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Abstract - Groundwater models are mostly used to simulate 
underground water behavior when pumping aquifers for 
multiple purpose as open pits mines dewatering. More of them 
are based on the Finite Element Method (FEM) and Finite 
Difference Method (FED). Modelling aquifers simultaneously 
with other methods, such as artificial neural network, genetic 
algorithm, multiple regression or fuzzy logic is a very powerful 
tool for groundwater management especially for open pit. In 
this paper, four transfer functions were tested and their 
performance were assessed. The hyperbolic tangent transfer 
function is better than sigmoid functions for dewatering 
purpose because of his best statistical performance. Sigmoid 
functions provided poor results for prediction. Performed using 
synthetic data, the artificial neural network model with six 
nodes in a single hidden layer was more successful. It had very 
good performance along RMSE, RSR, PI, NSE, NRMSE, Pearson 
correlation and percent bias. Beyond six nodes in the hidden 
layer, the performance of the model based on the hyperbolic 
tangent function used to decrease. This behavior can be 
understood that more neurons in the hidden layers of the 
artificial neural network (ANN)increase its capability to 
memorize smallest variation due sometimes to noises than to 
clean data making it inaccurate. In other hand, the graphical 
techniques of performance assessments were carried out for all 
observation points for each scenario and the result shown that 
data are not normally distributed and the model is nonlinear. 
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1. INTRODUCTION 

In N. Sage et al., 2017 b, were developed ANNs to predict the 
impacts of mine dewatering on the groundwater elevations. 
Different architectures were considered for the ANNs, and 
the abilities of the ANNs to accurately predict the 
groundwater levels were investigated by using synthetic 
datasets, generated with a numerical groundwater model 
(refer to N. Sage et al., 2017a), for training and validation. 
From trial-and-error adjustments to the architecture, the 
four architectures yielding the best results were identified. 
These four ANNs make use of four different transfer 
functions at the neurons of their hidden layers. 

The aim of this research is to use the four identified ANNs, 
and to investigate which transfer function allows the most 
accurate prediction of the groundwater levels. To do this, 
performance analyses will be carried out by using statistical 
and graphical evaluation techniques. The groundwater levels 

predicted by the ANNs will again be compared to the 
groundwater levels obtained from the numerical model. 

Seven statistical performance evaluation techniques will be 
used. These are the Root Mean Squared Error (RMSE), 
Normalised RMSE (NRMSE), Nash-Sutcliffe Efficiency 
coefficient (NSE), Performance Index (PI), Percent Bias 
(PBIAS), RMSE-Observations Standard Deviation Ratio 
(RSR) and Pearson’s r techniques (Anderson and 
Woessener, 1992). Graphical evaluation techniques that will 
be used to investigate the performance of the ANNs include 
normal plots and residual plots. 

2. LITTERATURE REVIEW 
 
The main purpose of the performance analysis is to ensure 
that the ANN is able to generalise what was used for its 
training, rather than just memorising the relationship 
between the inputs and outputs of the training dataset. The 
ANN can be assumed robust only if the performance on an 
independent dataset (not used during training) is adequate. 

Most model evaluations are done through statistical and 
graphical techniques (Moriasi et al., 2007). The main 
statistical evaluation techniques are: 

- The Slope and Y-intercept method shows how 
well the predicted data match the observed data. In 
this techniques it assumed that compared data have 
a linear relationship, measured data are free of 
error and all errors come from predicted data. In 
reality, the measured data often have errors. For 
this reason, the Slope and Y-intercept method has to 
be used carefully; 
 

- The Pearson correlation coefficient (r) describes 
the degree of collinearity between the observed 
data and the model output (predicted data). The 
Pearson correlation coefficient ranges from -1 (the 
observed and predicted data are negatively 
correlated) to +1 (the observed and predicted data 
are negatively correlated). An r-value of zero 
indicates that there is no correlation between the 
data. The coefficient can be defined as follows: 
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Where n is the number of data points, Xi is the 
observed value of data point i, Yi is the predicted 
value for data point i, and Xmean and Ymean are the 
mean values of the observed and predicted data, 
respectively. 
 

- The Nash-Sutcliffe Efficiency coefficient (NSE or 
E) is a statistical method that calculates the 
magnitude of the measured data variance compared 
to the residual variance (Nash and Sutcliffe, 1970). 
The NSE can range from - to 1 (inclusive). If the 
value is equal to 1, it means that the model outputs 
match the observations perfectly. Values between 0 
and 1 indicate acceptable performance, whereas 
negative values indicate unacceptable performance. 
The NSE is defined as: 
 

 
 

- The Percent Bias (PBIAS) measures the general 
trend of predicted data values compared to the 
observed data values. Data values are compared to 
determine whether the predicted values are 
generally smaller or larger than the observed values 
(Gupta et al., 1999). Positive values for the PBIAS 
indicate that the model is biased towards 
underestimation, while negative values indicate that 
that the model is biased towards overestimation. 
The optimal value for the PBIAS is zero, indicating 
no bias in the predicted data. The PBIAS is 
calculated as: 
 

 
- The Root Mean Square Error (RMSE) is based on 

the difference between the observed and predicted 
values. That difference is called the “residual”. 
According to Singh et al. (2005), a lower RMSE 
indicates better performance of the model. It can be 
defined as: 

 
- The RMSE-Observations Standard Deviation 

Ratio (RSR) is a ratio of the RMSE and standard 
deviation of the observed data. It is a way of 
standardising the RMSE. The lower the RSR, the 
better the performance of the model (Moriasi et al., 
2007). The optimal value of the RSR is zero, 
indicating a perfect fit between the observed and 
predicted data. The RSR is defined as: 

 

- The Normalised RMSE (NRSME) allows the 
comparison of the performance of models where 
differences in the mean data values of the models 
may lead to different performances if evaluated 
using the standard RMSE. The optimal value of the 
NRMSE is zero. It is calculated as follows: 

 
Where Xmax and Xmin are the maximum and minimum 
values of the data in the observed dataset. 

 

- Lin and Cunningham III (1995) developed a new 
approach to fuzzy-neural knowledge extraction, 
which can be used to check the accuracy of complex 
models. They defined a parameter called the 
Performance Index (PI). They concluded that the 
lower the PI, the better the model. The PI is defined 
as followed: 

 

Graphical residual analysis is a technique, which 
allows a modeller to evaluate at first glance the 
performance of the model. It is based on the 
residual (difference between predicted and 
observed data) and is used to evaluate whether the 
four following assumptions are satisfied (Osborne 
and Waters, 2002): 
 

- Data from the different datasets display a linear 
relationship. There are several methods to 
investigate the linearity of models (Cohen and 
Cohen, 1983; Pedhazur, 1997). The commonly used 
method is the plotting of residuals as function of 
predicted values, called residual plots. The spread of 
residuals has to be approximately constant from left 
to right of the plot (random pattern) to assume that 
the model is linear. In the case of non-random 
pattern (U-shaped or inverted U), the model is said 
to be non-linear; 
 

- Data are independent. As for the linearity, the 
independence of variables is detected based on the 
residual plots. From the residual plots, a datasets 
can be judged independent (randomly distributed), 
positively correlated or negatively correlated; 
 

- Data are normally distributed. A histogram and a 
point-point plot (PP plot) can be used to test if the 
output data from the model are normally 
distributed. In a histogram, the observation that the 
data lie on a bell curve can be sufficient to indicate a 
normal distribution. The PP plot is a scatter diagram 
which compares two datasets (predicted and 
observed) of the same size and on the same scale. 
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Data are assumed to be normally distributed if the 
scatter points lie close to a line with slope 1. A 
normal probability plot, formed by plotting the 
percentile versus the residual, can also be used to 
check the normality of the model. If the plot is 
almost linear it can be assumed that data are 
normally distributed; 

 

- Data have an equal variance. The residual plot is 
also used to check the error variance. If a residual 
plot shows an increasing or decreasing trend, it can 
be concluded that the data do not have an equal 
variance. 

If any of the above assumptions are violated, the results of the 
analysis may be misleading or completely wrong. In such a 
case, data have to be refined or transformed to meet the 
assumptions of the linear regression model. If the problem 
still remains unsolved, then it will have to be assumed that 
the model is non-linear. 

 

3. STATISTICAL MODEL EVALUATION TECHNIQUES 
 
Since the finite-difference numerical model included nine 
observation wells, and since four abstraction scenarios (3, 6, 
9 and 12 abstraction wells) were modelled, a total of 36 
different datasets of modelled groundwater elevations are 
available against which the performance of the ANNs can be 
evaluated. Each dataset consists of 36 modelled values of the 
groundwater elevations at different times (Refer to N. Sage, 
2017). 

Since the performances of four different ANNs using four 
different transfer functions are to be evaluated in this 
section, it will not be possible to include the evaluations for 
each observation well, under each abstraction scenario, for 
each choice of transfer function. For this reason, only a 
selected number of evaluations will be shown and discussed. 

In Figure 1, the modelled and predicted groundwater 
elevation at observation well OBS_9 are shown for the four 
dewatering strategies as examples of the responses 
obtained. In this figure, the modelled (FEM) groundwater 
elevations, as well as the groundwater elevations predicted 
by four ANNs using different transfer functions, are plotted 
against the dates of measurement. 

It can be seen that the predictions of hydraulic heads made 
by the ANNs models generally underestimate the hydraulics 
heads from the numerical model. It can be also seen that 
ANN using the hyperbolic transfer function (HTF) yielded 
the best predictions of the modelled (FEM) hydraulic heads 
for three of the four dewatering scenarios (3, 6, 9 and 12 
abstractions wells). It can furthermore be seen that the 
accuracy of the head predictions made by the ANNs 
generally decreased over time. However, for all observation 
points, the difference between the modelled and predicted 
hydraulic heads seldom exceeded 0.5 m. 

 

Figure 1: Modelled and predicted hydraulic heads at 
observation well OBS_9 for a dewatering strategy using 12 

dewatering wells 

To verify the accuracy of the hydraulic head predictions, 
statistical techniques were used to assess the performance of 
the different ANNs. The performance analyses were carried 
by considering the modelled and predicted hydraulic heads 
at all nine observation points (OBS_1 to OBS_9) for all four 
dewatering simulations (using 3, 6, 9 and 12 abstraction 
wells). 

In Figure -2, the Root Mean Square Errors (RMSEs) for the 
hydraulic head predictions made by the ANNs using the four 
different transfer functions are shown at all nine observation 
points. The RMSEs for the ANNs using the BSF, LSF, ZLBSF 
and HTF are shown in green, blue, brown and orange, 
respectively. From this figure it can be seen that the HTF 
yielded the smallest errors at most observation wells, 
followed by the BSF. The ANN using the ZLBSF and LSF gave 
the largest errors (poorest predictions). Similar observations 
can be made when considering the Normalised Root Mean 
Square Errors (NRMSEs) (refer to Figure -3). 

Figure -4 shows the RSR calculated for the hydraulic head 
data at all the observation wells. From this figure, it is seen 
that the ANN using the HTF yielded the lowest RSR values at 
most observation wells, and therefore gave the best 
performance in predicting the hydraulic heads at the 
different piezometers. 

In Figure -5 the PBIAS for the groundwater elevation data at 
all the observations wells is shown. Again the ANN with the 
HTF gives the lowest (closest to zero) values for the PBIAS at 
most observation wells. This ANN therefore performed the 
best in predicting the hydraulic heads. 

In Figure -6 the Person’s r value is shown for all the 
observation wells. These values all range between 
approximately 0.88 and 1. According to Section 2, this means 
that there is a strong positive correlation between the 
datasets. The positive correlation implies that increases or 
decreases in the observed data correspond to similar 
increases and decreases in the predicted data. The Pearson’s 
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r correlation coefficients therefore indicate that the ANN was 
able to successfully predict changes in the hydraulic heads. 
At six of the nine observation wells, the ANN using the HTF 
had r-values closer to 1 than the ANNs using the other 
transfer functions. It can therefore be concluded that the 
ANN using the HTF performed better than the other ANNs in 
predicting the hydraulic heads at the observations wells. 

From Figure -7, it is seen that large negative NSE-values 
were calculated at some of the observation wells for the 
predictions made by the ANNs using the ZLBSF, LSF and BSF. 
Positive or small negative NSF-values were calculated for the 
ANN using the HTF. This ANN therefore outperformed the 
others in its predictions of the hydraulic heads. 

From Figure -8 it can be seen that, at most wells, the lowest 
PI values were calculated for the ANN using the HTF. This 
transfer function therefore yielded the best results. 

 

Figure -2: Root Mean Square Errors (RMSEs) for the 
hydraulic head predictions at the different observation 

wells 

 

Figure -3: Normalised Root Mean Square Error (NRMSE) 
for the hydraulic head predictions at the different 

observation wells 

 

Figure -4: RMSE-observations Standard deviation RATIO 
(RSR) for all observation points 

 

Figure -5: Percent BIAS (PBIAS) for all observation points 

 

Figure -6: Pearson correlation coefficient (r) for the 
hydraulic head predictions at the different observation 

wells 
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Figure -7: Nash-Sutcliffe Efficiency (NSE) for the hydraulic 
head predictions at the different observation wells 

 

Figure -8: Performance Index (PI) for all observation 
points 

4. GRAPHICAL MODEL EVALUATION TECHNIQUES 
 
From the statistical evaluation techniques, the model based 
on the HTF was found to be most suitable to predict the 
groundwater elevations. In this section, graphical residual 
analysis will be used to further assess the performance of the 
ANN using this transfer function.  

In Figure -9, the hydraulic heads predicted at OBS_9 by the 
ANN using the HTF are plotted against the modelled (FEM) 
hydraulic heads for the four dewatering scenarios (3, 6, 9 
and 12 dewatering wells). From this figure, it can be seen 
that predicted values give good approximations of the 
modelled values. The R-squared values of the linear fits 
range between 0.91 and 0.99, indicating that hydraulics 
heads predicted by ANN fit the regression line well. 

However, it is known that the R-squared value cannot 
determine if the hydraulics heads predicted by the ANN are 
biased. For this reason, normal probability plots and residual 
plots were constructed for the data at the different 
observation wells. There are several methods to test the 
normality of data distribution. For graphical analysis, the 

common techniques are the quantile-quantile (Q-Q) 
probability plot and the normal probability plot. The Q-Q 
plot is a technique used to determine if the data used for the 
analysis are from populations with the same distribution. 
The normal probability plot helps to evaluate if the dataset 
follows a normal or Weibull distribution (Chambers et al., 
1983). In the current study, normal probability plots were 
used. These plots are graphs showing the percentile of the 
normal distribution against the residual values. 

The normality plot for observation well OBS_9 during the 
four dewatering strategies is presented in Figure -10. From 
this figures it can be observed that there are minor 
deviations from the straight line fit. It can therefore be 
concluded that the data are normally distributed, since that 
plot shows strong linear patterns with R-squared values 
close to 1. No significant outliers are observed in the data. 

The comparison between the outputs from the ANN and the 
FEM revealed good agreement between these two datasets. 
However, further examination of the data by means of 
residual plots could reveal systematic differences between 
the two datasets. Graphical residual analysis is used in this 
research to verify the quality of the agreement between the 
modelled and predicted data to determine whether the ANN 
needs further refinement for linearization. 

Residual plots are firstly used to determine if the data fits the 
linearity and homogeneity of the variance assumptions. The 
plots have to be randomly distributed if the variance is 
homogeneous. To meet the linearity requirement, the 
residuals have to be equally scattered above and below the 
x-axis of the plot. 

The residual plots of observation well OBS_9 is shown in 
Figure -11 for the four dewatering strategies. From that 
figure it is seen that the residual plots have non-random, 
inverted U-shaped patterns, suggesting that a better fit to the 
data could have been obtained using a non-linear model. The 
shapes of the residual plots suggest that the function used to 
describe data should be quadratic. 

In an attempt to improve the predictions of the ANN, the 
ANN was refined by transformation of the data to achieve 
linearity. Transforming a dataset is to re-express it with 
another measurement scale using an appropriate 
mathematical operation. A non-linear transformation 
increases or decreases a linear relationship between 
variables, changing their correlation by so-doing. 

The challenge of variable refinement is to find the method of 
transformation appropriate to linearize the dataset at hand. 
Several transformation methods were used in the current 
investigation to randomize the residual plots in order to 
meet the linearity assumptions. However, it was found that 
none of these transformations was able to achieve linearity. 
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Figure -9: ANN versus FEM hydraulic heads for 
observation point OBS_9 using three dewatering wells 

 

Figure -10: Normal probability plot for observation point 
OBS_9 using three dewatering wells 

 

Figure -11: Residuals plots for observation point OBS_9 
using three dewatering wells 

 

7. DISCUSSION AND CONCLUSION 
 
The main objective of this research was to use statistical 
methods to evaluate which transfer function used by the 
different ANNs results in the best prediction of the hydraulic 
heads obtained from the numerical model. ANNs using four 
different transfer functions were used and their 
performances were evaluated based on seven statistical 
evaluation techniques. The statistical evaluation results 
show that the ANN using the HTF best predicts the effects of 
the dewatering process at the open pit. 

To simplify the concept, it is important to generate 
mathematical relation which can describe more easily the 
model. Then comes the need to use graphical techniques. 

From the graphical residual analysis it is seen that there is a 
systematic non-linearity between the modelled and 
predicted datasets. Despite this non-linearity, all the other 
graphical evaluation techniques showed that the ANN was 
successful in predicting the hydraulic heads with high 
accuracy. For further researches, the developed ANN will be 
applied to a real open pit mine to predict the impact of 
dewatering strategies. 
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