
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 12 | Dec-2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1554

A Survey of Password Attacks and Safe Hashing Algorithms

Tejaswini Bhorkar

Student, Dept. of Computer Science and Engineering, RGCER, Nagpur, Maharashtra, India

---***---
Abstract - To authenticate users, most web services use pair of
username and password. When a user wish to login to a web
application of the service, he/she sends their user name and
password to the web server, which checks if the given username
already exist in the database and that the password is identical to
the password set by that user. This last step of verifying the
password of the user can be performed in different ways. The user
password may be directly stored in the database or the hash value
of the password may be stored. This survey will include the study
of password hashing. It will also include the need of password
hashing, algorithms used for password hashing along with the
attacks possible on the same.

Key Words: Password, Hashing, Algorithms, bcrypt, scrypt,
attacks, SHA-1

1.INTRODUCTION

Web servers store the username and password of its users to
authenticate its users. If the web servers store the passwords of
its users directly in the database, then in such case, password
verification is just comparison of two strings. However, this is
extremely risky and irresponsive approach as the attacker who
gains access to the server database has access to the passwords
of all the users. Thus, now-a-days websites stores the hash value
of the password of its users instead of storing the password
directly. The goal of password hashing is to prevent an attacker
to read the passwords even if he/she gains access to the
database.

1.1 Hashing

Hashing is a type of algorithm that takes data of any size and
converts it into data of fixed size. The main difference between
hashing and encryption is that a hash is irreversible. Hash
functions are used for hashing. A hash function is any function
that can be used to map data of arbitrary size to data of fixed
size. The output of the hash function is called hash codes, hash
values, hash sums, or hashes.

A hash function should satisfy the following:

a) Two different messages should not have the same hash
value. Thus, the hash function should be resistant against
collision.

b) Given a hash value, it should be difficult or practically
impossible to generate the corresponding message. Thus, the
hash function should have pre-image resistance.

c) Given a message, it should be infeasible to find another

message that would generate the same hash as that of the
first message. Thus, the hash function should be resistant to
second-pre-image.

1.2 Hashing Algorithms

Different hash algorithms are used in order to generate hash
values. Some commonly used hash functions include the
following:

• MD5

• SHA-1

• SHA-2

• SHA-3

MD5:

This algorithm takes data of arbitrary length and produces
message digest of 128 bits (i.e. 16 bytes). In this algorithm,
the input message is broken into chunks of 512-bit blocks.
The message is padded by a 1 followed by zeros so that the
message length is 64 bits less than a multiple of 512. The rest
of the bits are filled with 64 bits representing to the length of
original message. This hashing algorithm is broadly utilized
but it is inclined to collisions. However, in practise, the
collision attack is too slow to be useful. This is broken in
regard to collisions but not in regard to pre-images or
second-pre-images.

SHA-1:

Secured hash function 1 is a hash algorithm that takes a
string of any length and reduces it to a message digest of 160
bits. In this algorithm, message is "padded" by a 1 and
followed by as many 0's required to make the message
length equal to 64 bits less than an even multiple of 512. 64-
bits indicating the length of original message are appended
to the end of padded message. Padded message is processed
in 512-bit blocks. Cryptographic shortcomings have been
found for SHA-1, and along these lines, the standard was
never again endorsed for most cryptographic users after
2010.

SHA-2:

Secured hash function 2 is a hash algorithm that takes a string
of any length and reduces it to a message digest. The SHA-2
family comprises of six hash functions with hash values that are

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 12 | Dec-2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1555

224, 256, 384 or 512 bits: SHA-224, SHA-256, SHA-384, SHA-
512, SHA-512/224, and SHA-512/256. In this algorithm,
message is “padded” with a 1 and as many 0’s as necessary to
bring the message length to 64 bits less than an even multiple
of 512. 64-bits indicating the length of original message are
appended to the end of padded message. Padded message is
processed in 512-bit blocks.

SHA-3:

SHA-3 standard was released on 5th of august 2015. SHA3 uses
sponge construction which has two phases, absorbing phase
and squeezing phase. The message blocks must be XORed into
subset in the absorbing phase, which is then transformed. In the
squeezed phase, output blocks are read from the same subset of
state, alternated with state transformations. Different variants
of SHA-3 include SHA3-224, SHA3-256, SHA3-384, and SHA3-
512 producing message digest of 224,256,384 and 512 bits and
uses block size of 1152, 1088, 832, and 576 bits respectively.

2. Password Attacks

Most web servers force their users to generate password
which is at least 8 characters long and contain letters,
numbers, signs, and at least one capital letter. This is
because, in order to prevent attackers to identify user’s
password, we should force the users to select a strong
password apart from choosing a good hashing function.
There are different strategies to attack user passwords.
Some of them include the following:

a. Dictionary attacks: With a dictionary attack, the attacker
will try to use word list, these can consist of mostly used
words, passwords, years, names, etc. For each word, the
attacker will run the hash algorithm and see if the generated
hash is same as the hash in the database. If this is the case,
then the attacker knows the word from which the hash was
derived is the password.

b. Brute force: With brute force attack, the attacker will try all
the possible combinations of characters. When using password
of at least 8 characters long, only using the ASCII character set,
there are 128^8 possibilities of passwords.

c. Lookup Tables: The general idea is to pre-compute the
hashes of the passwords in a password dictionary and store
them, and their corresponding password, in a lookup table data
structure. Lookup tables are great way for cracking many
hashes of a similar sort quickly. A good implementation of a
lookup table can process hundreds of hash lookups per second,
even when they contain many billions of hashes.

Rainbow tables: Rainbow tables are a time-memory trade-
off technique. They are similar to lookup tables, except that
the hash cracking speed is compromised to reduce the size of
lookup tables. Because they are smaller, the solutions to
more hashes can be stored in the same amount of space,
making them more effective. Rainbow tables are capable of

cracking any md5 hash of a password which is up to 8
characters long exist.

2.2 Need for Hashing & its Properties

If an attacker gets a red access to our database, we don’t want
him to retrieve the passwords plaintext hence we hash
passwords. We often store usernames, email addresses and
other personal information in our database. Security rule #1
dictates that users need to be protected from themselves. We
can make them aware of the risks, we can tell them not to re-use
passwords, but we all know that in the end there will still be
people who use the same password for their Facebook, Gmail,
LinkedIn and corporate email. What you do not want is that
when the attacker gets his hand on your database, he
immediately has access to all the above accounts
(usernames/email addresses will be the same). Hashing
passwords is to keep this from happening, when the attacker
gets his hands on your database; you want to make it as difficult
as possible to redeem those passwords using a brute-force
attack. Hashing passwords won't make your site any more
secure, however it will perform harm regulation in case of a
breach.

Properties-

Following are the properties that should be fulfilled by
password hashing:

a) In order to prevent brute force attack of compromising
the data in one run, password hashing should have a unique
salt per password.

Salt and Pepper: Before hashing a password, a unique
value, known as salt, is appended (depending on the
algorithm) to the password. Salt is used to prevent attack
using rainbow tables. Information provided by the user
should not be used in the generation of salt as this will result
in the generation of same hash value from different
databases given the same user information and password.

Pepper is a secret value or key that is used to turn the hash into
a HMAC. HMAC is a hash function. However, it cannot be
reproduced without knowing the key. Thus, this increases the
security if the attacker has access to database but doesn’t have
the access to the place where the key is stored. If the key can be
obtained by the attacker, then, the pepper will not add any
security to the hash function.

b) Executing the function once must be faster i.e. the
algorithm should be fast on software.

c) In order to prevent brute force attack on distributed
systems, execution of the function concurrently should be
slow i.e. the function should be slow on hardware.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 12 | Dec-2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1556

Thus, from the above properties, it is clear that a password
hashing algorithm should be slow in order to prevent brute
force attack. This eliminates the use of MD5, SHA-1, SHA-2
and SHA-3 hash algorithms. Below algorithms can be used
for password hashing.

2.3 Safe Password Hashing Algorithms

Following are the three algorithms that are safe to use for
password hashing:

a) PBKDF2: This algorithm is used to derive keys. Due to the
property of being slow, the PBKDF2 algorithm is used for
hashing passwords even though it was not intended for
password hashing. The resulting derived key can be used to
securely store password. The following is done by PBKDF2
in order to derive a key:

K = PBKDF2 (PRF, Password, Salt, c, dkLen)

where,
DK: Derived key.
PRF: Preferred HMAC function.
c: amount of iterations.
dkLen: length of delivered key.

A salt should be at least 64-bits in length and the minimum
amount of iterations should be 1024. The algorithm applies
HMAC function and repeats the calculations 1024 times of
the result. This means that hashing the password is 1024
times slower. However, when brute forcing on distributed
systems, this algorithm does not offer a lot of protection.

b) bcrypt: Currently the default secure standard for
password hashing is bcrypt. It is derived from the Blowfish
block cipher. Blowfish block cipher uses loop up tables,
which are initially in memory, to generate the hash. Bcrypt
has been around for 14 years, based on a cypher that is that
has been around for over 20 years. This algorithm has been
well tested and hence is considered as the standard of
password hashing.

c) scrypt: scrypt is a hashing algorithm which has same
properties as bcrypt, except for that when the number
rounds increase, the computation time and memory space
required to produce hash increments exponentially. Scrypt
concentrates on operations that are hard for anything else
than a computer, for example, random memory access.
Scrypt was created in response to the increasing attack on
bcrypt. Scrypt uses snapshots that are storage of series of
intermediate state data. These snapshots are used in further
derivation operations. These snapshots, that are stored in
memory, grow exponentially when a round is increased. So,
when a round is added, it makes the brute force attack on
the password exponentially harder. Scrypt has been around
for only couple of years and thus is still relatively new
compared to bcrypt.

3. CONCLUSIONS

This survey paper compares different hashing algorithms
and their drawbacks. The user must know the types of
attacks and must apply appropriate hashing algorithm to
avoid attacks.

REFERENCES

1. Review Paper on Secure Hashing Algorithm and Its
Variants – By Priyanka Vadhera, Bhumika Lall
(http://www.ijsr.net/archive/v3i6/MDIwMTQxOA==.p df)

2. Cryptographic Hash Functions: A Review – by Rajeev
Sobti,G.Geetha(
http://citeseerx.ist.psu.edu/viewdoc/download?doi=1
0.1.1.402.7241&rep=rep1&type=pdf)

3.
https://en.wikipedia.org/wiki/Cryptographic_hash_functi
on

4. SHA-1 hash function under pressure – heise Security

5. Henri Gilbert, Helena Handschuh: Security Analysis of
SHA-256 and Sisters. Selected Areas in cryptography2003

6. http://www.unixwiz.net/techtips/iguide-
 cryptohashes.html

7. https://media.blackhat.com/us-13/US-13-Aumasson-
 Password-Hashing-the-Future-is-Now-WP.pdf

8. http://stackoverflow.com/questions/326699/differenc
 e-between-hashing-a-password-and-encrypting-it

http://www.ijsr.net/archive/v3i6/MDIwMTQxOA==.pdf
http://www.ijsr.net/archive/v3i6/MDIwMTQxOA==.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.402.7241&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.402.7241&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.402.7241&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.402.7241&rep=rep1&type=pdf
https://en.wikipedia.org/wiki/Cryptographic_hash_fun
https://en.wikipedia.org/wiki/Cryptographic_hash_fun
https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/Cryptographic_hash_function
6.%20http:/www.unixwiz.net/techtips/iguide
http://www.unixwiz.net/techtips/iguide-cryptohashes.html
https://media.blackhat.com/us-13/US-13-Aumasson-Password-Hashing-the-Future-is-Now-WP.pdf
https://media.blackhat.com/us-13/US-13-Aumasson-Password-Hashing-the-Future-is-Now-WP.pdf
http://stackoverflow.com/questions/326699/difference-between-hashing-a-password-and-encrypting-it
http://stackoverflow.com/questions/326699/difference-between-hashing-a-password-and-encrypting-it

