
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

p-ISSN: 2395-0072 Volume: 04 Issue: 12 | Dec-2017 www.irjet.net

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1318

Runtime Behaviour of JavaScript Programs

Vipin Kumar Dhiman1, Raveendra Kumar Bharati2 , Varun Bansal3

1M.Tech Research Scholar, Department of Computer Science Engineering, Shobhit University,
Gangoh, Saharanpur, Uttar Pradesh

2,3Assistant professor, Department of Computer Science Engineering, Shobhit University,
Gangoh, Saharanpur, Uttar Pradesh

--***---
Abstract: Javascript is a dynamic computer programming
language. It is lightweight and most commonly used as a part
of web pages, whose implementations allow client-side script
to interact with the user and make dynamic pages. It is an
interpreted programming language with object-oriented
capabilities. As such, improving the correctness, security and
performance of JavaScript applications has been the driving
force for research in type systems, static analysis and compiler
techniques for this language. In this paper we perform an
empirical study of the dynamic behavior of a corpus of widely-
used JavaScript programs, and analyze how and why the
dynamic features are used. We report on the degree of
dynamism that is exhibited by these JavaScript programs and
compare that with assumptions commonly made in the
literature and accepted industry benchmark suites.

Key words: Dynamic Behaviour, Execution Tracing,

Dynamic Metrics, Program Analysis, JavaScript.

INTRODUCTION:

JavaScript is an object-oriented language designed in 1995
by Brendan Eich at Netscape to allow non-programmers to
extend web sites with client-side executable code. Unlike
more tradition all languages such as Java, C# or even
Smalltalk, it does not have classes, and does not encourage
encapsulation or even structured programming. Instead
JavaScript strives to maximize flexibility. JavaScript’s success
is undeniable. As a data point, it is used by 97 out of the
web’s 100 most popular sites. The language is also
becoming a general purpose computing platform with office
applications, browsers and development environments
being developed in JavaScript. It has been dubbed the
“assembly language” of the Internet and is targeted by code
generators from the likes of Java and Scheme. In response to
this success, JavaScript has started to garner academic
attention and respect. Researchers have focused on three
main problems: security, correctness and performance.
Security is arguably JavaScript’s most pressing problem: a
number of attacks have been discovered that exploit the
language’s dynamism (mostly the ability to access and
modify shared objects and to inject code via eval).
Researchers have proposed approaches that marry static
analysis and runtime monitoring to prevent a subset of
known attacks. Another strand of research has tried to
investigate how to provide better tools for developers for
catching errors early. Being a weakly typed language with no
type declarations and only run-time checking of calls and

field accesses, it is natural to try to provide a static type
system for JavaScript. Finally, after many years of neglect,
modern implementations of JavaScript have started to
appear which use state of the art just-in-time compilation
techniques. This paper sets out to characterize JavaScript
program behavior by analyzing execution traces recorded
from a large corpus of real-world programs. To obtain those
traces we have instrumented a popular web browser and
interacted with 103 web sites. For each site multiple traces
were recorded. These traces were then analyzed to produce
behavioral data about the programs. Source code captured
when the programs were loaded was analyzed to yield static
metrics. In addition to web sites, we analyzed three widely
used benchmark suites as well as several applications. We
report both on traditional program metrics as well as
metrics that are more indicative of the degree of dynamism
exhibited by JavaScript programs in the wild.

Common Assumptions about the dynamic behaviour of
JavaScript:

We proceed to enumerate the explicit and implicit
assumptions that are commonly found in the literature and in
implementations.

1. The prototype hierarchy is invariant. The assumption
that the prototype hierarchy does not change after an object
is created is so central to the type system work that chose to
not even model prototypes. Research on static analysis
typically does not mention prototype updates .Yet, any
modification to the prototype hierarchy can potentially
impact the control flow graph of the application just as well
as the types of affected objects.

2. Properties are added at object initialization. Folklore
holds that there is something akin to an “initialization phase”
in dynamic languages where most of the dynamic activity
occurs and after which the application is mostly static. For
JavaScript this is embodied by the assumption that most
changes to the fields and methods of objects occur at
initialization, and thus that it is reasonable to assign an
almost complete type to objects at creation, leaving a small
number of properties as potential.

3. Properties are rarely deleted. Removal of methods or
fields is difficult to accommodate in a type system as it
permits nonmonotonic evolution of types that breaks
subtyping guarantees usually enforced in modern typed
languages. If deletion is an exceptional occurrence (and one

http://www.irjet.net/

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

p-ISSN: 2395-0072 Volume: 04 Issue: 12 | Dec-2017 www.irjet.net

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1319

that can be predicted), one could use potential types for
properties that may be deleted in the future. But, this would
reduce the benefits of having a type system in the first place,
which is probably why related work chooses to forbid it.
Static analysis approaches are usually a bit more tolerant to
imprecision and can handle deletes, but we have not found
any explanation of its handling in existing data flow analysis
techniques.

4. Declared function signatures are indicative of types.
Type systems for JavaScript typically assume that the
declared arity of a function is representative of the way it
will be invoked . This is not necessarily the case because
JavaScript allows calls with different arities.

5. Program size is modest. Some papers justify very
expensive analyses with the explicit assumption that
handwritten JavaScript programs are small, and others
implicitly rely on this as they present analyses which would
not scale to large systems.

6. Call-site dynamism is low. Some JavaScript
implementations such as Google V8 rely on well-known
implementation techniques to optimize JavaScript programs
such as creating classes (in the Java sense) for objects and
inline caches. These techniques will lead to good
performance only if the behavior of JavaScript is broadly
similar to that of other object-oriented languages.

8. Execution time is dominated by hot loops. Trace-based
Justin- time compilers such as TraceMonkey rely on the
traditional assumption that execution time is dominated by
small loops.

9. Industry benchmarks are representative of JavaScript
workloads. Standard benchmark suites such as SunSpider,
Dromaeo and V8, are used to tune and compare JavaScript
implementations and to evaluate the accuracy of static
analysis techniques. But conclusions obtained from use of
those benchmarks are only meaningful if they accurately
represent the range of JavaScript workloads in the wild.

The goal of this paper is to provide supporting evidence to
either confirm or invalidate these assumptions. We are not
disputing the validity of previous research, as even if a
couple of the above assumptions proved to be unfounded,
previous work can still serve as a useful starting point for
handling full JavaScript. But we do want to highlight
limitations to widespread adoption of existing techniques
and point to challenges that should be addressed in future
research.

Related Work. Until now, to the best of our knowledge,
there has been no study of the dynamic behavior of
JavaScript programs of comparable depth or breadth.
Ratanaworabhan et al. have performed a similar study
concurrently to our own, and its results are similar to ours.
There have been studies of JavaScript’s dynamic behavior as
it applies to security, but the behaviors studied were
restricted to those particularly relevant to security. We

conducted a small scale study of JavaScript and reported
preliminary results in, and those results are consistent with
the new results presented here. Holkner and Harland have
conducted a study of the use of dynamic features (addition
and deletion of fields and methods) in the Python
programming language. Their study focused on a smaller set
of programs and concluded that there is a clear phase
distinction. In their corpus dynamic features occur mostly in
the initialization phase of programs and less so during the
main computation. Our results suggest that JavaScript is
more dynamic than Python in practice. There are many
studies of the runtime use of selected features of object-
oriented languages. For example, Garret et al. reported on
the dynamism of message sends in Self, Calder et al.
characterized the difference of between C and C++ programs
in, and Temporo et al. studied the usage of inheritance in
Java. These previous papers study in great detail one
particular aspect of each language.

Measuring Program Dynamism:

Different dimensions of dynamism are captured:

1. Call Site Dynamism: Dynamic binding is a central feature
of object-oriented programming. Many authors have looked
at the degree of polymorphism of individual call sites in the
program source as a reflection of how “object-oriented” a
given program is. More pragmatically, when a call site is
known to be monomorphic, i.e. it always invokes the same
method, then the dispatching code can be optimized and the
call is a candidate for inlining. It is not unusual to be able to
identify that over 90% of call sites are monomorphic in Java.
To estimate polymorphism in JavaScript, one must first
overcome a complication. A common programming idiom in
JavaScript is to create objects inline. So the following code
fragment for (...) { ... = { f : function (x) { return x; } }; } will
create many objects, that all have a method f(), but each has
a different function object bound to f. Naively, one could
count calls, x.f(), with different receivers as being
polymorphic. We argue that for our purposes it is preferable
to count a call site as polymorphic only if it dispatches to a
function with a different body, i.e. calls to clones should be
considered monomorphic. While 150,422 functions objects
have a distinct body, we found 16 bodies that are shared by
tens of thousands of function objects, with 1 function body
shared by 41,244 objects. GMAP, LIVE and MECM each had
function bodies with over 10,000 associated function objects.
Figure 9 demonstrates that only 81% of call sites in
JavaScript are actually monomorphic; this is an upper bound
for what a compiler or static analysis can hope to identify. In
practice, it is likely that there are fewer opportunities for
devirtualization and inlining in JavaScript programs than in
Java programs. It is noteworthy that every program has at
least one megamorphic call site, with a maximum of one call
site having 1,437 different targets in 280S (which is
otherwise perfectly predictable with 99.99% of the call sites
being monomorphic!). BING, FBOK, FLKR, GMIL, GMAP and
GOGL each had at least one call site with more than 200

http://www.irjet.net/

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

p-ISSN: 2395-0072 Volume: 04 Issue: 12 | Dec-2017 www.irjet.net

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1320

targets. FBOK is another outlier with 3.5% of the call sites
having 5 or more targets.

2. Function Variadicity: The declared arity of a function in
JavaScript does not have to be respected by callers. If too few
arguments are supplied, the value of the remaining
arguments will be set to undefined. If more arguments are
supplied than expected, the additional arguments are
accessible in the arguments variable, which is an array-like
object containing all arguments and a reference to the caller
and callee. Furthermore, any function can be called with an
arbitrary number of arguments and an arbitrary context by
using the built-in call method. As such, functions may be
variadic without being declared as variadic, and may have
any degree of variadicity.

Many built-in functions in JavaScript are variadic: some
prominent examples include call, Array methods like push,
pop, slice, and even the Array constructor itself (which
initializes an array with any number of provided arguments).
Libraries such as Prototype and jQuery use call and apply
frequently to control the execution context when invoking
callback closures. These two libraries (and many other
applications) also use arrays for their internal
representation, which leads to many uses of variadic Array-
related functions. Depending on the coding style, functions
with optional arguments can either declare these optional
arguments (leading to some calls of arity less than the
declared arity), or test for the presence of optional
(unnamed) arguments in the arguments object. Both coding
styles are seen in real-world JavaScript programs, so both
calls of arity less than and calls of arity greater than that
declared are often observed.

 Callsites with N function bodies

Site 1 2 3 4 >5 Max

280s 99.9% 0.0% 0.0% 0.0% 0.0% 1437

BING 93.6% 4.8% 1.0% 0.3% 0.3% 274

BLOG 95.4% 3.4% 0.5% 0.2% 0.5% 95

DIGG 95.4% 3.2% 0.4% 0.3% 0.7% 44

EBAY 91.5% 7.1% 0.5% 0.5% 0.5% 143

FBOK 76.3% 14.8% 3.7% 1.7% 3.5% 982

FLKR 81.9% 13.2% 3.6% 0.5% 0.8% 244

GMAP 98.2% 0.8% 0.4% 0.2% 0.4% 345

GMIL 98.4% 1.2% 0.2% 0.1% 0.2% 800

GOGL 93.1% 5.5% 0.6% 0.3% 0.6% 1042

ISHK 90.2% 8.1% 1.0% 0.0% 0.8% 42

LIVE 97.0% 1.7% 0.5% 0.3% 0.5% 115

MECM 94.2% 4.1% 1.2% 0.2% 0.4% 106

TWIT 89.5% 7.2% 1.7% 0.3% 1.3% 60

WIKI 87.9% 6.7% 1.9% 0.2% 3.2% 32

WORD 86.8% 7.9% 2.7% 1.9% 0.6% 106

YTUB 83.6% 10.6% 5.4% 0.1% 0.4% 183

ALL 81.2% 12.1% 3.0% 1.2% 2.5% 1437

Figure 1. Call site polymorphism. Number of different
function bodies invoked from a particular callsite (averaged
over multipletraces).

3. Constructor Polymorphism:

JavaScript’s mechanism for constructing objects is more
dynamic than that of class-based languages because a
constructor is simply a function that initializes fields
programmatically. Contrast the following constructor
function to the declarative style imposed by a class-based
language:

function C(b) { if(b) this.y = 0; else this.x = 0; }

The objects returned by new C(true) and new C(false) will
have different (in this case, disjoint) sets of properties. If one
can envision as the set of properties returned by a
constructor as a “type”, then it is natural to wonder how
many constructors return different types at different times
during the execution of a program.

This polymorphism can arise for a number of reasons, but a
common one is that the dynamism of JavaScript allows
libraries to abstract away the details of implementing object
hierarchies. Often, these abstractions end up causing all
object construction to use a single static constructor
function, which is called in different contexts to create
different objects, such as the following constructor function
from the Prototype library.

function klass() {

this.initialize.apply(this, arguments);

}

All user objects inherit this constructor, but have distinct
initialize methods. As a result, this constructor is
polymorphic in the objects it creates.

4. Constructor Prototype Modification:

The prototype field of a constructor defines which properties
an object created by this constructor will inherit. However,
the value of the prototype field can be changed, which means
that two objects created by the same constructor function
may have different prototypes, and so different APIs.
Changing the prototype field is generally done before any
objects are created from that prototype, and is often done by
helper functions such as the following from the Prototype
library to mimic subclassing.

function subclass() { };

...

if (parent) {

subclass.prototype = parent.prototype;

klass.prototype = new subclass;

http://www.irjet.net/

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

p-ISSN: 2395-0072 Volume: 04 Issue: 12 | Dec-2017 www.irjet.net

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1321

parent.subclasses.push(klass);

}

We did not record the number of occurrences this pattern at
runtime, but clearly the possibility that the above code will
be executed cannot be discounted.

5. Changes to the Prototype Chain:

An object’s protocol can change over time by adding or
deleting fields from any of its prototypes. Although we found
this behavior to be uncommon for user-created types, it is
very common for libraries

to extend the builtin types of JavaScript, in particular Object
and Array. For instance, the Prototype library includes a
number of collection-like classes, but also extends String.
prototype and Array. prototype such that they can b e used as
collections, by adding e.g. the to Array, truncate and strip
methods to them, as well as extending Array to include all of
the definitions from Prototype’s Enumerable type:

Object. Extend (Array. prototype, Enumerable);

Some code uses this ability to change prototypes as a form of
modularity. Since prototypes can be modified at any time,
features can be implemented in separate parts of the code
even if they affect the same type. Again, we do not report
runtime occurrences, but observe that this is something that
must be accounted for by tools and static type disciplines.

6. Object Lifetimes:

As in many languages, most objects in JavaScript are
generally very short-lived. Figure 2 shows the percentiles of
object lifetimes seen across all traces, in terms of events
performed on those objects (we do not record wall clock
time in traces). 25% of all objects are never used, and even
the 90th percentile of objects are alive for only 7 events. This
does not include any integers or strings which the runtime
never boxes into an object (which is to say, numbers and
strings that never have fields accessed). The conclusion is
clearly that much of data is manipulated very infrequently
and thus suggest that lazy initialization may be a winning
optimization.

 Figure 2. Object lifetimes. The longevity of objects in terms of
the number of events performed on them.

Conclusion:

This paper has provided the first large-scale study of the
runtime behavior of JavaScript programs. We have identified
a set of representative real-world programs ranging in size
from hundreds of kilobytes to megabytes, using an
instrumented interpreter we have recorded multiple traces
per site, and then with an offline analysis tool we have
extracted behavioral information from the traces. We use
this information to evaluate a list of nine commonly made
assumptions about JavaScript programs. Each assumption

has been addressed, and most are in fact false for at least
some real-world code.

 Percentile

 25 50 75 85 90 95 97 98 99 100

Eve
nts

0 1 3 6 9 14 25 37 74 1,074,
322

1. The protype hierarchy is invariant

2. Properties are added at object initialization.

3. Properties are rarely deleted.

4. The use of eval is infrequent and does not affect semantics.

5. Declared function signatures are indicative of types.

6. Program size is modest.

7. Call-site dynamism is low.

8. Execution time is dominated by hot loops.

Acknowledgments:

I am indebted to express my deep gratitude to Mr. Varun
Bansal, Head in Charge, Department of Computer Science
Engineering, Shobhit University, Gangoh for their valuable
guidance during each and every phase of this work.

I take this opportunity to express a deep sense of gratitude
towards my guide Mr. Raveendra Kumar Bharati, for
providing excellent guidance, encouragement and
inspiration throughout the project work. Mr. Raveendra
Kumar Bharati showed immense understanding and
patience for my thesis during my difficult times, especially
when I was pivoting around topics. Without his invaluable
guidance, this work would never have been a successful
one. I would also like to thank all my faculty members for
their valuable suggestions and helpful discussions.

References:

[1] W. W. W. Consortium. Document object model (DOM).
http://www.w3.org/DOM/.

[2] D. Crockford. JSMin: The JavaScript minifier.
http://www.crockford.com/javascript/jsmin.html.

[3] www.tutorialspoint.com

[4] C. Foster. JSCrunch: JavaScript cruncher.
http://www.cfoster.net/jscrunch/.

[5] P. Ratanaworabhan, B. Livshits, D. Simmons, and B. Zorn.
JSMeter: Characterizing

[6] www.javaTpoint.com

[7] www.W3schools.com

http://www.irjet.net/
http://www.w3.org/DOM/
http://www.crockford.com/javascript/jsmin.html
http://www.tutorialspoint.com/
http://www.cfoster.net/jscrunch/
http://www.javatpoint.com/
http://www.w3schools.com/

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

p-ISSN: 2395-0072 Volume: 04 Issue: 12 | Dec-2017 www.irjet.net

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1322

[8] Thinking in JavaScript-Aravind Shenoy

[9] JQuery Cookbook-O’Reilly

[10] R. Radhakrishnan, N. Vijaykrishnan, L. K. John, A.
Sivasubramaniam, J. Rubio, and J. Sabarinathan. Java runtime
systems: Characterization and architectural implications.
IEEE Trans. Computers, 50(2):131–146, 2001.

http://www.irjet.net/

