more efficient way. We will 
hereafter consider a federation of two non- colluding, semi 
honest cloud service providers,   and   .    is hosting the 
secret key sk and pk is public (known to both     and    ). 

3.1 Improvised Secure Minimum (I-SMIN) 
This protocol takes as input two vectors, a= (       , 

       ,        ) and b= (       ,        ,        ) 

where, I denotes the unique identifier for each record,    is 
the distance of a record from the given query and    is the 
class label corresponding to that record. The aim of this 
protocol is to determine the minimum       ) of the two, 

without revealing it to   and   . 

Algorithm 1: I-SMIN (a, b) (         ,          , 

         ) 

Requires:    holds a= (       ,        ,        ) and b= 

(       ,        ,        ) and    holds the secret key sk. 

1)   : 

 Generate a random number r      
 Encrypt r with pk to get    (r) 

 Now, randomize the all elements of both 
vectors a and b with    (r) , as follows: 

                           

                           

                           

 So we have, a = (   ,    ,    ) and similarly      
b = (   ,    ,    ) 

 Send a  and b  to    

2)   : 

 Receive a  and b   from    and decrypt them 
using sk as, 

a.) u=         and v=         
 Now, compare    and    

a.) if     ≤   , then α= u 
b.) else α= v 

 Encrypt α as, 
a.) αꞌ =       ; and send αꞌ to    

3)   : 

 Receive αꞌ from    and remove randomization 
effect from all elements of αꞌ, 

               a.)                           
           

               b.)                          
           

               c.)                          
           

 

To start with, in this protocol,    generates a random 
number r     , encrypts it with the public key pk that    
already has and randomizes the all elements from both the 
vectors. The reason for both vectors being randomized 
with the same random value is to maintain their relevance. 
The resulting vectors a  and b  are then sent to   . At   , 
these randomized vectors are decrypted with the secret 
key sk to get u and v. Now, the distance parameters    and 
   from vectors u and v, respectively, are compared to find 
minimum of them. If   is found to be minimum then 
vector u is assigned to the new vector α, otherwise α is 
assigned with v. This vector α, is then encrypted with the 
public key pk to get αꞌ and αꞌ is sent to   . After receiving 
the minimum vector in the form of αꞌ,    removes the 
randomness from it to get the required encrypted 
minimum vector of (         ,          ,          ). 

Similarly, we can also formulate an Improvised Secure 
Maximum (I-SMAX) to find out the maximum between 
vectors with varying parameters setting. 
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3.2 Protocol to securely compute the Squared 

Euclidean Distance 

The aim of this protocol is securely calculate the square 
of the distance between an encrypted database record 
        and the user’s query       , for 1≤ i ≤ n, where n is 

total number of records. Here, all the encryptions are done 
with the public key pk, known to both clouds    and    and 
user. The secret key sk is only known to   . In order to 
classify a query over an encrypted database, the user is 
first required to select values for the predefined attributes. 
At the user’s end these attribute values are summed 
together to get,      

       and squaring this summation we 
get,       

      
  , where m is the total number of attributes 

in the encrypted database. Finally, the user encrypts these 
two values with the data owner’s public key pk, prior to 
sending them on    as a classification request. So, this 
protocol is invoked with inputs, the encrypted query 
attribute summation,         

      , encrypted square of 

query attribute summation,          
      

   and 

encrypted record attribute summation,    (    
       ) 

(independently computed on   ). Following are the step 
involved in our new, Improvised SSED (I- SSED) protocol, 
where   and    jointly compute       . 

In this protocol,   and    compute the encrypted 

square of    (    
       ) using the secure multiplication 

(SM) protocol proposed in [2], for 1≤ i ≤ n, where n is 
number of records. Similarly, we compute the encrypted 
product of      

       and      
        . The resulting values 

from SM are only known to   . Now, we can apply the 
homomorphic properties with reference to the 
mathematical formula,          , to get the encrypted 
squared Euclidean distance,       . There slight 

difference in the setting of information exchange between 
user and   as compared to the SSED protocol in [2]. In our 
protocol, we require the user to send an encrypted sum of 
all query attributes to    instead of sending individual 
encryptions of attribute values. This does not incur the 
user any additional overhead as the user performs simple 
summation and then encrypts only the sum. In fact, 
compared to the requirements in [2], our protocol reduces 
the number of encryptions to be performed at the user’s 
end from 6 to just 2. Also, the number of Paillier additions 
required for performing attribute- wise subtraction are 
reduced. 

Algorithm 2: I-SSED (   (    
     ),    (     

      
 ), 

   (    
       ))        

Requires:    holds         
      ,          

      
  , 

   (    
       ) and    holds the secret key sk. 

1)   and   : 

 Compute     (    
        

 ) using standard SM 

protocol 
 Compute    (     

            
        ) using 

again standard SM protocol 

2)   : 

 Compute the encrypted squared Euclidean 
distance,       , as, 

              (     
        

 )           
      

          

                        
            

         
           

 

3.3 Secure Elimination protocol (S- ELIM) 

Whenever a database record is found to be the nearest 
neighbor to the query, it is necessary that the 
corresponding distance is updated to exclude this record 
from participating in further classification process. But, 
since the Paillier homomorphic scheme is semantically 
secure,    is unable to find which record corresponds to 
          and          . The aim of this protocol is to 

update the distance           to a maximum value so that 

it is automatically left out in the next iterations. One input 
to this protocol is the collection of (       ,        , 

       ), for 1 ≤ i ≤ n, where n is total number of records. 

For convenience, we refer this collection as I_d_c_Map. 
Other inputs include           ,           and           

which are credentials of the record that is found to be 
nearest to the query in an iteration. The output will a same 
collection with an updated encrypted distance for the 
appropriate record (refered here as Updated_Map) .    
initially computes δ, since it involves an exponentiation  
and is referred n times. Then, a vector named ID is used to 
store the Paillier subtraction of δ from each of the        , 

for 1 ≤ i ≤ n. Here it is worth noting that only one of the 
entries in ID will be computed as       . Now, ID is sent to 

  , where it is decrypted. Now, a new vector Θ is 
constructed by replacing all entries of non- zero values 
with        and 0s with          (maximum threshold 

considered as 100).          will occur exactly once in Θ. 

This vector Θ is sent to   . At   , an entry in Θ is Paillier 
added to its corresponding        . As a result,    

obliviously updates only the encrypted distance 
corresponding to the nearest record and all other          

Algorithm 3: S- ELIM (         ,          ,          , 

I_d_c_Map) Updated_Map 

Requires:    holds Record_Cred_Map, newly computed 

nearest neighbour credentials (         ,          , 

         ) and public key pk and    holds the secret key 

sk. 
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1)   : 

 Compute, δ =          
           

 Compute a vector, ID, for i=1 to n 

a.)                         

 Send vector ID to    

2)   : 

 Receive ID from    and decrypt it as, 

a.) ID =         

 Now, compute vector Θ, for i=1 to n  

a.) if        , then              

b.) else             

 Send vector Θ to    

3)   : 

 Receive Θ from    and update all         as,   

for i=1 to n 

a.)                           

 Updated_Map  ((       ,        ,        ), 

……, (       ,        ,        )) 

 

remain unchanged. As intended,    and    do not know 
which         is updated. 

4. SECURITY ANALYSIS OF IMPROVISED 
PROTOCOLS 

Although, while improving the efficiency of protocols in 
[2], we have changed the functioning and the protocol 
requirement, the final output of all improvised protocols 
are always in encrypted format and are only known to   . 
In fact, the changes induced always contributed towards 
reducing the computations. Also,    deals with only 
random values which have no relevance with original 
ones. Values computed on    are always conveyed to    in 
encrypted form. Following is the formal security analysis 
of all proposed improvisations. 

4.1 Security Analysis for I- SMIN Protocol 
To start with, the inputs given to this protocol are all 

encrypted and the encryption scheme being semantically 
secure, these inputs are never revealed. The main strength 
of I- SMIN protocol lies in the fact that, the scope of the 
random number r generated from    is limited to    and 
hence, after randomizing the encrypted distance values 
        and        ,    cannot predict them. The decision 

taken by    is based on randomized values due to which 
no extra information is leaked at   . Moreover, each time 
I- SMIN takes a new pair for comparison, a new random 
number is generated, so that    should not acquire any 
knowledge on the relation between last and current pairs. 
On finding the minimum,    encrypts its result prior to 
sending it to   . The ciphertext corresponding to the 
minimum distance received at    (whether         or 

       ) is different from the one it was prior to sending it 

to   . Hence,    cannot predict which of the two distances 
it sent to    was found to be minimum. All together, it is 
evident that neither    nor    learns anything about   , 
  ,   ,   . 

4.2 Security Analysis for I- SSED Protocol 
In the problem setting of PPkNN [2], user was required 

to provide six encrypted attributes values which 
constituted the query for classification. The SSED 
proposed in [3] uses the Paillier additive property to 
perform an attribute- wise subtraction between the 
encrypted attributes of the record and query. However, 
the Paillier cryptosystem does not support a negative 
output of any subtraction performed using Paillier 
additive property. For example, if we perform a Paillier 
addition,                

          , the expected 

output is an encryption of  -5. However, decrypting this 
output does not give us the desired result. To tackle this 
problem, we introduce a new equation for securely 
computing the squared Euclidean distance. With this 
change, the user is now required to provide only two 
encrypted values,         

       and          
      

   as 

described in algorithm- 2. During this protocol, 
         

      
   is securely computed using         

       

with the SM protocol [3]. Also,          
            

        

is computed using the same SM protocol. The security 
proof for SM protocol is already mentioned in [3]. The 
output of SM protocol is only known to   . Also, the results 
of the Paillier additions performed on    are in encrypted 
form. Thus, the output of our I-SSED protocol is encrypted 
and only known to   . 

4.3 Security Analysis for S- ELIM Protocol 
This protocol ensures that the         corresponding 

to nearest record at the end of an iteration, is restricted 
from participating in the next iteration. For this purpose, 
   forms the vector ID which contains the encrypted 
differences. When    decrypts this vector, it does not have 
any understanding about this vector and simply 
substitutes 0s with         and non- zero values with 

      . On receiving this vector Θ,    adds this vector 

component- wise to the corresponding         values, 

using Paillier additive property. Thus, even    does not 
acquire any information about which         is updated.  

5. IMPROVISED PPkNN PROTOCOL (I- PPkNN) 

Here we propose the improvised privacy preserving 
protocol for performing k- nearest neighbour classification 
for the user’s encrypted query, n an encrypted database. In 
section 1, we discussed about the problem statement and 
he scenario. To start this section, we would like to put 
forth the other assumption made while constructing our 
protocol. Firstly, we assume that clouds    and    are 
configured to communicate with each other, only when 
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required, during the execution of the sub- protocols. These 
clouds do not collude and are curious to learn any 
information about the data they exchange. The data owner 
outsources the encrypted database, EDB, to    and the 
secret key sk to   . The public key pk is communicated to 
all the participating entities. The class label for user’s 
query is computed with the help of I- PPkNN protocol that 
executes in two stages, which are explained below. 

5.1 Securely Determining the k- Nearest Class 

Labels (SDk-NCL) 
The user selects the query attribute values 

(           ) sums them up to get     
     , where m is 

total number of attributes in EDB. Also, he/ she computes 
     

      
 . User then encrypts these two values with the 

public key (pk) of the data owner and sends a 
classification request to    with these encrypted values. 
After receiving the query,    computes the encrypted sum 
of all attribute values of each record in the EDB, 
   (    

       ), using Pailler additive property, where 1 ≤ i 

≤ n.          jointly compute the encrypted squared 
Euclidean distance,        , between the query and each 

of EDB records, using our proposed I- SSED protocol.    
now build an identifier-distance-class label map 
(I_d_c_Map) where,         and         are the     and     

attribute values, respectively, of the     record. Now, the I- 
SMIN protocol, with two entries at a time from the 
I_d_c_Map, iteratively computes          ,          , 

          corresponding to the first nearest neighbour. 

Then, the S- ELIM protocol securely updates the         in 

I_d_c_Map corresponding to this          , so that the 

record corresponding to           is automatically 

excluded from the next iterations.           is the first 

among k- nearest class labels. In the next k-1 iterations, we 
determine all of the k- nearest class labels. This set, 
(                   ) is then given to SDMCL protocol to 

find the most frequently occurring class label from these k 
class labels. 

Algorithm 4: SDk-NCL (   , q) (                   ) 

Requires:    holds EDB and public key pk, user has pk and 

   holds the secret key sk. 

1) User: 

 Select query attribute values and compute 

    
      and      

      
  

 Encrypt these values, as         
       and 

         
      

   and send to      

2)         : 

 Receive         
       and 

         
      

  from user 

 for i=1 to n  

a.)    computes,    (    
       ) 

b.)         I-SSED(        
      , 

         
      

  ,    (    
       )) 

 I_d_c_Map((       ,        ,        ), ……, 

(       ,        ,        )) 

 Next_level_Map I_d_c_Map 

 for s=1 to k, do 

a.) Next_level_Map I_d_c_Map 

b.) for p=1 to size of Next_level_Map, do 

-          ,          , 

         I-SMIN(a, b) 

where, a=    (  ),    (  ), 

   (  ) and b=    (    ), 

   (    ),    (    ) 

- Add (         ,          , 

         ) to Temp_Map 

- p=p+2 

c.) if  size of Temp_Map >1 

- Next_level_Map Temp_Map 

- Repeat from a.) 

else 

-                  

- I_d_c_Map S- ELIM (         , 

         ,          , I_d_c_Map) 

3) SDMCL (       ,…,.        ) 

5.2 Securely Determining the Majority Class Label 

(SDMCL) 

Firstly, we assume that the data owner also outsources 
the list of all encrypted class labels (       ,….,        )  

to   , where w is the total number of unique class labels in 
EDB. In the first step,          compute the encrypted 
frequency of each of the w class labels with 
       ,….,        ) and  (       ,….,        ) as input to 

the SF protocol [2]. Let,          ) be the encrypted 

frequency for class label   , for 1≤ i ≤ w. Now,          
collaboratively execute the I- SMAX protocol (as suggested 
in the description of I- SMIN protocol), with input 
(          ,         , for 1≤ i ≤ w. The I- SMAX protocol, 

iteratively determines the encrypted class label,    (  ) 

with maximum frequency,             . Now, only    

knows the output of I- SMAX protocol and the only task 
left is to securely communicate the class label to the user. 
For this purpose,    randomizes the encrypted class label 

   (  ) with         by computing   =    (  )     (  ). 

  , then sends    to    and    to the user.    decrypts    to 

obtain the randomized majority class,         (  ) and 

send      to the user. User now has    from    and      from 
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  . So, the user computes the final output class label for 
her/ his query as,          . 

6. EXPERIMENTAL RESULTS AND PERFORMANCE 

In this section, we declare the system configuration 
and other setting for successful implementation of our 
proposed protocols. We have used evaluated the 
performance of our protocols on Intel® CORE i5® CPU 
with processing speed of 1.7 GHz and 4 GB of RAM running 
on Windows 8 operating system. The additive 
homomorphic scheme used throughout our algorithms is 
Paillier cryptosystem [1], and hence, our evaluated results 
are easily comparable with those in [2].  

6.1 Dataset 

For our implementation, we have also used the Car 
Evaluation dataset from the UCI KDD archive [8], as used 
in the experimental setup of [2]. This dataset consists of 
1728 records i.e. n= 1728, and 6 attributes. One more 
attribute is there to represent the class label. Moreover, as 
per our requirement, we have added one more identifier 
attribute to all the records in the dataset (i.e. now, m=8). 
This dataset is classified into 4 unique classes, w=4. We 
have encrypted our dataset using Paillier encryption with 
key size of 512 bit (K=512) and varied the value for k.  

6.2 Performance evaluation of I- PPkNN Protocol 
As mentioned in section 5, the I- PPkNN protocol has 

two stages, namely, SDkNCL and SDMCL. We have 
evaluated the computation costs for both the stages by 
varying, the number  

Algorithm 5: SDMCL (       ,….,        )    

Requires:    holds (       ,….,        ), 

(       ,….,        ) and pk and    holds the secret key sk. 

1)         :  

 (          ,….,           ) SF(A, B) 

where, A= (       ,….,        ) and 

            B= (       ,….,        ) 

 (            ,    (  ))I-SMAX 

((          ,        ), …., 

(          ,        )) 

 

2)   : 

   =    (  )     (  )       , where        

 Send    to    and    to user 

3)   : 

 Receive    from    

 Compute,         (  ); send     to user 

4) User: 

 Receive     from    and    from    

                 

of nearest neighbors (k) from 5 to 15.We have also 
assessed the performance by varying the key size as, 
K=512 and K=1024. We now compare our results with 
those in [2] under exactly same parameter settings. For 
K=512, SDkNCL takes 14.7 minutes to 57.5 minutes when 
k is change from 5 to 20, respectively. Thus, the 
computation cost increases linearly with k. Fig. 1 shows 
this linear change. It is also observed that as k is doubled 
the cost of SDkNCL also gets doubled. So, when k=10, the 
computation time of SDkNCL was 28.6 minutes. With 
K=512 and k=5, the Stage- 1 of PPkNN in [2] incurred 9.98 
minutes. However, they evaluated the computation costs 
on a machine with Intel® XEON® Six- Core CPU with 
processing speed of 3.07 GHz and 12 GB of RAM. So, 
considering our machine configuration (which is 3 times 
smaller), we can assert that our proposed improvisations 
to the protocols in [2] can reduced the overall 
computation cost considerably.  

On the other hand, for K=1024, SDkNCL takes 93.6 
minutes to 372.94 minutes when k is change from 5 to 20, 
respectively. With K=1024 and k=5, the Stage- 1 of PPkNN 
in [2] incurred 66.97 minutes. Again, considering the 
differences in machine configuration, our results are very 
good.  

 

Fig.1. Total cost of SDkNCL 

 

Fig.2. Total cost of SDMCL 
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With K=512, our SDMCL takes 0.281 to 1.118 seconds 
when k is scaled from 5 to 20, respectively. On the other 
hand, with K=1024, our SDMCL takes 0.556 to 2.184 
seconds when k is scaled from 5 to 20, respectively. Fig. 2 
shows the linear growth in the cost of SDMCL as k is 
increased. We can observe that, SDMCL incurs very low 
cost as compared to SDkNCL, since the number of 
computations in I-SMAX are significantly less than those in 
I-SMIN. 

7. CONCLUSION AND FUTURE WORK 

Our work in this paper proposed some improvisations to 
the existing PPkNN [2] protocol in order to improve its 
efficiency and to overcome some of the limitations of its 
sub- protocols. To address the issue of, negative values as 
result of any Paillier addition, while performing attribute- 
wise subtraction in secure squared Euclidean distance 
(SSED) protocol [3], has been resolved by our I-SSED 
protocol. In this protocol, we introduce a new approach to 
compute the squared Euclidean distance securely 
effectively and more efficiently. With the security analysis 
and practical implementation, we emphasize that, during 
our improvised protocols, all the privacy requirements 
mentioned in section 1 are met;  the cloud    and    
remains unaware of which database records correspond 
to the derived nearest neighbors. Also, any intermediate 
values that are computed and are visible to either of the 
clouds, are encrypted random values or random numbers. 
The work by Samanthula, Elmehdwi and Jiang to propose 
PPkNN [2] is the first of its type and after evaluating the 
performance, we can optimistically conclude that our 
improvised protocols are computationally inexpensive 
than those proposed in [2] under the same experimental 
settings.  

Executing the I-SMIN protocol in parallel will be a huge 
boost to compute the k- nearest neighbors. This is can be 
possible as records are independent of each other and a 
cluster of servers, to execute I-SMIN in parallel, can be 
easily configured in a single cloud environment. Similarly, 
the I-SSED protocol can also be parallelized and we plan to 
do it in our future work. 
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