
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 01 | Jan -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1227

ISSUES OF EMBEDDED SYSTEM COMPONENT BASED DEVELOPMENT

IN MESH NETWORKS

G.Sreenivasulu1, G.Rajesh2, V. Chandra Sekhar 3, P.Nagaraja4

1 Asst Professor, Dept. of CSE.ASCET, Nellore ,Andhra Pradesh, India

2 Asst Professor, Dept. of CSE.ASCET, Nellore, Andhra Pradesh,India

3 Asst Professor, Dept. of CSE.ASCET, Nellore, Andhra Pradesh ,India

4 Asst Professor ,Dept. of CSE.ASCET, Nellore ,Andhra Pradesh, India

--***--

Abstract- In the mesh networks context, reusable ideas for old and new programmers have reused ideas, abstractions,

and process since the earliest days of Computing, but the early approach to reuse was ad hoc. Today, complex, high-

quality computer based systems must be built in a very short time and demand a more organized approach to reuse. It

encompasses two parallel engineering activities: domain engineering and embedded component-base development. In

Domain engineering explores an application domain with the specific content .This intent of finding functional areas,

behavioral activities, and data based embedded components that are candidates for reuse.

Keywords:
Mesh networks, ECBD, MoteTier,XMesh,XServer,Mining,exploration, excogitation,exploitation,web service, Work

bench.

1.Introduction

An embedded system is a computer system with a dedicated function within a larger mechanical or

electrical embedded systems, often with real-time computing system constraints. It is Embedded as part of

a complete device often including hardware and mechanical parts. These Embedded component

systems control many devices in common use today.

Embedded Components are reuse methodologies have been the recent focus of industry.It mainly driven

by the increasing complexities of modern embedded component systems. Other major component factors

influencing this revolution are immense competition from competing vendors ,customers and

consequently less time to market, the need for more open generic feasible solutions of the Internet era, as

opposed to the more closed solutions of the pre-Internet era and the need for developing solutions that can

be easily verified are often referred to as design for verifiability.

A mesh network is a network topology in which each node relays data for this network. All mesh nodes

cooperating in the distribution of data in the network.

Mesh networks can relay messages using either a flooding technique or a routing techniques. With routing,

these message is propagated along a path by hopping from node to node until it reaches its destination.

https://en.wikipedia.org/wiki/Network_topology

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 01 | Jan -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1228

This Dissertation describes about Components, Architecture, Design, Approach, Framework,

Demands and Trends, Techniques and Towards Framework and Security in Component Based

Development.

The focus of this paper is the issue of component matching for embedded systems, which are application

specific reactive systems.

Information system evaluations is an area noted to be somewhat under-researched. Indeed, whilst

much intellectual effort has been devoted to the development of information systems in a technology

centric sense network and same does not seem to hold true for the evaluation of investment in such

systems in a business-centric sense. Evidence suggests that the majority of investment decisions take place

without a rigorous appraisal of the expected costs and organizational benefits and that they often

represent and ‘act of faith’ based on competitive imperatives. Similarly, there is little evidence of

evaluation during the operational lifecycle of the system.

This may be argued to be due largely to the problems of ‘measurement’, which can be described as

follows. Firstly, the business costs and benefits associated with the development and use of an information

system are inherently hard to understand the predict and, as a consequence, difficult to quantify and

measure. Secondly, business organization is dynamic and changing and, as a consequence, business costs,

benefits, risks and the like are a relative concept. Measurement and evaluation thus need to be treated as

an ongoing process. The pragmatic consequence of these points is that it may be argued that the perceived

effort required for evaluation is assumed to be too great in the context of current business practice despite

the high levels of investment. Given current levels of information system ‘failure’ and the cost associated

with ongoing system maintenance, this assumption may be questioned. Despite the adoption of a

methodical approach to system development, there is considerable evidence to suggest that information

systems continue to take too long to build and this cost too much to implement and maintain and fail to

meet the needs of their environment in the long-term. The dynamic nature of business organization may

be argued to have much to do with these problems and, increasingly, the ‘silver bullets’ of system

development attempt to address flexibility, the capability of the system to respond to the changing needs of

the business environment in a timely and graceful manner.

2. Background

The goal of our research is to increase the possibility of finding and retrieving components that meet

user’s requirements. We have argued that improving the collaboration between component developers

and users improves the ability to find suitable components. Though the collaboration of developers and

users is not really new idea, there are very few real implementations that support collaboration. The

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 01 | Jan -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1229

assumption of collaboration is that components usually need to be modified to meet user’s requirements.

It is easier for the component developer(s) to achieve this because they have direct access to their

products. Some promising technologies may be used at the developer’s side to facilitate this customization,

such as generative programming or software product line. Otherwise the customer may have to write

significant glue code to use the component. The prerequisite of collaboration is to find satisfactory

component candidates.

2.1.EMBEDDED COMPONENT MINING PROCESS

The process of mining components and subsequently using them within an application domain can be

divided into the three phases.

1. Exploration

2. Excogitation

3. Exploitation

These phases roughly correspond to the selection, extraction, specialization, aggregation and

integration dimensions of typical software reuse methodologies. During the domain exploration phase,

first you elicit component requirements and – on the basis of component abstraction activities and select

components. In this phase selected components and the system architecture determine your

corresponding interface GUI requirements. The domain excogitation phase deals with the encapsulation

of the components that have to be mined and the extracted and also implementation of suitable interfacing

glue for connecting components with the rest of the embedded system. This abstract nature of packaged

components and interfaces means that many of them can be stored in a repository for future reuse or

retrieved from this repository for direct reuse embedded components. Finally, during the domain

exploitation phase and use the reused and newly encapsulated components and corresponding interfaces

to create a functioning system. The excogitation and exploitation phase are composed of three basic

activities:

 Embedded Component encapsulation, where an existing stand-alone program is converted into a

component object.

 Embedded Component glue implementation, where special-purpose components provide a

uniform and reusable interfacing mechanism between the mined components and the rest of the system .

 Embedded Component use and composition, where component object are combined to form new

structures and components.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 01 | Jan -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1230

Figure 2.1 : The Embedded Component Mining and Exploitation Process

2.2 EMBEDDED COMPONENT BASED DEVELOPMENT

Embedded Software components have been talked about and implemented in varying forms for

many years now. A component is a logical entity that solves a special purpose. Components are self-

describing. The fixed interface to a Component describes enough to make it possible for clients to know

how to use it. Component based development is the technique of using a Component Framework to

develop Components.

Components are designed to be deployed within this framework. The framework is defined as an

environment to:

 Create runtime instances of Embedded Components.

 Allow components to discover other Embedded Components.

 Allow Components to communicate with other Embedded Components.

Provide additional common services such as Persistence, Transactions, Location independence,

Security, and Monitoring. ECBD is primarily a technological advancement so the direct benefits it gives are

technical. These technical benefits however lead to strong indirect business benefits. Some of the business

and technical benefits are, Higher Quality product, Reduced time-to-market.

1) Reduced cost.

2) High reuse for future projects.

3) Complexity is managed Quality of solution

4) Independent design, implementing, and testing allow a high degree of concurrent

development.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 01 | Jan -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1231

3. MOTE VIEW 3-TIER ARCHITECTURE FOR EMBEDDED MESH NETWORKS

Mesh networking is a class of multiple networked embedded systems that allow for multi-nodes

delivery of sender and receiver messages, are self-configuring, are self-healing and can route packets

dynamically. These characteristics lead to very stable over long periods of time even when the wireless

signal between mesh nodes is unpredictable. In addition, deployment of embedded mesh networks is

straight-forward which is important when deploying many such mesh networks.

A mesh network capable of sending and receiving messages through multiple host nodes means that

messages can touch many nodes on its way to its final destination without interacting with a server in

between. An analogous network is a peer to peer network where clients talk directly to each other without

interaction with a server. A self-configuring mesh network is a network that can be configured without

human interaction. A self-healing mesh network is one in which nodes can be added and removed

dynamically. This allows the mesh network to grow as large as needed as well as recover from the loss of

some motes. Finally, dynamic routing is the ability to change message routing based on current network

conditions such as link quality, hop-count and other measurements.

To support a wireless mesh network deployment, there are three software tiers; the client, server

and mote tier. The client tier allows users to manage the network and view the status of the network. The

server tier serves as a buffer and interface between the wireless mesh network and the internet. Unlike the

client tier, it is important that it is always on as long as the mesh network is deployed. Finally the mote tier

is the software that runs on the motes themselves. Crossbow provides MoteView for the client view, Xserve

and XOtap for the server tier applications, and the mote tier provided by Crossbow is XMesh.

Fig 3.1:Mote View 3-Tier architecture

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 01 | Jan -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1232

MoteView not only provides an interface for deploying and monitoring mesh networks, it also

provides tools and methods for exporting data gathered from the network, analyze it and graph the results.

MoteView supports all Crossbow sensor boards, and in addition supports MICA2, MICA2DOT and MICAz

and some MEP and MSP platforms. These motes must be running XMesh to connect to the Crossbow mesh

network.

MoteView can be installed on Windows 7 Home, Windows 8, and Windows 2010 with SP4. The base station

must be able to connect to the network somehow, and there are several options for doing so. A serial port or USB

and PS/2 ports can be used for direct access. Alternatively, if the gateway is on an Ethernet LAN, a wired or

wireless Ethernet card can be used. Finally if a Star gate base station is used instead of a PC, some mechanism for

connecting to the Star gate station must be available – either an Ethernet card or some other mechanism for

connecting to the internet such as a cellular modem. Finally, some additional software must be installed and

configured on the PC on which Mote View will be installed. Post gre SQL 8.0 Server and the ODBC driver must be

installed, as this is where data will be stored as it is read from the network. In addition version 1.1 of the Microsoft

.NET Framework must be installed as well. Fortunately, these additional requirements as well as the core software

can all be easily installed by following straight-forward prompts in the installation application.

4. TECHNIQUE FOR THE DESIGN OF EMBEDDED COMPONENT-BASED APPLICATIONS

Embedded Component-based development (ECBD) has become a much talked-about subject today. While

the technology of ECBD-as exemplified by environments such as EJB and COM has become increasingly mature

environment.This has not been complemented by corresponding maturity on the methodology front side of the

few published methodologies available for the design of component sytems, most address the process of building

systems from a set fore-built component. However, an important scenario that is left un-addressed is that of the

design of custom applications. In this contexts, the CBD design question involves the creation of business

components from a set of software requirements. Currently, It is not published prescription that addressed this

need At best; practitioners rely on published collections of software patterns or heuristic guidelines such as those

advocating correct component granularly.

We, propose a comprehensive design methodology for indenturing two classes of business components

based on an object oriented specification of component based requirements. These are entity relationship

components and process components. This methodology is illustrated with an example and a real-life case study

of an auction site is also described.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 01 | Jan -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1233

4.1 SUBTLE RELATIONSHIPS BETWEEN CBD AND 00 METHODOLOGIES

Much has been said and written about the similarity and differences between CBD and 0. For instance, a

component –based system may or may not use 00 as the underlying development paradigm; however, given the

popularity and maturity of 00 techniques, the use of 00 techniques as a basis for CBD is well accepted. The locus

of our attention here is somewhat different.

 We wish to examine the process of transformation from a set of domain models to a set of implementation

artifacts via a set of design relationship artifacts. This process is relatively well established in the 00 case, but

merits some examination the case of CBD and 00. We begin this examination methodology by quickly running

through some key ideas in 00. though many different 00 methodologies exist, in essence there are the phase of

Requirements Gathering (RG) and Requirements Analysis (RA) or just Analysis, followed by one or more stages of

Design. As soon as a representative methodology we take Jacobson’s OOSE, whose key ideas now from part of

Rationale’s Unified Process [IO].

 The models created during the Analysis stage can be viewed as first-cut at a design model [lo] and thus

they form the basis of the design analysis. For example, in Jacobson’s OOSE methodology, the Analysis stage yields

three types of classes-entity, interface control and control –which we may call early design objects.

The design activity is a further refinement of these early design objects, during which consequences of the

implementation environment are take into account. This phrase “early design objects” is important especially

because it conveys the notion that these artifacts are the basis of the design yet abstract enough to be the basis for

multiple implementation environments. With an implementation in an 00 language like C++, the translation of a

set of early design objects to java code is known to be relatively straightforward.

Recent component development methodologies that have tried to address the methodological aspects of

design include Catalysis, SCIPIO and COMO. Catalysis is specifically targeted as a method for component based

development in which families of products are assembled from kits of components i.e., pre-built components.

Catalysis is specifically targeted as a method for components based development in which families of

products are assembled from kits of components i.e., pre-built components. Catalysis development process

follows the RAD technique with stages of analysis, design, implementation and testing.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 01 | Jan -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1234

It provides a systematic basis and process for the construction of precise models starting from

requirements, for maintaining those models, for re-factoring them and extracting patterns and for reverse-

engineering from detailed description to abstract models.

 The SCIPIO method incorporates business process modeling, workflow management and object-oriented

analysis and design for the compo based development and evolution of open distributed business systems.

These current systems (As-Is:) is compared with the future system (To-Be) and controller transition from

one to another. This aim is to reuse as much as is practical of the current legacy system and of publicly available

components. The SCIPIO method does not use the traditional OOAD approaches in the requirements phase.

A technique more suited for the custom software development is COMO and bases its component

development on unified process.

This component development process consists of 4 phases: Domain analysis phase, design phase,

component based design, component build and component testing. The domain analysis phase results in

identifying the components.

These components are identified using two clustering techniques: use case clustering technique and use

case by considering the ‹‹ extent’s ›› relationship between the use cases.

 The second on addresses the clustering of the cohesive use cases and classes into components by applying

a clustering algorithm.

The clustering algorithm results in assigning the classes that have strong coupling with uses cases into

components in which related use cases are contained.

In this paper, we address a key limitation of some of the earlier work- the lack of a comprehensive design

methodology for identifying the components based on a specification of requirements analysis.

 Rather than to provide yet another end-to-end methodology like Catalysis, we address a very focused

problem.

It Consequently, our methodology can be “plugged” into some of the end-to-end component methodologies

for the purpose of component identification, especially in the case of custom software application development.

Very briefly, our methodology starts with the familiar outputs of an object-oriented requirements specification

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 01 | Jan -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1235

activity –the domain object model and the use cases models. These are subjected to detailed analysis to yield

candidate sets of entities that can be clustered or grouped together.

This yields two sets of business components that we call entity components (EO) and process components

(PCs) . At a broad level the methodology is similar to COMO but there are important and significant differences,

especially differences, especially in the clustering technique used to arrive at components.

Flow Chart 4.1:Render Scene for original and shadow objects

We also bring out some subtle point that has to do with the granularity of components defined in our

approach Vis-&vis that of COMO analysis. In our approach, unlike in COMO, we retain the distinction between ECs

and PCs. It allows us to better address environments such as EJB in which artifacts such as entity beans and

session beans represent entity and process –related component functionality, and at the same time allow further

clustering to suit environments in which COMO-style components are better suited –Entity.

The DOM forms part of the RG stage of most 00 methodologies such as [IO]. We state it here for the

purpose of completeness.DOM captures the structural aspects of the system by defining objects, their relationship

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 01 | Jan -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1236

attributes, and the relationships (associations) between them in the analysis stage. Association is used to

implement relationships between nodes. In addition to specifying the names of the relationships (e.g. inheritance)

that exist between objects, constraints on those relationships (e.g. multiplicity) are also given by an object model.

4.2 RISKS IN EMBEDDED COMPONENT-BASED DEVELOPMENT

Risks in component-based development range from difficulties in establishing the quality of COTS

software, to predicting how the components perform in a given contexts to difficulties in composing applications,

through to problems of managing component-based applications. The risks stem from four main factors, which

are a consequence of the component ware paradigm: The black box nature of COTS software (i.e.,0 Lacks of

information about the source of 0 the lack of component interoperability 0 the disparity in the customer-vendor

these factors translate to technology and business risks. Business risks are associated with events that may result

in loss of business through failure to deliver a system on time or within budget. Technology risks are related to the

specific technologies used to build the system, for example, unreliable components. Technology and business

risks are not mutually exclusive. Some risks may be related to both the business and technology. It is also

important to note that business and technology risks sometimes oppose each other, for example, a business risk

might be failure to meet a market window and a possible risk reduction strategy may be unknown design

assumption Components.

These problems combine with poor component specification to: Diminish the quality of evaluation that can

be done on a COTS component. More importantly it increases the potential for a component failing to interact with

other system components. In a situation where many complex functions are replaced by a single large-scale

integration COTS software this may have serious implications for exception handling and critical quality attributes

(e.g. security, performance, safety etc). components are packaged and delivered in many different forms (e.g.

function libraries, off-the-shelf applications and frameworks). This may cause major difficulties during the

integration process. Most COTS software is generally not tailor able or “plug and play”. Significant effort is often

required to build wrappers and the “glue” between components in order to evolve the application or tailor

components to new situations. As the system evolves these wrappers may need to be maintained. There is a

general lack of interoperability standard to facilitate the integration of components implemented using different

component technologies. The use of COTS software introduces a vulnerability risk that may compromise system

performance, security or safety. This is particularly critical for distributed systems and safety-related systems.

The variability of specialized system domains (e.g. safety critical) and the competing nature of their quality

attributes often make it difficult to adapt components to different application contexts without major

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 01 | Jan -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1237

modifications. It is important to note that COTS offering the similar functional may have very different system

resource requirements (i.e., memory and processor requirements). This may adversely affect the system

operation. The different customer-vendor evolution cycles may result in an uncertainty about how often COTS

components in a system may have to be replaced and the extent of the impact of such a change on the rest of the

system. This makes it difficult to plan and predict costs over the life cycle of a system. COTS component

heterogeneity may result in complicated licensing arrangements in which no single vendor has complete control

over the development artifacts for the purpose of evolution. Poor organizational quality standards related change

management might diminish the scope for evolving component –based systems. Upgrading to a new version of

COTS software poses several risks: Hidden incompatibilities may cause unforeseen side effects in the: +tern

necessitating a complete system update. 0 Changes in the quality attributes of a new version of COTS software (e.g.

performance, security, efficiency, safety, effectiveness, reliability etc.) may be incompatible with the user

requirements. This may be adversely affect the operational capabilities of the system. A new version of COTS

software may provide additional undocumented capabilities. This may result in undesired side effects.

Table 4.2:Risk item table

Stage ID Risk item

Requir

ement

s

R1 Lack of Cots-driven requirements engineering process. There is a general acknowledgement that

good requirements engineering is essential for successful component-based system

development.However, few requirement methods address the problem of how requirements

formulation process is affected by the availability of COTS software and how the user

requirements are mapped to COTS products and component frameworks

Design D1 The design assumption of a COTS component are mostly unknown to the application builder.

Also the perception of quality may vary across COTS software vendors and application domains.

These problems combine with poor components specification to:

 Diminish the quality of evaluation that can be done on a COTS component. More

importantly it increases the potential for a component failing to interact with other

system components.

 In a situation where many complex functions are replaced by a single large-scale

integration COTS software this may have serious implications for exception handling and

critical quality attributes (e.g., security, performance, safety etc)

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 01 | Jan -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1238

4.3 EMBEDDED COMPONENT SECURITY – ISSUES AND AN APPROACH

Security vulnerabilities posed by third-party software components in Embedded Component Based

Development (ECBD) is a serious impediment to its adoption in areas that offer great economic potential,

particularly in areas such as embedded software and large-scale enterprise software. They raise questions about

reliability and integrity of components, as well as the risks posed by any malicious code. This paper is a discussion

of factors that affect component security and ways of assuring component security.

Embedded Component-based development (ECBD) offers great promise in reducing software production costs

through software reuse. Capacity to acquire and absorb new features, new technologies and experiential

knowledge make components an ideal medium for encapsulating intellectual assets. Coupled with large scale

applicability, components could thus bring about significant economic benefits, particularly in areas such as

enterprise management and embedded software. A major technical challenge posed by ECBD is the security and

third-party software components, typically commercial-off-the shelf (COTS). The lack of security in Embedded

component-based systems (ECBS) may result in breaches of its own integrity, as well as of confidentiality and

integrity of the underlying information assets. Component security has received some attention in literature,

though, unsurprisingly, mostly in relation to operating systems. However, there are a few works devoted to ECBS

outside this area.

5. Future Work

Our next step is to populate the repository with embedded software Securecomponents and related code

templates. We are also developing a Secure framework for code template based component composition. The

framework interprets code template definition and manages code template instantiation based on NFR analysis

results. It also generates glue code for buffer allocation and management and event delivery. For NFR analysis, the

framework is designed to go through the nested templates recursively to compute the cumulative properties. In

the first version of the framework, the use specifies specific component instantiations and component

configuration parameter values to obtain the analysis results. Algorithms and tools will be developed to determine

optimal instantiation and configuration.

6. Conclusion

Earlier drafts and prior works motivated and laid the groundwork for the integration of Web services and

Embedded Component Based Development in Mesh networks. Web services represent an evolution of the Web to

allow applications to interact over the Internet in an open and flexible way. Interoperability between different

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 01 | Jan -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1239

systems is one of the primary reasons for using Web Services. Web Services are going to play an important role in

the future of distributed computing, significant impacting application and system development. The various

possibilities with which the components may be integrated well with applications have been explored and well

exposed using web services. Building a component –based application can now be done starting from these

composition patterns instead of the components. In practice this will be an iterative process where composition

patens are selected based on available components and components are selected based on the specification given

by the composition pattern. This process fits in the tradition of Software Development life cycles such as the

waterfall mode, the iterative model and the spiral model. Composition patens can be viewed as a kind of use-case

for the application.

The success of these systems on the market has been primarily the result of appropriate functionality and

quality. Success in development, maintenance and continued improvement of the systems has been achieved by a

careful architecture design, where the main principle is the reuse of components. The reuse orientation provides

many advantages, but it also requires systematic approach in design planning, extensive development, support of

a more complex maintenance process, and in general more consideration being given to components.

It is not certain that an otherwise successful development organization can succeed in the development of

reusable components or products based on reusable components. The more a reusable component is developed,

the more complex is the development process, and more support is required from the organization. Even when all

these requirements are satisfied, it can happen that there are unpredictable extra costs.

This paper discusses in some detail the major security issues affecting component security, in particular,

the relevance of trust and reliability, how to related widely known existing security models to component security,

the importance of component security modeling, particularly from the viewpoint of testing. It also outlines a CSP –

oriented formal framework for modeling component security, demonstrating assignment of sensitivity labels and

compartmentalization as envisaged in multi-level security architectures. Intended future research includes the

consideration of type enforcement as a possible component security mechanism.

7. References

1. G.Sreenivasulu, B.Sujana, Chandra Sekhar and Sk.Nazeer,Object Oriented Component Based

Development in Software Engineering: ijpret research article, ISSN: 2319-507X ,Volume 1(9):41-

96,2013

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 01 | Jan -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1240

2. H. Change L. Cooke, M.Hunt.0. Martin .A. McNclly, and L. Todd, Surviving The SOC nonunion: Y guide

to pldfom baaed design. Kluwer Academic, 1999.

3. P.C.Kanellakim and S.C. Smolka. CCS expreasiona, finite atate processes, and thrca Problem Of

equivalence. Information and Comptrtaioa. 86.43-68. 1990.

4. N.Lynch and F. Vaandrager. Forward and backward simulations Part I: Untimedaystema.

Information and Computation, 121 (2): 214-233. Sep.1996.

5. Mezini, M., Seiter, L. & Livebearer, K. Software Architectures and Component Technology: The Stute

of the Art in Research and Practice. Kluwer.2000.

6. ezini, M., Seiter, L. & Livebearer, K. Software Architectures and Component Technology: The Stute of

the Art in Research and Practice. Kluwer.2000.

7. Addison-Wesley, 1997.[3 J ITU-TS.ITU-TS Recommendation Z.120: Message Sequence Chart (MSC).

ITU-TS, Geneva, September 1993.

8. M.D. McElroy, Mass-produced Softhearted Components, In P. Nauru and B. Rendell,

9. Editors, Software Engineering, NATO Science committee, January 1969

10. Nierstrasz, S. Gibbs, and D. Tsichritzis, Componeni –oriented Sofhwu” Development,

Communication of the ACM, 35 (9), 160-165, September 1992.

11. Altmann, J., and Pomberger, G.,”Cooperative Software Development: concepts, model,

12. And tools”. In: Proceedings of the Technology of Object Oriented Languages and Systems, Santa

Barbara, Califomia, pp. 194-277, August 1997.

AUTHOR(s)

 G.Sreenivasulu received the PG degree in MTech from JNTUA and also received Mphil

Degree. At present he is working as asst.professor in Audisankara College of Engineering &

Technology. His dedicated to teaching field from the last 10 years. His published 3 national

and 4 international journals.His participated 4 workshops and 1 conference.

G.Rajesh received the PG degree in MTech from Sathya Bhama University. At present he is

working as asst.professor in Audisankara College of Engineering & Technology. His

dedicated to teaching field from the last 13 years. His published 3 international journals.

His participated 4 workshops.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 01 | Jan -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1241

 V.Chandra Sekhar received the PG degree in Mca from SV University. At present he is

working as asst.professor in Audisankara College of Engineering & Technology. His

dedicated to teaching field from the last 15 years..His participated 2 workshops.

P.Nagaraja received the MTech degree from JNTUH. At present he is working as

asst.professor in Audisankara College of Engineering & Technology. His dedicated to

teaching field from the last 8 years..His participated 2 workshops.

