
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 01 | Jan -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 446

SURVEY ON TWO-TERM DOT PRODUCT OF MULTIPLIER USING FLOATING

POINT

1MukeshKrishna. R, 2MohanaPriya.S, 3ManickaVasagam.P

Department Electrical and Electronics Engineering

Students, Dr. Mahalingam College of Engineering and Technology, Udumalai road, Pollachi.

--

ABSTRACT-- The survey is based on the Floating

Point in two-term Dot-Product of multiplier

referred as discrete design. Floating Point is a wide

variety for increasing accuracy, high speed, high

performance and reducing delay, area and power

consumption. This application of floating point is

used for algorithms of Digital Signal Processing

and Graphics. Many floating point application is to

reduce area, from the survey the fused floating

point gives better performance using both the

single precision and the double precision in

multiplication, addition and subtraction. The

scientific notations sign bit, mantissa and

exponent are used. The real numbers are divided

into two, fixed component of significant range

(lack of dynamic range) and exponential

component in floating point (largest dynamic

range). By converting from 24-bit to 48-bit fused

floating point used to normalize the exponent part

and rounding operation for latency reducing and

the results are executed in the verilog hardware

description Language.

Index Terms-- Dot-Product Unit, fused

floating point operations, normalization,

rounding operations, latency, VHDL.

I.INTRODUCTION

The demand of floating point multiplier is more in

Three-Dimensional (3D) array and also used in

graphics and image processing. Fast Fourier

Transform (FFT), Discrete Cosine Transform (DCT)

and Butterfly operations are needed floating point

numbers [1]. Due to output data size is twice larger

than the input data size so complexity, area and time

are consumed by the multipliers. The best design

challenge to get high speed working is in Field

Programmable Gate Array (FPGA). The floating point

shows the base, the location, the precision and it

normalized or not. There are many models for

multiplication floating point. Precision is the main

role in floating point. We deal with both single and

double precision floating point. The main significant

of floating point number are (Sign bit * Mantissa *

Base Exponent). The single precision has 24-bits which

contain 0 to 31, left to right and double precision has

64-bits which contain 0 to 63, left to right [2]. The

difference of these two precision is data, the double

precision has twice the data of RAM, Cache and Band

Width and reduce the performance. The result of sign

bit by XOR and carry save adder used for two

exponent components.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 01 | Jan -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 447

1.1 Data formats for single and double

precision:

Sign
bit

S

Biased
Exponent

8 bit – E

Unsigned
fraction

23 – bits P

a) Single Precision Data Format

Sign
bit

S

Biased
Exponent

11 bit – E

Unsigned
fraction

53– bits P
b) Double Precision Data Format

1.2 Format Parameters:

 The implementation of hardware and software has

basic IEEE format. In the standard IEEE format the

floating points are in binary number. The binary

floating point numbers are single precision and

double precision. The single precision contains 32

bits and the precision which adds the fraction and

hidden bits 23+1, exponent bit 8 is used. The

maximum and the minimum values from +127 to -

126. For the double precision, contain 64 bits and the

precision which has 52+1, exponent bit is 11 is used.

The maximum and the minimum values from -126 to

-1022. For quadruple precision, hidden bits are 112+

1 and the maximum and the minimum value from -

16382 to + 16383 [3].

1.3 Representation of the floating point:

Denormalized:

Exponent part contain zeros and fraction or

significand contain non-zeros denormalized is taken.

Denormalized occur in zeros and lower normalized

range [3]. Zero is a special value for exponent field all

zeros and fraction zeroes.

Overflow:

 Overflow occur limited range in smallest

value and higher range in highest value. It indicate

the range when reach extreme value. It doesn’t show

the indication when one operand is infinity. It must

have the exact range [4]. When the result reaches

extreme range, bias should adjust and a NaN is

delivered instead.

Underflow:

Underflow takes place when floating point is

smaller than the smallest value. It may be negative or

positive exponent from -128 to 127, when lesser than

-128 underflow occur. The result may be zero or

denormal [4]. There is loss of accuracy after the

denormalized numbers. Under flow adjust the result

from overflow delivery.

Infinity:

 The value of -infinity and +infinity used in

exponent 0s and 1s. Sign bit for positive 0 and

negative 1 are used. It denotes infinity as special

value for operations to continue past overflow

situations. It used undefined operations [5].

Not a Number:

 It is an invalid value when does not show the

real number representation. The exponent has 1s and

the fraction has non-zeroes are taken in NaNs [6].

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 01 | Jan -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 448

II. APPROACH

According to IEEE 754 2008 supports the

floating point multiplier which has efficient carry

saver. For the high performance of multiplier,

pipe lining stages are used to increase operating

frequency multiplier [5]. Here two approaches

are seen for dot product unit, floating point

adder and multiplier. The floating point 32 bit is

in parallel operation is used for many application

and minimizing the silicon area. A*(B+C) shows

the parallel operation but in the fused floating

point 3 cycles are reduced from 8 cycles instead

of 2 cycles in 8 cycle. This greatly improves the

performance. By rounding operation the

addition cycle eliminated and directly performs

the multiplication [6]. For the exact result of

floating point operation rounding is needed. The

different modes used are

Rounding
Mode

Encoding

Unrounded

Rounded

Nearest
Even

00 3.4 3

Zero 01 5.6 6

Positive
Infinity

10 3.5 4

Negative
Infinity

11 2.5 2

III. FLOATING POINT

MULTIPLICATION OPERATION

The fused dot product derived from floating

point add sub unit. They done separately and

multiplexers choose add and sub with XOR

process [7]. Converting decimal number to the

floating point number, block diagram for floating

point multiplier.

Block diagram of floating point multiplier

3.1 FLOATING POINT ALGORITHM:

1. Converting the value to binary, take

fractional part for separating the integral value

and fractional value. This fractional part is

converting by multiplication [8]. Multiply by 2

repeatedly and harvest each one bit. It shows the

decimal value to floating point.

For Example:

Convert 2.625 to floating Point format:

The integral part is 210 = 102

The fractional parts are

0.625*2= 1.25 – 1

0.25 *2= 0.5 -- 0

0.5 *2= 1.0 -- 1
For 0.62510 = 0.1012 and 2.62510 = 10.1012

2. Adding an exponent part to binary

number: The Product of Append and 2 power

Exponent in the end of binary numbers.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 01 | Jan -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 449

10.1012 = 10.1012 * 20

3. Normalization: The value doesn’t change

when exponent adjust to one bit left in binary

number.

10.1012*20 = 1.01012* 21

5. Mantissa: Mantissa or significand is next

to leading number which filled with zeroes on

the right.

Mantissa – 0101
6. Now add the bias to exponent of 2 in

exponent field, for all biasing 2k-1 – 1, k=number

of bits in exponent field.

For example 8 – bit format 23-1 -1 = 3

 32 –bit format 28-1 -1 = 127

Here the exponent power is 1, so 1 + 3 = 4 = 1002

7. The sign bit of negative is 1 and positive is

0 of given number.

For 8 bit and 32 bit

SIG
N

BIT

MANTISSA EXPONENT

0 100 0101

0 10001001 0101000000000000
0000000

3.2 MULTIPLICATION OPERATION:

Take 2 floating point number A= -18.0 and B= 9.5

Their binary values are A= -10010.0 B= +1001.1

and [9] the normalization A= -1.001*24 B=

+1.0011*23

1 10000011 001000000000000000
00000

0 10000010 001100000000000000
00000

3.3 Multiplication of Mantissa:

For normalization [10] adding 1 to the most

significant bit is useful,

A 100100000000000000000000
B 100110000000000000000000

0
1

0101011000000000
0000000

0000000000000000
0000000

The result is in 48 bit: 0*558000000000

3.4 Adding the exponents:

For mantissa multiplication remove bias in two

operands and add again the bias [10].

E result= (Ea-127) + (Eb-127) +127 E r=

Ea+ Eb-127 then E r= 10000110

3.5 Calculation:

The Sign result Sr by EXOR of two operands Sa=

1 and Sb= 0 is

Sr= Sa Sb Sr= 1 0 = 1

The final result of sign, exponent and mantissa

are

1

1000011
0

0101011000000000000000000
0

A*B = -18.0* 9.5

= -1.0101011*2134-127

 = -10101011.0

 =-171.010

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 01 | Jan -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 450

IV. PROPOSED SYSTEM

The discrete design and floating point in 32 bit

are the worst case for reducing the area and

consumption. The proposed system is fused

floating point dot product unit multiplication in

double precision 48 bit reduce the delay and

silicon area. It increases the speed faster than

single precision floating point. It also decreases

40% of the worst errors. Floating points were

implemented by conventional floating point and

fused floating dot product unit multiplication in

double precision. This A* B± C* D used in parallel

operation is done by 2 cycles. For fused dot

product is done in single cycle [11].

 The design has been simulated in

MODEL SIM, create design in work library as

45nm CMOS study cell and compile the design by

go to simulation and start simulate to run, before

that source code in VHDL [12]. VHDL is a high

level language and used for digital circuits and

systems. The system verilog input generates

stimulus output. It is easy and similar to C

programming and also used in Engineering

Design Automation Tool. The fused floating

points

V. CONCLUSION

The floating point multiplier is varied by 32 bit

and 48 bit inputs. The simulation for both single

precision and double precision design and

implementation are analyzed [13]. The parallel

operation is faster speed than the series single

precision floating point. Comparing the fused

floating point is higher performance than

discrete values. The delay and silicon area are

reduced and gives high speed more than 70%.

Sometimes more performance in dual path

reduction and pipe lining are used [14]. The

more accurate result are performed by

eliminating the rounding modes and

normalization. The fused floating points are used

for processors, system controllers and hardware.

VI. REFERENCE

[1] 32 bit Single Precision floating point

Multiplier, Ms.Radhika Jumde, AVBIT, Pawnar,

Wardha.

[2] IEEE Standard for floating point arithmetic,

IEEE Standard 754-2008, New York, Inc.,

Aug.29, 2008.

[3] Saleh and E.Swartzlander, Jr., “A floating

point fused dot product unit,” in Proc. IEEE Int.

Conf. Compute Design, 2008, pp. 427—431.

[4] Design and Simulation of Binary floating

point multiplier using VHDL, U.V. Chaudhari and

Prof.A.P.Dhande, Feb-2015.

[5] Simulation and Synthesis for multipliers

using VHDL, Raj kumar singh, Shivanada Reddy,

2008.

[6] IEEE 754 floating point fused add sub unit,

Sharmila Hemanandha, Siva Subramanian, Aug-

2015.

[7] Floating point fused dot –Product Unit,

kishore, Prakash, May-2015.

[8] Floating Point Adder and Multiplier, Eduardo

Sanchez EPFL- HEIG- VD. Aug-2013.

[9] Normalization on floating point

Multiplication using Verilog HDL, V.Narasimha,

V.Swathi,

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 01 | Jan -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 451

[10] Multiplication of floating point numbers

using VHDL, Ms. Sobin Daniel, Sep-2014.

[11] A floating point multiplier, Concordia

University.

[12] Design and Implementation of different

multiplier using VHDL by Moumita Ghosh,

Rourkela, 2007.

 [13] Design of floating point Multiplier, Vamsi

Krishna, Trivedi, Mar-2014.

[14] VHDL Modeling of floating point for VLSI

designer Library, Wai-Leong Pang, Kah-Yoong

Chan, Sew-Kin Wong, Choon- Siang Tan, July-

2012.

