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Abstract: Javascript is a dynamic computer programming 
language. It is lightweight and most commonly used as a part 
of web pages, whose implementations allow client-side script 
to interact with the user and make dynamic pages. It is an 
interpreted programming language with object-oriented 
capabilities. As such, improving the correctness, security and 
performance of JavaScript applications has been the driving 
force for research in type systems, static analysis and compiler 
techniques for this language. In this paper we perform an 
empirical study of the dynamic behavior of a corpus of widely- 
used JavaScript programs, and analyze how and why the 
dynamic features are used. We report on the degree of 
dynamism that is exhibited by these JavaScript programs and 
compare that with assumptions commonly made in the 
literature and accepted industry benchmark suites. 

 

Key words: Dynamic Behaviour, Execution Tracing, 

Dynamic Metrics, Program Analysis, JavaScript. 

INTRODUCTION: 

 
JavaScript is an object-oriented language designed in 1995 
by Brendan Eich at Netscape to allow non-programmers to 
extend web sites with client-side executable code. Unlike 
more tradition all languages such as Java, C# or even 
Smalltalk, it does not have classes, and does not encourage 
encapsulation or even structured programming. Instead 
JavaScript strives to maximize flexibility. JavaScript’s success 
is undeniable. As a data point, it is used by 97 out of the 
web’s 100 most popular sites. The language is also 
becoming a general purpose computing platform with office 
applications, browsers and development environments 
being developed in JavaScript. It has been dubbed the 
“assembly language” of the Internet and is targeted by code 
generators from the likes of Java and Scheme. In response to 
this success, JavaScript has started to garner academic 
attention and respect. Researchers have focused on three 
main problems: security, correctness and performance. 
Security is arguably JavaScript’s most pressing problem: a 
number of attacks have been discovered that exploit the 
language’s dynamism (mostly the ability to access and 
modify shared objects and to inject code via eval). 
Researchers have proposed approaches that marry static 
analysis and runtime monitoring to prevent a subset of 
known attacks. Another strand of research has tried to 
investigate how to provide better tools for developers for 
catching errors early. Being a weakly typed language with no 
type declarations and only run-time checking of calls and 

field accesses, it is natural to try to provide a static type 
system for JavaScript. Finally, after many years of neglect, 
modern implementations of JavaScript have started to 
appear which use state of the art just-in-time compilation 
techniques. This paper sets out to characterize JavaScript 
program behavior by analyzing execution traces recorded 
from a large corpus of real-world programs. To obtain those 
traces we have instrumented a popular web browser and 
interacted with 103 web sites. For each site multiple traces 
were recorded. These traces were then analyzed to produce 
behavioral data about the programs. Source code captured 
when the programs were loaded was analyzed to yield static 
metrics. In addition to web sites, we analyzed three widely 
used benchmark suites as well as several applications. We 
report both on traditional program metrics as well as 
metrics that are more indicative of the degree of dynamism 
exhibited by JavaScript programs in the wild. 

 
Common Assumptions about the dynamic behaviour of 
JavaScript: 

We proceed to enumerate the explicit and implicit 
assumptions that are commonly found in the literature and in 
implementations. 

1. The prototype hierarchy is invariant. The assumption 
that the prototype hierarchy does not change after an object 
is created is so central to the type system work that chose to 
not even model prototypes. Research on static analysis 
typically does not mention prototype updates .Yet, any 
modification to the prototype hierarchy can potentially 
impact the control flow graph of the application just as well 
as the types of affected objects. 

 

2. Properties are added at object initialization. Folklore 
holds that there is something akin to an “initialization phase” 
in dynamic languages where most of the dynamic activity 
occurs and after which the application is mostly static. For 
JavaScript this is embodied by the assumption that most 
changes to the fields and methods of objects occur at 
initialization, and thus that it is reasonable to assign an 
almost complete type to objects at creation, leaving a small 
number of properties as potential. 

 

3. Properties are rarely deleted. Removal of methods or 
fields is difficult to accommodate in a type system as it 
permits nonmonotonic evolution of types that breaks 
subtyping guarantees usually enforced in modern typed 
languages. If deletion is an exceptional occurrence (and one 
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that can be predicted), one could use potential types for 
properties that may be deleted in the future. But, this would 
reduce the benefits of having a type system in the first place, 
which is probably why related work chooses to forbid it. 
Static analysis approaches are usually a bit more tolerant to 
imprecision and can handle deletes, but we have not found 
any explanation of its handling in existing data flow analysis 
techniques. 

 

4. Declared function signatures are indicative of types. 
Type systems for JavaScript typically assume that the 
declared arity of a function is representative of the way it 
will be invoked . This is not necessarily the case because 
JavaScript allows calls with different arities. 

 

5. Program size is modest. Some papers justify very 
expensive analyses with the explicit assumption that 
handwritten JavaScript programs are small, and others 
implicitly rely on this as they present analyses which would 
not scale to large systems. 

 

6. Call-site dynamism is low. Some JavaScript 
implementations such as Google V8 rely on well-known 
implementation techniques to optimize JavaScript programs 
such as creating classes (in the Java sense) for objects and 
inline caches. These techniques will lead to good 
performance only if the behavior of JavaScript is broadly 
similar to that of other object-oriented languages. 

 

8. Execution time is dominated by hot loops. Trace-based 
Justin- time compilers such as TraceMonkey rely on the 
traditional assumption that execution time is dominated by 
small loops. 

 

9. Industry benchmarks are representative of JavaScript 
workloads. Standard benchmark suites such as SunSpider, 
Dromaeo and V8, are used to tune and compare JavaScript 
implementations and to evaluate the accuracy of static 
analysis techniques. But conclusions obtained from use of 
those benchmarks are only meaningful if they accurately 
represent the range of JavaScript workloads in the wild. 

 

The goal of this paper is to provide supporting evidence to 
either confirm or invalidate these assumptions. We are not 
disputing the validity of previous research, as even if a 
couple of the above assumptions proved to be unfounded, 
previous work can still serve as a useful starting point for 
handling full JavaScript. But we do want to highlight 
limitations to widespread adoption of existing techniques 
and point to challenges that should be addressed in future 
research. 

 

Related Work. Until now, to the best of our knowledge, 
there has been no study of the dynamic behavior of 
JavaScript programs of comparable depth or breadth. 
Ratanaworabhan et al. have performed a similar study 
concurrently to our own, and its results are similar to ours. 
There have been studies of JavaScript’s dynamic behavior as 
it applies to security, but the behaviors studied were 
restricted to those particularly relevant to security. We 

conducted a small scale study of JavaScript and reported 
preliminary results in, and those results are consistent with 
the new results presented here. Holkner and Harland have 
conducted a study of the use of dynamic features (addition 
and deletion of fields and methods) in the Python 
programming language. Their study focused on a smaller set 
of programs and concluded that there is a clear phase 
distinction. In their corpus dynamic features occur mostly in 
the initialization phase of programs and less so during the 
main computation. Our results suggest that JavaScript is 
more dynamic than Python in practice. There are many 
studies of the runtime use of selected features of object- 
oriented languages. For example, Garret et al. reported on 
the dynamism of message sends in Self, Calder et al. 
characterized the difference of between C and C++ programs 
in, and Temporo et al. studied the usage of inheritance in 
Java. These previous papers study in great detail one 
particular aspect of each language. 

 

Measuring Program Dynamism: 

Different dimensions of dynamism are captured: 
 

1. Call Site Dynamism: Dynamic binding is a central feature 
of object-oriented programming. Many authors have looked 
at the degree of polymorphism of individual call sites in the 
program source as a reflection of how “object-oriented” a 
given program is. More pragmatically, when a call site is 
known to be monomorphic, i.e. it always invokes the same 
method, then the dispatching code can be optimized and the 
call is a candidate for inlining. It is not unusual to be able to 
identify that over 90% of call sites are monomorphic in Java. 
To estimate polymorphism in JavaScript, one must first 
overcome a complication. A common programming idiom in 
JavaScript is to create objects inline. So the following code 
fragment for (...) { ... = { f : function (x) { return x; } }; } will 
create many objects, that all have a method f(), but each has 
a different function object bound to f. Naively, one could 
count calls, x.f(), with different receivers as being 
polymorphic. We argue that for our purposes it is preferable 
to count a call site as polymorphic only if it dispatches to a 
function with a different body, i.e. calls to clones should be 
considered monomorphic. While 150,422 functions objects 
have a distinct body, we found 16 bodies that are shared by 
tens of thousands of function objects, with 1 function body 
shared by 41,244 objects. GMAP, LIVE and MECM each had 
function bodies with over 10,000 associated function objects. 
Figure 9 demonstrates that only 81% of call sites in 
JavaScript are actually monomorphic; this is an upper bound 
for what a compiler or static analysis can hope to identify. In 
practice, it is likely that there are fewer opportunities for 
devirtualization and inlining in JavaScript programs than in 
Java programs. It is noteworthy that every program has at 
least one megamorphic call site, with a maximum of one call 
site having 1,437 different targets in 280S (which is 
otherwise perfectly predictable with 99.99% of the call sites 
being monomorphic!). BING, FBOK, FLKR, GMIL, GMAP and 
GOGL each had at least one call site with more than 200 

http://www.irjet.net/


International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 

p-ISSN: 2395-0072 Volume: 04 Issue: 12 | Dec-2017 www.irjet.net 

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1320 

 

 

targets. FBOK is another outlier with 3.5% of the call sites 
having 5 or more targets. 

2. Function Variadicity: The declared arity of a function in 
JavaScript does not have to be respected by callers. If too few 
arguments are supplied, the value of the remaining 
arguments will be set to undefined. If more arguments are 
supplied than expected, the additional arguments are 
accessible in the arguments variable, which is an array-like 
object containing all arguments and a reference to the caller 
and callee. Furthermore, any function can be called with an 
arbitrary number of arguments and an arbitrary context by 
using the built-in call method. As such, functions may be 
variadic without being declared as variadic, and may have 
any degree of variadicity. 

 

Many built-in functions in JavaScript are variadic: some 
prominent examples include call, Array methods like push, 
pop, slice, and even the Array constructor itself (which 
initializes an array with any number of provided arguments). 
Libraries such as Prototype and jQuery use call and apply 
frequently to control the execution context when invoking 
callback closures. These two libraries (and many other 
applications) also use arrays for their internal 
representation, which leads to many uses of variadic Array- 
related functions. Depending on the coding style, functions 
with optional arguments can either declare these optional 
arguments (leading to some calls of arity less than the 
declared arity), or test for the presence of optional 
(unnamed) arguments in the arguments object. Both coding 
styles are seen in real-world JavaScript programs, so both 
calls of arity less than and calls of arity greater than that 
declared are often observed. 

 

 Callsites with N function bodies  

Site 1 2 3 4 >5 Max 

280s 99.9% 0.0% 0.0% 0.0% 0.0% 1437 

BING 93.6% 4.8% 1.0% 0.3% 0.3% 274 

BLOG 95.4% 3.4% 0.5% 0.2% 0.5% 95 

DIGG 95.4% 3.2% 0.4% 0.3% 0.7% 44 

EBAY 91.5% 7.1% 0.5% 0.5% 0.5% 143 

FBOK 76.3% 14.8% 3.7% 1.7% 3.5% 982 

FLKR 81.9% 13.2% 3.6% 0.5% 0.8% 244 

GMAP 98.2% 0.8% 0.4% 0.2% 0.4% 345 

GMIL 98.4% 1.2% 0.2% 0.1% 0.2% 800 

GOGL 93.1% 5.5% 0.6% 0.3% 0.6% 1042 

ISHK 90.2% 8.1% 1.0% 0.0% 0.8% 42 

LIVE 97.0% 1.7% 0.5% 0.3% 0.5% 115 

MECM 94.2% 4.1% 1.2% 0.2% 0.4% 106 

TWIT 89.5% 7.2% 1.7% 0.3% 1.3% 60 

WIKI 87.9% 6.7% 1.9% 0.2% 3.2% 32 

WORD 86.8% 7.9% 2.7% 1.9% 0.6% 106 

YTUB 83.6% 10.6% 5.4% 0.1% 0.4% 183 

ALL 81.2% 12.1% 3.0% 1.2% 2.5% 1437 

Figure 1. Call site polymorphism. Number of different 
function bodies invoked from a particular callsite (averaged 
over multipletraces). 

3. Constructor Polymorphism: 

JavaScript’s mechanism for constructing objects is more 
dynamic than that of class-based languages because a 
constructor is simply a function that initializes fields 
programmatically. Contrast the following constructor 
function to the declarative style imposed by a class-based 
language: 

 

function C(b) { if(b) this.y = 0; else this.x = 0; } 
 

The objects returned by new C(true) and new C(false) will 
have different (in this case, disjoint) sets of properties. If one 
can envision as the set of properties returned by a 
constructor as a “type”, then it is natural to wonder how 
many constructors return different types at different times 
during the execution of a program. 

 

This polymorphism can arise for a number of reasons, but a 
common one is that the dynamism of JavaScript allows 
libraries to abstract away the details of implementing object 
hierarchies. Often, these abstractions end up causing all 
object construction to use a single static constructor 
function, which is called in different contexts to create 
different objects, such as the following constructor function 
from the Prototype library. 

 

function klass() { 

this.initialize.apply(this, arguments); 

} 

All user objects inherit this constructor, but have distinct 
initialize methods. As a result, this constructor is 
polymorphic in the objects it creates. 

 

4. Constructor Prototype Modification: 
 

The prototype field of a constructor defines which properties 
an object created by this constructor will inherit. However, 
the value of the prototype field can be changed, which means 
that two objects created by the same constructor function 
may have different prototypes, and so different APIs. 
Changing the prototype field is generally done before any 
objects are created from that prototype, and is often done by 
helper functions such as the following from the Prototype 
library to mimic subclassing. 

 

function subclass() { }; 

... 

if (parent) { 

subclass.prototype = parent.prototype; 

klass.prototype = new subclass; 
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parent.subclasses.push(klass); 

} 

We did not record the number of occurrences this pattern at 
runtime, but clearly the possibility that the above code will 
be executed cannot be discounted. 

5. Changes to the Prototype Chain: 

An object’s protocol can change over time by adding or 
deleting fields from any of its prototypes. Although we found 
this behavior to be uncommon for user-created types, it is 
very common for libraries 

to extend the builtin types of JavaScript, in particular Object 
and Array. For instance, the Prototype library includes a 
number of collection-like classes, but also extends String. 
prototype and Array. prototype such that they can b e used as 
collections, by adding e.g. the to Array, truncate and strip 
methods to them, as well as extending Array to include all of 
the definitions from Prototype’s Enumerable type: 

 

Object. Extend (Array. prototype, Enumerable); 

Some code uses this ability to change prototypes as a form of 
modularity. Since prototypes can be modified at any time, 
features can be implemented in separate parts of the code 
even if they affect the same type. Again, we do not report 
runtime occurrences, but observe that this is something that 
must be accounted for by tools and static type disciplines. 

 

6. Object Lifetimes: 
 

As in many languages, most objects in JavaScript are 
generally very short-lived. Figure 2 shows the percentiles of 
object lifetimes seen across all traces, in terms of events 
performed on those objects (we do not record wall clock 
time in traces). 25% of all objects are never used, and even 
the 90th percentile of objects are alive for only 7 events. This 
does not include any integers or strings which the runtime 
never boxes into an object (which is to say, numbers and 
strings that never have fields accessed). The conclusion is 
clearly that much of data is manipulated very infrequently 
and thus suggest that lazy initialization may be a winning 
optimization. 

   Figure 2. Object lifetimes. The longevity of objects in terms of 
the number of events performed on them. 

Conclusion: 

This paper has provided the first large-scale study of the 
runtime behavior of JavaScript programs. We have identified 
a set of representative real-world programs ranging in size 
from hundreds of kilobytes to megabytes, using an 
instrumented interpreter we have recorded multiple traces 
per site, and then with an offline analysis tool we have 
extracted behavioral information from the traces. We use 
this information to evaluate a list of nine commonly made 
assumptions about JavaScript programs. Each assumption 

has been addressed, and most are in fact false for at least 
some real-world code. 

 
 Percentile 

 25 50 75 85 90 95 97 98 99 100 

Eve 
nts 

0 1 3 6 9 14 25 37 74 1,074, 
322 

 
1. The protype hierarchy is invariant 

2. Properties are added at object initialization. 

3. Properties are rarely deleted. 

4. The use of eval is infrequent and does not affect semantics. 

5. Declared function signatures are indicative of types. 

6. Program size is modest. 

7. Call-site dynamism is low. 

8. Execution time is dominated by hot loops. 
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