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Abstract - This paper introduces a different approach to 
obtain the exact solution of the relative equations of motion of 
a deputy (follower) object with respect to a chief (leader) 
object that both rotate about central body in elliptic orbits by 
using Laplace transformations. We will use Kepler 
assumptions considering the unperturbed case to get our 
equations of motion which in turn subjected to linearization 
process. These type of equations known as Tschauner – 
Hempel equations or elliptic Hill – Clohessy – Wiltshire (HCW) 
equations. The solution of such equations in this work is 
represented in terms of the eccentricity of the chief orbit and 
its true anomaly as the independent variable. After getting our 
solution, we will apply it on numerical example to compare the 
results obtained by this new approach with previous results.  
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1. INTRODUCTION 
 

Solving and modelling the relative motion problem 
between satellites or space crafts is of great 
importance in the field of formation flying, rendezvous 
and disturbed satellite systems which in turn play a 
significant rule in space missions. Since 1960s, many 
researchers have contributed in this regard, but their 
contributions are varied from several aspects. For 
example, according to the independent variable, some 
of the researchers use the time and the others use the 
true or eccentric anomaly. Also according to the 
linearity of the obtained equations of motion, some of 
them make linearization and the other make higher 
order expansion. Also from point of view of 
perturbation consideration, some of them put it in their 
calculations and the other don’t. But most of the results 
depend of the same start point which is linearized 
gravitational acceleration represented by Clohessy-
Wiltshire equations using circular reference orbits [1] 
and the Tschauner-Hempel equations using elliptic 
reference orbits [2]. Both Melton [3] and Vaddi et al. [4] 

present a time-explicit solution for relative motion for 
elliptic orbits. But, Gim and Alfriend [5] and Garrison et 
al. [6] represent a geometric method for deriving the 
state transition matrix, utilizing small differences in 
orbital elements between two satellites. Also Srinivas 
R. Vadali [7] uses the geometric method but under the 

influence of -perturbation. In the present work, we 

will consider the unperturbed case, and we will use the 
true anomaly to be the independent variable that the 
solution will be represented, and we will apply our 
solution to solve a numerical example. 

 
 

2. Equations of motion 
 
Consider the chief (C) and deputy (D) space crafts that 
orbiting the same point mass central body. To set up the 
equations of motion of (D) relative to (C), we define two 
frames of references. The first is inertial and centred at 
the central body and the second is rotating chief 
centred (Hill’s non-inertial frame of reference) [8]. As 
shown in figure 1, 

Fig. -1: Chief and deputy position vectors w.r.t the central  
body, and the position vector of (D) relative to (C), with the 

basis of the chief centered frame 

C
r and D

r  are the position vectors of the chief and 

deputy with respect to the central body respectively. 
And the position vector of (D) relative to (C) is 

represented by  . Also we define ˆ
re the unit vecior in 

the direction of  C
r , ˆ

he perpenduclar to the chief’s 
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orbital plane in it’s angular momentum direction and 

ê  completes the setup.    

( ,0,0)Cr
C

r relative to the central boy, and 

( , , )D X Y Zr  relative to (C). And we can write     

D  Cr r , or   

( )D Cr X Y Z   r hr e e e                                                 (1) 

( ) ( ( ) )D C Cr X Yf Y r X f Z      r hr e e e           (2) 

Where  is the true anomaly of the chief on its inertial 

elliptic orbit. 

2

2

( 2 ( ) )

( 2( ) ( ) )

D C C

C C

r X Yf Yf r X f

Y r X f Yf r X f Z

     

      

r

h

r e

e e
            (3) 

In order to simplify the previous equation we will 

eliminate both of  and  using the equation of motion 

per unit mass of the chief and the defenition of it’s 
acceleration as following: 

2

2
( ) ( 2 )C C C C

C

r r f r f r f
r




     C r rr e e e               (4) 

2 2

2 2C C C C

C C

r r f r r f
r r

 
                                        (5) 

Also we have         2 0 2 C
C C

C

r
r f r f f f

r
           (6) 

Substituting by (5) and (6) in (3), we get  

2

2

2

( 2( ) )

( 2( ) )

C
D

C C

C

C

r
X Y Y f Xf

r r

r
Y X X f Yf Z

r



    

    

r

h

r e

e e

                           (7) 

On the other hand, the equation of motion of the 
deputy, taking into account that the mass of the chief is 
negligible with comparison by the mass of the central 
body, will be 

3 3
(( ) )D D C

D D

r X Y Z
r r



 
      r hr r e e e                 (8) 

Equating vector equations (7) and (8), we get the 
following equations of motion 

2

2 3

2

3

3

2( ) ( )

2( )

C
C

C C D

C

C D

D

r
X Y Y f Xf r X

r r r

r
Y X X f Yf Y

r r

Z Z
r

 





      

    

 

              (9) 

Since the true anomaly of the chief, f, gives more details 
about it’s orbit. It is convinient to transform the 
independent variable from the time to f. And for this 
purpose we have: 

2 2
2

2 2

d d d d df d
f and f f

dt df dt df df df
                        (10) 

Where 2

2C

C

h
r f h f

r
    , such that h is the 

magnitude of the angular momentum of the chief, and 

it can be written by 2(1 )h a e   , also we have 

2(1 )

1 cos
C

a e
r

e f





  and 

3
n

a


 , Such that a , e and n are 

the semi-major axis, the eccentricity and the mean 
motion of the chief orbit respectively. By this way 

2

2 3 2

2 3 2

(1 cos )

(1 )

2 sin (1 cos )
&

(1 )

n e f
f

e

df en f e f

df e






 




                                 (11)                                            

By using (10) and (11) with denoting to the derivative 
with respect to f by prime , the relative equations of 
motion (9) becomes 

2 2 3 2

2 sin 2 sin
2

1 cos 1 cos

( )C

C D

e f e f
X X Y X Y

e f e f

r X
r f r f

 

     
 

   

      (12-a) 
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3 2

2 sin 2 sin
2

1 cos 1 cos

D

e f e f
Y X Y X

e f e f

Y Y
r f



    
 

  

                    (12-b) 

3 2

2 sin

1 cos D

e f
Z Z Z

e f r f


   


                                    (12-c) 

In order to write these equations with dimensionless 
coordinates, we introduce  

 ,CX r x      ,CY r y     and    CZ r z ,                       

which means that 

C CX r x r x      and 2C C CX r x r x r x                      

with similar relations for Y and Z. 

And with the help of  

3 2
2 4 2

3 2

1 cos

1

1 cos

C
C C

C

pr f
r f p r f p p

e f

e fr f

  



    


 


 

Also 3 3 2 2 2 3 2[(1 ) ]D Cr r x y z     

2 2 2 3 2

3 2

1
[(1 ) ]

1 cos
D

x y z
e fr f

     


 

Therefore the dimensionless relative equations of 
motion will be  

 

 

 

3 2
2 2 2

3 2
2 2 2

3 2
2 2 2

1
2

1 cos

(1 ) (1 )

1 cos

1
2

1 cos

(1 )

1 cos

(1 )cos

1 cos 1 cos

x
x y

e f

x x y z

e f

y x y
e f

y x y z

e f

x y ze f
z z z

e f e f








   



   




   


  




  
   

 

           (13) 

 

3. Linearisation of the relative equations of motion 

To get the linearised relative equations of motion, for 
the first equation in (12) we can use Taylor’s 
approximation expansion about the origin for the 
function 

   
3 2

2 2 2( , , ) (1 ) (1 )f x y z x x y z


     , where 

 
(0,0,0)

0yf   , 
(0,0,0)

0zf   and 
(0,0,0)

2xf   . 

 And by using the same senario for the second and third 
equations of (12) but for the functions  

 
3 2

2 2 2(1 )y x y z


   & 

 
3 2

2 2 2(1 )z x y z


   respectively.  

We can get easily the foloowing linearised equations  

3
2 0

1 cos

x
x y

e f
   


                                              (14-a) 

2 0y x                                                                          (14-b) 

0z z                                                                              (14-c) 

4. Solving linearised relative equations of motion 

From (14-b), we have   

2y x c     , where 0 02c y x                                                      

 Then    
0 02 2y x y x                                                   (15) 

( cos ) (4 cos ) 2 (1 cos )x e f x x e f x c e f       (16) 

Applying Laplace transformation on (16), such that   
{ ( )} ( )x f F sL  

We can construct the following table, with the help of 

cos
2

if ife e
f


  

# ( )x f  { ( )} ( )x f F sL  

1 2 (1 cos )c e f  
2

2 2

1

c ec s

s s
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2 x  
2

0 0( )s F s sx x   

3 (4 cos )e f x  2 [ ( ) ( )]e F s i F s i    

4 ( cos )e f x  

2

2

0 0

( ) ( )
2

( ) ( )
2

e
s i F s i

e
s i F s i e x s e x

  

   

 

 

After some simplifications, we can get 

2

2

0 0

2 2 2 2 2

( ) 4
( ) ( )

2( )( )

( ) 4
( )

2( )( )

(1 ) (1 )2 2

( 1) ( 1) 1 1

s i
F s e F s i

s i s i

s i
e F s i

s i s i

e x s e xc ec s

s s s s s

  
   

  

  
  

  

 
  

   

 

And now applying the inverse Laplace transformation, 
recalling that  

1{ ( )} ( )k fF s k e x f  L , 

we can get after simplifying 

0

0 0

2 ( ) (csc cot ) 2 csc

[(1 ) 2 ]cot [(1 ) ]

f

e x d f e f x c f

e x c f e x ec f

     

    

  

By differentiating this equation with respect to f, we 
can get 

2

2

0

2 csc cot csc

csc cot

2 csc cot [(1 ) 2 ]csc

csc cot

e f f e f
x x

f e f

ec c f f e x c f

f e f

  
   

 

   



           (17) 

Which is linear first order differential equation and can 
be set in the form of ( ) ( )x P f x Q f    , where   

22 sin ( csc cot csc )
( )

1 cos csc cot

e f f f e f
P f

e f f e f

  
  

  
    (18) 

and   
2

02 csc cot [(1 ) 2 ]csc
( )

csc cot

ec c f f e x c f
Q f

f e f

   



(19) 

To get the integrating factor ( )f , we have to get  

1
( ) ln

sin (1 cos )
P f df

f e f


     

( ) 1
( )

sin (1 cos )

P f df

f e
f e f

   


 

Then, the solution of (17) is 

1( ) sin (1 cos ) ( ). ( )x f f e f f Q f df c   
      (20) 

Now 
2

0

2 2

sin 2 cos [(1 ) 2 ]
( ). ( )

sin (1 cos )

ec f c f e x c
f Q f

f e f


   



,  

By using partial factions, we can write 

 

1 2

3 4

2

( ). ( )
1 cos 1 cos

1 cos 1 cos

A A
f Q f

f f

A A

e f e f

  
 

 
 

, or 

1 1 2 2 3 3 4 4( ). ( )f Q f df A I A I A I A I                     (21) 

Where    0
1

2(1 )

x
A

e





    ,   0 0

2 2

(7 ) 4

2(1 )

e x y
A

e

 



 

 0 0

3 1 22

2 (2 ) (1 )
( )

(1 )(1 )

e e x e y
A e A A

e e

   
  

 
   and 

 0 0 2

4 3

(2 ) (1 ) 1
(1 )

(1 ) 2

e e x e y
A e A

e

   
  


 

1 cot csc
1 cos

df
I f f

f
   


 

2 cot csc
1 cos

df
I f f

f
   


 

By the help of eccentric anomaly E, we can find 3I  as 

following 
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3
2 2

1

2

1

1 cos 1 1

2 1
tan tan

1 21

df E
I dE

e f e e

e f

ee



  
  

 
  

  

 
   

We can get  4I  by the help of 

 

2

2

sin 1 1

1 cos 1 cos 1 cos

d e f e

df e f e f e f

  
  

   
 

Then 3
4 2 2

1 sin

1 1 1 cos

I e f
I

e e e f
 

  
 

Substituting by all iA  and  iI  in (21), we can get 

Therefore the solution (19) will be 

1 2

2

1 2 1 2 3

3
1

2

( ) [ (1 ) (1 ) ]

1
[(1 ) (1 ) ]cos [ ] sin

2

3
sin (1 cos ) sin (1 cos )

2 1

x f e A e A

e A e A f A A A e f

A
E f e f c f e f

e

     

     

   


 

To get the value of 1c , we can find 

0
1

0
1

f

xdx
c

df e



 


, then 

2

1 2 3

0
3

2

( ) cos sin

3
sin (1 cos )

12 1

x f B B f B e f

x
A E f e f

ee

   

 
  

 

       (22) 

Wehre 1 1 2(1 ) (1 )B e A e A      ,  

2 1 2(1 ) (1 )B e A e A     and 
3 1 2 3

1

2
B A A A    

Now the turn of equation (14-b), to get y  

From (15)      0 0 22 2y x df y x f c             (23) 

1 2 3

20

1
sin ( sin 2 )

2 2

( cos sin )
1 2

e
Now x df B f B f B f f

x e
f f

e

   


  




                        

                                 (23)                                                 

3

2

3
sin (1 cos )

2 1

A
E f e f df

e
 


  

To integrate the last term, we again use the help of 
the eccentric anomaly, such that we have 

21 sin
sin

1 cos

e E
f

e E





, 

21
1 cos

1 cos

e
e f

e E


 


 and 

21

1 cos

e
df dE

e E





 , so that 

2 2

3

sin (1 cos )

sin
(1 )

(1 cos )

I E f e f df

E E
e dE

e E

  







   

Which can be integrated by parts, and after 
simplifications we can write 

2 21
( 1 ( sin ) (1 cos ) )

2
I e f e f E e f

e
        , 

and then equation (23) will be 

1 2 3

20
0 0 2

2

3

2

1
( ) 2 2 sin ( sin 2 )

2

2
( cos sin ) ( 2 )

1 2

3 (1 cos )
sin

2 1

y f B f B f e B f f

x e
f f y x f c

e

A E e f
f e f

e e

    


     



 
   

  

 

To get 2c , let us calculate 0
2 00

2

1f

x
y c y

e


  


, so 

that 

 0
0 0 0 1 2

20
3

2

3

2

2
( ) 2 2 2 sin

1

21
( sin 2 ) ( cos sin )

2 1 2

3 (1 cos )
sin

2 1

x
y f y y x B f B f

e

x e
e B f f f f

e

A E e f
f e f

e e


     




    



 
   

  

  (24) 

Finally for the third equation of motion (14-c), which is 
in the form of simple harmonic motion, hence its 
solution will be 

0 0( ) sin cosz f z f z f                                                  (25) 
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The equations (22), (24) and (25) are the solution of 
the equations of motion of the deputy relative to the 
chief in the unperturbed case. 

5. Numerical example: 

Using the following initial conditions 

0 0 0

0 0 0

0.1 , 0.1 , 0 , 0 ,

21
, 0.08 0

110

e x x y

y z and z

   


   

,  

we can get the following graphs 

 

 

 

0.05

0.00

0.05

0.10

0.1

0.0

0.1

0.05

0.00

0.05

 

Fig. -2: The position of the deputy relative to the chief 

( , , )x y z with the true anomaly of the chief  f  

according to the given initial conditions 

 

6. Conculusion:  

An explicit solution of the relative equations of motion 
of a deputy or follower object relative to a chief or 
leader object is expressed interms of the eccentricity of 
the chief orbit and it’s true anomaly as the indepenent 
variable. Since the inplane solution [ ( ) ( )x f and y f ] 
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contains the true anomaly 1 1
2 tan tan

1 2

e f
E

e


 

  
 

 , 

therfore we have singularity when f  is a multiple of  

. But it is very clear that we can eliminate it by choosing 

the initial conditions such that 0
3

0

2
0

1

y e
A

x e

 
   


 

to obtain a periodic motion for the deputy around the 
chiief.   
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