
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 12 | Dec-2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1389

Transformation of Java Server Pages: A Modern Approach

A.K.Ratha1, S.Padhan2, S.Mohanty3

1Asst.Prof, Dept of CSE, Vikash Institute of Technology, Bargarh, Odisha, INDIA
2,3Student Researcher, Vikash Institute of Technology, Bargarh, Odisha, INDIA

---***---

Abstract - A web application maintains two things:
presentation and the logic. The maintainability is improved by
making it separate which makes the web application easier to
evolve and maintain. It also allows developers with different
skills to cooperate more efficiently. There are custom tag in
JSP which provides separation. In this paper , we approach a
modern transformation to restructure JSP by moving
embedded Java Code into custom tags without changing the
original application. It helps in reducing complexity which
makes the application more maintainable.

Key Words: scriptlet, tag, elements, transformation,
javabean.

1. INTRODUCTION

A web application can be develop with the help of HTML
code and application code which is written in different
language like Visual basic, java ,JavaScript. HTML is being
embedded by application code and setout of data has been
used by HTML.

 For creating dynamically generated web pages a technology
is used known as Java Server pages(JSP).java is used as
scripting language by JSP. The form <%Java code %> is used
by the scriptlets, that are used to embed java code within
HTML. A part of Java-code embedded in the HTML like JSP
code. Everything inside the <% %> tags is called as
scriptlet .It accelerate prototyping by it’s explicit use and
establish complexity into the implementation.HTML
associate with java code by the help of this scriptlets, which
leads to problems in code authentication and debugging, that
faces difficulties in software maintenance and evolution. As
these scriptlets are not reclaimable. so there is a chances of
duplication while cuts and paste edits between pages, which
gives us error environment.

 The combination of HTML and Java helps to differentiate
the presentation and business logic. This type of separation
helps in both easier maintenance of web application and
allows different skills developers to co operate effectively.
A user defined JSP language element is commonly known as
custom tag.

2. BASICS ABOUT JSP

JSP elements and templates make JSP pages. Template texts
are those content which are not a JSP elements. They may be
any text like HTML, XML, WML or plain text that can directly
passed through to browser. Dynamic content can be

constructed with the help of JSP elements. It has custom
actions, standards tag library tag(JSTL), directives, standard
actions, scripting elements and JavaBeans components.
Prefix JSP like <jsp:useBean> and <jsp.getProperty> action
are uses by the standard actions. For creating bean , access
bean property and invoke other pages these actions are used
. Many actions can also covered by custom action and JSTL.
Custom tag library has two components i.e. XML file and
implementation of tags in java. The XML file is also known as
tag library descriptor. Jsp page is translate in to servlet when
it contain custom tag and the tag is converted to operation
on an object called tag handler.

Tag handler handles the behavior of the tags that must
implemented on one of the interfaces defined in the package
like javax.servlet.jsp.tagext.

Mapping is done in between tag library and each tag to the
appropriate tag handler class. With the help of taglib
directives, tags are made available within a jsp page. In fig1
we draw the relationship between taglib directives in a jsp
file,TLD and tag handler class.

In the figure, the taglibbrary xxxlib has a local name within
the JSP file of mylib and the custom tag is named cdtitle. The
implementation of the tag is in the file CdtitleTag.class.

3. THE TRANSFORMATION

The section presents comes nearer to reconstructing jsp
pages by transforming interweaved java code into tag to
modernize existing jsp web application.

 3.1. Requirements

Three major requirements are there, in the implementation
of the reconstructing whose details are as follow,

The functionality of web application should not change by
the transformational restructuring. To meet this necessary
condition static analysis information such as data
dependence and control flow must be concentrated.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 12 | Dec-2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1390

Fig-1:The taglib directive

 The complex instruction among different parts of a jsp page
should still be express even after the parts written in java are
progress into custom tags.

The user interface of the application which is determining in
part by the HTML and in part by the java and JavaScript
should remain fixed.

 All code comments should be store for future continuance it
is unavoidable that the application will require to be
continued and develop after it is transformed, such as
attaching new features and making extra improvements.
Thus the improved application code with comments clean
out of the original application may not be preferable.

The code comments must be store in the same place
comparative to the original source code in order to make
sure that the code is still understandable.

3.2 A multilingual parser

Parsing can be done before the transformation of source
code. Most of the browsers ignored minor syntax error
which is carried out by source code due to mixing of multiple
languages. For this we consider a parsing technique which is
developed by N.Synytskyy et al. This is a powerful
multilingual parsing technique for ASP applications which is
based on island grammars, and extended to JSP by Arial Li.
This multilingual parse used to parse multiple language in to
a single parse tree ,that helps in code Analysis fact extraction
& transformation.

Fig-2:Multilingual Parser

Relationship between grammars is shown in fig 2 HTML
grammar is the root grammar which describes the structural
element of HTML. It consider different HTML element i.e
table, style & appearance element, Anchor element, Image
element etc. In JSP grammar, In modular form the TLD, XML
grammar & custom tag grammar are written.

 Maintaining the relationship between scopes of multiple
source languages is the major characteristics of the
grammar. For example, A loop statement that consist of
HTML text within a block is parsed as single scriptlets not as
two separate scriptlets. Here the ‘%>’tag starts HTML text
and ‘<%’tag ends HTML text.

4. The Approach

Here we consider 4 approach, they are ,

a) JSP Scripting Elements
b) HTML content embedded in out.print()
c) JavaBeans action elements
d) JSP page directives

 JSP Web application is the existing one which is tightly
coupled with HTML code & Java code. Java code is embedded
in HTML code & HTML tags are embedded in Java code. First
we have to cheek the code transformation that, which
elements are being affected by the transformation.

a) JSP Scripting Elements

Inserting of java code into servlet that will be generated from
jsp page can be authorized by jsp scripting elements. These
are 3 forms,

 Formal declaration: Declaration can be done by
either methods or variables.

 Expressions: A value is return by the expression
elements which is written to HTML page

 Scriptlets: It consists of a number of languages
elements, variables or method declaration.

b) HTML content embedded in out.print()

For generating HTML content from within a scriptlets a
method is used i.e. out.print(….);. It has two disadvantages,

I. Extra effort is needed to create and maintain HTML
pages for application programmers

II. Embedded code must be understood by the web
page designer

We extract HTML content from out.print() and out.println()
statements before we go for transformation and then put the
content directly into the page.

Grammar

HTML

grammar

base module

TLD

XML

gramm

ar

Custom

Tag

 grammar

<%teglib uri=”xxxlib”

prefix=“mylib”%>

…

…

<mylib:cdtitle/>

<tag lib>

<uri>xxxlib</uri>

 <tag>

 <name>edtitle</name>

 <tag_class>CdtitleTag

 </tag_class>

 …

 </tag> </taglib></tag>

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 12 | Dec-2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1391

c) JavaBeans action elements

A no argument constructor is used in jsp i.e. a java bean
component. It is a java class. Jsp

Standard action elements permits the developers to use
JavaBeans components which are categorized as 3 types,

1- <jsp:useBean> :it represent a JavaBean and makes it

accessible in a page.

2- <jsp:get Property>: it gets a property value from a
JavaBean and adds it into the response .

3- <jsp:setProperty>: it is used to set all properties
valuesin a JavaBean. It matches the names of the
parameters received from the request. It is not
mandatory to know how to set properties of the bean
,by the page designer. The page designer only focus on
JavaBean components in application. In which a
different servlet represent a bean and passes it into jsp
pages for display.
Before the general transformation we change the 3
action elements into valid java code enclosed within
scriplet tags <%.......%>

4- jsp page directives
These are present at the top of a jsp page and enclosed
within directive tags (<%@......%>). The number of page
directives is not fixed in jsp pages but it should have
unique attribute/value pair. The transformation is
affected by the cases are the case where a java packages
is inserted by page.

Eg.

<%@ page import =”java.sql.ResultSet” %>

This directive imports the class ResultSet from the package
java.sql into the page. As this class should also be imported
into our newly created custom tags, we change the page
directive into a scriptlet. For example, the directive above
becomes <% import java.sql.ResultSet;%>. We can then
transform this valid import statement as part of the general
transform.

5. THE GENERAL TRANSFORMATION

The segment looks at the general transformation needed to
convert installed java into custom tags we present the 4
general expression that contain the transforms.

 Before the general transformation the original source code
must be rearranged by modifying non scripting elements
(bean, page directives) that need to be relocated into jsp
scripting elements extracting HTML content from
out.print.statements and merging adjacent scriptlets.

After the modify transform all java code is fixed inside jsp
scripting elements. The next goal is to eliminate jsp scripting

elements from the normalized source code by replacing
them with jsp custom tags.

The intermix of HTML and code presents a challenge not
only for parsing but also for transformation. By using
multiple programming and technology the dataflow analysis
through various software pieces is complicated. For the
transformation of embedded java code into appropriate
custom tags. We have to find out how to divide the processes
of jsp pages into smaller components.

 (1) How to use new custom tags for better control of
dynamic content,

 (2) How to name the tags,

 (3) How to pass input through by placing data either
in tag attributes or between opening and closing

 (4) How to devise the tags that focus on the “what”
and hide the “how” to make the transformed web pages
and resulted tags maintainable

Transformation strategy categorized into 4 basic cases,

Case 1

Only one custom tag is needed

 In figure 3, one block of java code is enclosed with HTML but
no nesting is done in HTML segment. Here only one custom
tag has to be created into which all java code is relocate. It
has an empty body. In the eg. Java code is handle by the user
session management. Hence it can be named as <mylib:user
Session> and java class havingthe name as UserSession tag.
In figure 4, the transformed page after javacode is migrate
into the custom tag <mylib:UserSession>.In figure5 two
block of java code in HTML has been shown. These two
blocks are separated by HTML water elements(“welcome!”).
it’s parse tree demonstrate that both two block are at same
scope level. These two java code blocks can be merge into
one custom tag , which has a non empty body and consist of
HTML water elements, which is shown in figure6.

Case2

Two nested custom tag are needed

Now consider two custom tags .in figure7, a jsp expression is
used i.e. <%=userName%>.here a variable is used within the
expression that is defined in the javacode block. These two
nested custom tags are created in such a way that one tag is
nested within the body of another tag. The java code in the
block will be move into outer custom tag and the expression
will be migrating into simple tag.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 12 | Dec-2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1392

Fig-3:Block of Java Code in HTML

Fig-4:Block After Transformation

After scriptlet and expression are relocated into custom tags
<mylib:userSession> and <mylib:userName>respectively ,a
transformed page is generated which is shown in the figure
8. Here only nesting of tags are done. While the classes that
implement the tags are not. To maintain the relationship
between parents and child class gets and set method must
provide by parents for variables that are accessed by child
class.

The code is generated in child tag class for obtaining a
reference to instance of class for parent tag. By using gets
and set method of parent class the child can access the
variables.

 The outer custom tag is same as case1, expert that this outer
tag has a body which contains not only a segment of HTML
code but also another tag <mylib:userName>.

Case 3

HTML content depends on choice

In figure 9, a jsp page is present in which a choice statement
determines if some HTML content is displayed. As we know a
choice statement maybe an if-else statement or a switch case
statements. The HTML content is nested within choice and
enclosed between a end tag(%>) and start tag(<%).

 The nested HTML content after parsing will be used
by our grammar as an entity within the if-else statement. The
parse will found one block of java code at the top scope in
figure 10,that start from first “<%” to last “%>” tag.

For this case one parent tag and two children tags are
created. Within the body of parent tag the two children tags
are nested and as they are sibling they deployed side by side
in the body of parent tag. The then part of choice and else
part will handle by one tag and another child tag

respectively. If the condition is true then child will allow the
HTML content.

Fig-5: Two blocks of Java Code in HTML

Fig-6:Two block After Transformation

 At the top scope or parent tag a new Boolean variable is
declared that will store the evaluation of choice expression.
By using this Boolean variable if statement is replaced by
two if statement. For this variable a get method is also
declared in parent tag. At last all java code in top scope that
include all declaration of new variable is move into parent
tag (i.e <mylib:chock login>). The java code wrapped with an
appropriate if condition expression should enter its children
tags (<mylib:invalid login> and <mylib:valid login>)

Fig-7: A Page with an Expression

Fig-8 Expression Page After Transformation

<html><body>

<%

HttpSession s = request.getsession (true);

Octs2.webLogUserImp entry = new octs2.WebLogUserImp ();

String UserId = ((string s.getValue (“userId”)).trim ();

String username = entry.getUser (userId);

s.putValue (“UserName”,UserName)

%>

Welcome!

</body></html>

 <html><body>

 <my lib:userSession></my lib:userSession>

 Welcome!

 </body></html>

<html><body>

<%

HttpSession s = reqest.getsession (true);

Octs2.WebLoqUserImp entry =new octs2webLogUsersImp();

String userId = ((string s.getValue (:userId”)).trim();

String UserName = entry.getUser (UserId);

%>

Welcome!

<%

s.putvalue (“username”,username);

%>

</body></html>

 <html><body>
 <my lib:UserSession>
 Welcome!
 </my lib:userSession>
 </body></html>

<html><body>
<%
HttpSession s = request.getsession (true);
Octs2webLogUserImp entry = new octs2.webLogUsersImp ();
String user Id = ((string) s.getValue (“userId”).trim();
String username = entey.getuser (userId);
%>
Welcome! <%= username %>
</body></html>

<html><body>
Welcome!
</body></html>
<mylib:userSession>
<mylib:userName/>
</mylib:userSession>

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 12 | Dec-2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1393

 Another feature of transformation is shown in figure 11.
Two of java statements retrieve parameters from page
request. The information that provided by browser is the
part of web design. It needs to be visible to web page
designer so that the tag is parameterized by attributes. All
cases can used this parameterization, where the code to be
replace to custom tag and access the page request.

Case 4

HTML content inside a loop

Figure 12 shows a JSP page in which a block of Java code is
followed by a table and the table body content is controlled
by a loop. A loop can be a while-loop statement or a for loop
statement. In the figure, the outermost layer of the table is a
HTML table tag. It has an opening tag <table border> and a
closing tag </table>. A block of Java code containing a while-
loop is contained inside the table tag. The code generates the
table body. Moreover the body of the loop (the table body) is
made up of HTML text, scriplets and expressions. In the
grammar, the interesting elements cover not only JSP
elements such as JSP scripting elements, but also interesting
HTML elements such as table tags, form tags and anchor
tags. As a result, our parser will detect two interesting

Fig-9: Page With a Choice Statement

elements at the top-most scope level for this case. The first
element is a scriptlet which contains a block of Java code for
the code initialization (i.e. where rs1 is assigned an initial
value). The second element is an HTML Table Tag which
contains a mixture of HTML and Java code to generate the
body of the table. We create two custom tags with a parent-
child relationship. The Java code in the top-most scope is
migrated into the parent tag mylib:information> , and the
other Java code in the sub-scope for the table content
generation is migrated into the child tag
<mylib:searchResultDisplay>. The child tag, in turn, has
children representing the scriptlets that are nested within
the body of the loop. Figure 13 shows the transformed page
after Java code is migrated into custom tags. The child tag in
this case is an iteration action, which means this tag will
evaluate its body content (the table cells and table rows)
repeatedly until some condition becomes true (i.e. the
collection rs1 is empty). This involves implementing the
IterationTag interface by the tag class. The code within the
loop body makes a reference to the result set that is in the
top level tag. This can be simplified by adding a local variable
to the child tag for the loop that is initialized as the start of
the loop. Then the tags created for the inner children can
then easily reference the value from the tag that implements
the loop.

Fig-10:Simplified if Statement

<html><body>
</body></html>
<%
//more Java code would be here
String userId =request.getParameter("userId").trim();
String password =request.getParameter("Password").trim();
if (! entry.checkLogin (userId, password))
{
%>
<%
}
else
{
s.putValue ("userId", userId);
response.sendRedirect ("postWebLog.jsp");
}
%>
<H1 > Invalid Login</H1 >
<form action="signIn.jsp" method="POST" >
<input type="submit" value="Try Again" >
</form>

<%
}
else
{
s.putValue ("userId", userId);
response.sendRedirect ("postWebLog.jsp");
}
%></body></html>

<html><body>
//more Java code would be here
String userId = request.getParameter ("userId").trim ();
String password = request.getParameter ("Password").trim ();
boolean choice = ! entry.checkLogin (userId, password);
if (choice)
{
%>
<%
}
if (!choice)
{
s.putValue ("userId", userId);
response.sendRedirect ("postWebLog.jsp");
}
%>
<H1 > Invalid Login</H1 >
<form action="signIn.jsp" method="POST" >
<input type="submit" value="Try Again" >
</form>
<%
}
if (!choice)
{
s.putValue ("userId", userId);
response.sendRedirect ("postWebLog.jsp");
}
%>
<html><body>
</body></html>

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 12 | Dec-2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1394

Fig-11: Simplified If Statement After Transformation

Composing Cases. Obviously not all JSP pages fit into simple
choice or loop cases. The cases must compose if we are to
handle JSP web pages in general. The example used for case
four (the loop case) also llustrated the problem, having
simple code nested within the loop, and the loop itself nested
within the top level code. Nested code may refer to variables
in higher up in the scope hierarchy. Just as the scopes are

Fig-12: A loop generating a table

Fig-13: Page after transformation

nested, the resulting tags will also be nested. So if we were to
modify the example shown in Figure 10 to include a loop
generating a table inside of the form, the tags generated as
part of the loop solution would be nested within the
invalidLogin tag. Similarly, if a choice existed within a loop,
the tags generated as part of the choice would be nested
within the loops.

Our transform performs data flow analysis between the
scoping levels, identifying the scope to which a referenced
variable belongs. Code is generated using the JSP API to find
the instance of the class implementing the parent (or
ancestor) tag and invokes the appropriate get or set method
to access the variable.

6. IMPLEMENTATION

In this section, we briefly describe the implementation of the
transformation. Most of the process is implemented using
the TXL language, which is a pure functional programming
language particularly designed to support rule-based source-
to-source transformation [4]. Figure 14 illustrates our
transformation process, which includes five phases. The
preprocessing phase normalizes the source code as
described in section 3. It also performs some comment and
lexical preprocessing. The grouping phase performs an
analysis and annotates each line of normalized source code
with a tag id identifying the custom tag to which the source
code will belong.

<html><body>
<mylib:checkLogin attr1="userId" attr2=”Password”>
<mylib:invalidLogin>
<H1 > Invalid Login</H1 >
<form action="signIn.jsp" method="POST" >
<input type="submit" value="Try Again" >
</form>
</mylib:invalidLogin>
<mylib:validLogin redirectPage=”postWebLog.jsp”>
</mylib:validLogin>
</mylib:checkLogin>
<H1 > Invalid Login</H1 >
<form action="signIn.jsp" method="POST" >
<input type="submit" value="Try Again" >
</form>
<html><body>
</body></html>

<html><body>
<%
//more Java code here
String i = request.getParameter ("item");
ResultSet rs1 =CDStoreDB.searchByUPC(Integer.parseInt
(i));
%>
<table border>
<%
String title;
String price;
while (rs1.next ())
{
%>
<tr>
<%
title = rs1.getString (1);
%>
<td> Title </td >
<td> <%= title %> </td >
</tr>
<tr>
<%
price = rs1.getString (2);
%>
<td > Price </td >
<td > <%= currency.format(price)%> </td >
</tr >
</table>
</body ></html >

<html><body>
<mylib:information attr1=”item”>
<table border>
<mylib:searchResultDisplay
<tr >
<td > Title </td >
<td > <mylib:CDTitle/> </td >
</tr >
<tr >
<td > Price </td >
<td ><mylib:CDPrice/>
 </td >
</tr >
</mylib:searchResultDisplay>

</table>
</body></html>
</mylib:information>
</body></html>

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 12 | Dec-2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1395

Fig-14: Transformation Process

The first part of the analysis identifies the cases that we have
identified in this paper. It identifies control statements that
contain HTML/JavaScript and the first statement of Java
sequences within the template text that must be given their
own tags. Thus, the basic structure of the tags is identified.
The second phase of grouping assigns the remaining
statements to one of the identified tags. The tag id generated
in the group phase is mapped to a reasonable user name
such as invalid Login or CD Title by a web interface in the tag
naming phase. The code transformation phase uses the
markup from the group phase and the mapping from the tag
naming phase to generate the three outputs of the process.
These are the modernized JSP pages, the tag library
description file, and the custom tag classes. The final post-
processing phase deals with final touchups such as fixing
ommon The whole process is automated, except the tag
naming phase where the human assistance is required. The
details of the implementation, particularly, the markup
approach and the transformations are described elsewhere
.We have tested our system on 3 small systems to date
consisting of an online music store, a mini weblog
application and a guest book application. Two were obtained
from within Queen’s, the other is a sample system
downloaded from the internet. The systems comprise a total
of 14 JSP pages containing a total of 682 lines of mixed JSP

and HTML. The resulting pages contain 362 lines of tags and
HTML. 74 custom tag classes were generated.

Currently each JSP expression is translated into its own
custom tag. A simple optimization is to fold the simple JSP
expressions into one simple tag. This would liminate 23
custom tag classes.

7. RELATED WORK

There has been considerable investigation into the evolution
of web sites. This includes results in program understanding
and architectural modeling [6,7,11], clone detection and
removal [3,12], restructuring and refactoring and migration
[2,8,9,10,14,].Ricca et al. present an approach of using
rewrite rules to improve the quality of web applications. The
HTML transformations cover both interpage and intrapage
transformations and can identify six cases. Further work
illustrates a semi-automatic process to identify static pages
that can be transformed into dynamic pagesusing clustering
techniques. Jiang et al. [9] present a method to migrate a web
application to a web service by examining the generated
pages and using pattern matching techniques to infer the
services.

Hassan et al. [8] propose a framework for migrating web
applications between different development frameworks
based on water transformations, an extension of island
grammars. Ping et al. [14] present an approach for migrating
web applications from IBM Net. Data into JSP, separating
database access functionality from presentation logic. Lau et
al. [10] present a migration methodology, The Modified
Table Generation Code supported by a tool developed for the
IBM WebSphere Commerce Suite and released on IBM’s
alpha Works. An alternate approach by Ping et al.
restructures JSP based web applications by adapting them to
a controller centric architecture. Tilley et al. renovate web
applications by reengineering transactions with a user-
centered approach.

8. CONCLUSIONS

The implementation of our transformation is a greedy
approach. It attempts to group as many statements as
possible into each tag. Each web page is also processed
independently. One potentially extension is to identify
clones between pages, separating them in to separate
tags.One example is session management code ommon to
multiple pages. In this paper, we have presented a set of
transforms that can be used to implement the separation of
the presentation and business logic for existing JSP-based
webapplications. The transforms restructure the web
applications by moving Java code embedded in JSP pages
intocustom tags without hanging the original functionalities
and user interfaces of the applications. The interesting
information required for this restructuring is contained not
only in the multiple languages themselves but also in the
way they are coupled.

Original

Code
PreProcessing

Normalized

Code
 grouping

Annotated

Code tag

naming

Modernized pages

taglib xml

Custom tags

 Post processing

 Data facts

 Code transformation

Page transformation &
Taglib generation Custom tag

generation

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 12 | Dec-2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1396

An advantage of our Java code transformation is that
all business logic intensive Java code in JSP pages is moved
and encapsulated into custom tags and all elements for
presentation are kept in pages, which helps to reduce the
complexity of web applications and helps make the
restructured applications more reusable and maintainable.

9. REFERENCES

[1] Hans Bergsten, JavaServer Pages, O’Reilly 2002.

[2] T. Bodhuin, E. Guardabascio, M.Tortorella, “Migrating
COBOL Systems to the WEB by Using the MVC Design
Pattern”, Proc Working conference on Reverse Engineering,
Richmond, Virginia, pp 329-338.

[3] C. Boldyreff, R. Kewish, “Reverse Engineering to Achieve
Maintainable WWW Sites”, Working Conference on Reverse
Engineering, Stuttgart, Germany, Oct. 2001, pp. 249- 257

[4] J. Cordy, “TXL – A Language for Programming Language
Tools and Applications”, Proc ACM International Workshop
on Language Descriptions, Tools and Applications, Edinburg,
Scotland, January 2005, pp. 3-31.

[5] A. van Deursen, T. Kuipers, “Building Documentation
Generators”, Proc International Conference on Software
Maintenance, Oxford, England, 1999, pp 40-49.

[6] D. Draheim, E. Fehr, G. Weber, “JSPick – A Server Pages
Design Recovery Tool”, Proc 7th European Conference on
Software Maintenance and Reengineering, Benevento, Italy,
March 2003, pp 230-238.

[7] A. Hassan, R. Holt, “Architecture Recovery of Web
Applictions”, Proc International Conference on Software
Engineering, Orlando, Florida, May 2002, p 19-25.

[8] A. Hassan, R. Holt, “Migrating Web Frameworks Using
Water Transformations”, Proc International Computer
Software and Application Conference, Dallas, Nov. 2003 pp
296-303

[9] J. Jian, E. Stroulia, “Towards Reengineering Web Sites to
Web Service Providers”, Proc European Conference on
Software Maintenance and Reengineering, Tampere, Finland,
March 2004.

[10] T. Lau, J. Lu, J. Mylopoulos, K. Kontogiannis, “Migrating
E-commerce Database Applications to an Enterprise Java
Environment”, Information Systems Frontiers, Vol 5, N 2,
2003, pp. 149-160.

[11] G. Di Lucca, A. Fasolino, P. Tramontana, C. Visaggio,
“Towards the Definition of a Maintainability Model for Web
Applications”, Proc European Conference on Software
Maintenance and Reengineering, Tampere, Finland, March
2004, pp 279-287

[12] F. Lanubile, T. Mallardo, “Finding Function Clones in
Web Applications”, Proc European Conference on Software
Maintenance and Reengineering, Benevento, Italy, March
2003, pp 379-388.

