
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 09 | Sep-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 524

Collaboration of Object Oriented Programming and Software

Development

Shrilaxmi Deshpande

Assistant professor IT department
MMK College of Commerce and Economics, Mumbai, India

---***---
Abstract - Object oriented programming and design
are very important in today’s environment. It provides
generalizations for many problems in addition to
many benefits like reusability, decomposition of
problems into small easily understandable objects. In
this paper, both structured programming and object
oriented programs are discussed along with features
and object oriented software paradigms.

Key Words: Object oriented, encapsulation,
inheritance, polymorphism, events, concurrency, and
persistence

1. INTRODUCTION

A group of programs developed specific purpose is
referred to as software. The software development life
cycle is a process of building good software and in life
cycle stages provides quality and correctness of good
software [1]. One wrong step in lifecycle can create big
mistake in the development of software. The concepts
used in software development life cycles are mainly
structured programming and object oriented
programming.

Structured programming is also known as modular
programming. In this approach functions are defined
according to the algorithm to solve the program. A
function is applied to some data to perform the actions on
data. This approach may be called a data driven approach.
It depends on the solution domain because the algorithm
is closer to the coding of the program. It uses following
principle:

 Operator-operand concept
 Function abstraction
 Separation of data and functions

It has given importance to developing of algorithm. Some
time critical data having global access may result in
miserable output. Data and functionalities are considered
as two separate parts. But in real world problem is solved
by using a responsibility-driven approach. In this
approach the relationship between the user and

programmer is emphasized. The natural way of problem
solving has basic principles namely:

 Message passing
 Abstraction
 Encapsulation

These are achieved through object-oriented technology,
which follows the natural way of problem solving. Data
abstraction and data encapsulation help in abstract view
of the solution with information hiding. Data is given the
proper importance and action is initiated by message
passing[2]. Data and functionalities are put together
resulting in objects and a collection of interacting objects
are used to solve the problem. Object oriented
programming languages are developed based on object-
oriented technology.

2. FEATURES OF OBJECT ORIENTED PROGRAMMING

The fundamental features of object-oriented programming
are encapsulation, data abstraction, inheritance,
polymorphism, extensibility, persistence, delegation,
genericity, concurrency, event handling,, message
passing[3].

2.1 Encapsulation

The process of combining code and manipulating into
single unit is commonly referred to as encapsulation,
which provides a layer of security around manipulated
data, protecting in external interference and misuse.

2.2 Data Abstraction

Abstraction is a design technique that focuses on the
essential attributes and behavior. It is a collection of
essential attributes and behavior relevant to programming
a given entity for specific problem domain, relative to
perspective of the user.

2.3 Inheritance

This feature allows the extension and reuse of existing
code, without having repeat or rewrite the code from
scratch. Inheritance involves the creation of new classes,
also called derived classes from base class. The new

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 09 | Sep-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 525

derived class inherits the members of the base class and
also adds its own. It is useful in extension and
specialization.

2.4 Multiple Inheritance

When class is derived through inheriting one or more base
class is called multiple inheritances. Instances of classes
using multiple inheritances have instance variables for
each of the inherited base classes.

2.5 Polymorphism

Polymorphism allows an object to be processed differently
by the data types and data classes. It is ability for different
objects to respond to the same message in different ways.
It allows single name or operator to be associated with
different operations [4].

 2.6 Delegation

It is an alternative to class inheritance. Delegation allows
an object composition to be as powerful as inheritance. In
delegation two objects are involved in handling request
namely: methods can be delegated by one object to
another but the receiver stays bound to the object doing
the delegating.

2.7 Generecity

It is a technique for defining software components that
have more than one interpretation depending on the data
type of parameter. Thus, it allows the abstraction of data
items without specifying their exact type. These generic
data type are resolved at the time of their usage and are
based on the data type of parameter.

2.8 Persistence

It is the concept by which an object outlives the life of the
program, existing between executions. All database
systems support persistence.

2.9 Concurrency

Concurrency is represented through threading,
synchronization and scheduling. It allows additional
complexity to the development of applications, allowing
more flexibility in software applications.

2.10 Events

Event can be considered a kind of interrupt. These
interrupt the normal flow of program execution. Objects
can pass information and control from themselves to
another object, which in turn can pass control to other
objects, and so on.

3. SOFTWARE DEVELOPMENT AND OBJECT-
ORIENTED PROGRAMMING PARADIGMS

Instantiation of an object is defined as the process of
creating an object of a particular class. An object has state
or properties, operations and identity. Properties maintain
the internal state of an object. Operations provide the
appropriate functionality to the object. Identity
differentiates one object from the other. Object name is
used to identify the object [5]. Unique identity is important
and hence the property reflecting unique identity must be
used in an object.

The properties of an object are important because the
outcome of the functions depends on these properties. The
functions control the properties of an object. They act and
react to messages. The message may cause a change in the
property of an object. Thus, the behavior of an object
depends on the properties [6].

There are two types of programming languages namely
object-based and object oriented. Object based languages
incorporate features like encapsulation and object
identity. The object oriented languages in turn
incorporates all features of object-based along with
inheritance and polymorphism. In object oriented
programming language a module is a logical grouping of
related declarations, such as objects or procedures. There
are some important features of object-oriented
programming and design like:

 Emphasis on data rather than algorithms.
 Procedural abstraction is done by data

abstraction
 Data and associated operations are unified,

grouping objects with common attributes,
operations and semantics.

Object-oriented technology is built upon object models.
Object is anything having crispy defined conceptual
boundaries. Model is the description of specific view of
real world problem domain showing those aspects, which
are important to the observer of problem domain. Object
oriented programming addresses the solution to the
problem domain. Object model is defined by means of
classes and objects. The development of programs using
object model is known as object-oriented development.

4. MAPPING OF REAL WORLD ENTITY INTO OBJECT
ORIENTED PROGRAMMING

The concepts of object-oriented technology must be
represented in object-oriented programming languages.
Only then, complex problems can be solved in the same
manner as they are solved in real-world situations. OOP
languages use classes and objects for representing the
concepts of abstraction and encapsulation. The mapping of
abstraction to a program is as shown in figure 1.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 09 | Sep-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 526

Fig -1: Mapping of abstraction to a program

The software structure that supports data abstraction is
known as class. A class is a data type capturing the essence
of an abstraction. It is characterized by a number of
features. The class is a prototype or blue print or model
that defines different features. A feature may be a data or
an operation. Data are represented by instance variables
or data variables in a class. The operations are also known
as behaviors, or methods, or functions. They are
represented by member functions of a class in C++ and
methods in Java and C#.

A class is a data type and hence it cannot be directly
manipulated. It describes a set of objects. For example,
apple is a fruit implies that apple is an example of fruit.
The term “fruit” is a type of food and apple is an instance
of fruit. Likewise, a class is a type of data (data type) and
object is an instance of class.

Similarly car represents a class (a model of vehicle) and
there are a number of instances of car. Each instance of car
is an object and the class car does not physically mean a
car. An object is also known as class variable because it is
created by the class data type. Actually, each object in an
object-oriented system corresponds to a real-world thing,
which may be a person, or a product, or an entity.

5. MODULARITY

The complexity of a program can be reduced by
partitioning the program into individual modules. In
object-oriented programming languages, classes and
objects form the logical structure of a system. Modules
serve as the physical containers in which the classes and
objects are declared. Modularity is the property of a
system that has been decomposed into a set of cohesive
and loosely coupled modules. A module is an indivisible
unit of software that can be reused. The boundaries of
modules are established to minimize the interfaces among
different parts of the development organization. Modules
are frequently used as an implementation technique for
abstract data type. Abstract data type is a theoretical
concept and module is an implementation technique. Each
class is considered to be a module in OOP.

The responsibilities of classes are defined by means of

their attributes and behavior. But a single object alone is
not very useful. Higher order functionality and complex
behavior are achieved through interaction of objects in
different modules. Hence, interaction of objects is very
important. Software objects interact and communicate
with each other by sending messages to each other.

The activities are initiated by the transmission of a
message to an object responsible for the action. The
message encodes the request and the information is
passed along with the message as parameters. There are
three components to comprise a message:

 The receiver objects to whom the message is
addressed.

 The name of the function performing the action.

 The parameters required by the function.

Interaction between objects is possible with the help of
message passing. In the case of distributed applications,
objects in different machines can also send and receive
messages.

6. ADVANTAGES OF OBJECT-ORIENTED
PROGRAMMING

The following are the advantages of software development
using object-oriented programming:

 Software reuse is enhanced.
 Maintenance cost can be reduced.
 Data access is restricted providing better data

security.
 Software is easily developed for complex

problems.
 Improved performance and quality of software is

achieved
 Data abstraction is possible.

5. LIMITATIONS OF OBJECT-ORIENTED
PROGRAMMING

The following are the limitations of software development
using object-oriented programming:

 The benefits of oop may realized after a long
period

 Requires intensive testing procedures
 Solving problems using oop approach consumes

more time than the time taken by structured
programming approach

Propertie

s

Operation

Data

Functions

Entity

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 09 | Sep-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 527

6. CONCLUSION

If there is complexity in software development, object-
oriented programming is the best paradigm to solve the
problem. Object concept helps to translate our thoughts to
a program. It provides a way of solving a problem in the
same way as a human being perceives a real world
problem and finds out the solution. It is possible to
construct large reusable components using object oriented
techniques. Development of reusable components is
rapidly growing in commercial software industries.

REFERENCES

[1] S. Barbey, M. Ammann, and A. Strohmeier. Open
issues in testing Object Oriented software. In K. F.
(Ed.), editor, ECSQ ’94 (European Conference on
Software Quality), pages 257–267, vdf
Hochschulverlag AG an der ETH Z¨urich, Basel,
Switzerland, October 1994

[2] G. Booch. Object Oriented Design.
Benjamin/Cummings Publ., USA, 1991.

[3] R. Doong and P. Frankl. The astoot approach to
testing object-oriented programs. ACM Transactions
on Software Engineering and Methodology,
3(2):101–130, April 1994.

[4] R.-K. Doong and P. G. Frankl. Case Studies on Testing
Object-Oriented Programs. In Proceedings of the
Symposium on Testing, Analysis, and Verification
(TAV4), pages 165–177, Victoria, CDN, Oct. 1991.
ACM SIGSOFT, acm press.

[5] S. P. Fiedler. Object-Oriented Unit Testing. HP
Journal, 40(3):69–74, April 1989.

[6] R. Fletcher and A. S. M. Sajeev. A framework for
testing object-oriented software using formal
specifications. In A. Strohmeier, editor, Reliable
Software Technologies, number 1088 in Lecture
Notes in Computer Science, pages 159–170.
Springer, 1996.

