
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 3 | Mar -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 435

A Study on Detection and Prevention of SQL Injection Attack

Rashmi Yeole1, Shubhangi Ninawe2, Payal Dhore3, Prof. P. U. Tembhare4

123Student, Dept. of Computer Technology, Priyadarshini college of Engineering and Architecture
Maharashtra, India

4Professor, Dept. of Computer Technology, Priyadarshini college of Engineering and Architecture
Maharashtra, India

---***---

Abstract - Various item systems consolidate an electronic
section that makes them available to individuals as a rule by
method for the web and can open them to a combination of
online ambushes. One of these ambushes is SQL imbuement
which can give attackers unapproved access to the databases.
This paper displays an approach for securing web applications
against SQL implantation. Design matching is a structure that
can be utilized to perceive or see any anomaly convey a
consecutive activity. This paper moreover shows an
affirmation and avoidance strategy for guaranteeing SQL
Injection Attack (SQLIA) utilizing Aho-Corasick design
matching figuring furthermore, it focuses on different parts
that can distinguish a couple SQL Injection ambushes.

Key Words: SQL Injection attack, Pattern matching, Static
pattern, Dynamic Pattern, Anomaly Score

1. INTRODUCTION

SQL Injection Attacks have been depicted as a champion
among the most affirmed perils for Web applications [4] [1].
Web applications that are weak against SQL mixture may
permit an attacker to development complete access to their
key databases. Since these databases once in a while contain
sensitive buyers or client data, the accompanying security
infringement can meld markdown blackmail, loss of puzzle
data, and contortion. Every so often, aggressors can even
utilize a SQL implantation absence of insurance to take
control of and break down the system that has the Web
application. Web applications that are helpless against SQL
Injection Attacks (SQLIAs) are regardless of what you look
like at it. To be perfectly honest, SQLIAs have feasibly based
on detectable abused people, for example, Travelocity,
Ftd.com, and Surmise Inc. SQL mixture suggests a class of
code-implantation attacks in which information gave by the
client is joined in a SQL request in such a path, to the point
that bit of the client's data is overseen as SQL code. By using
these vulnerabilities, an attacker can submit SQL summons
obviously to the database. These attacks are a certifiable risk
to any Web application that gets commitment from clients
and hardens it into SQL request to a basic database. Most
Web applications utilized on the Web or inside colossal
business structures work thusly and could along these lines
are defenseless against SQL imbuement. A champion among
the most profitable instruments to shield against web strikes
utilizes Interruption Discovery System (IDS) and Network
Intrusion Detection System (NIDS). An IDS utilizes mistreat

or variety from the standard range to guarantee against
ambush [3]. IDS that utilization idiosyncrasy affirmation
system makes a gage of typical use designs. Misuse
recognizing evidence approach utilizes particularly known
examples of unapproved prompt to suspect and discover
occurring for all intents and purposes indistinguishable sort
of strikes. These sorts of examples are called as signature
[8][3]. NIDS are not help for the association organized
applications (web ambush); in light of the way that NIDS are
working lower level layers [4].

2. LITERATURE SURVEY
Beuhrer et. al. [6] has delineated a framework to thwart

and to get rid of SQL imbuement ambushes. The technique
depends on taking a gander at, the parse tree of the SQL
verbalization before fuse of customer commitment with the
one that resulting after thought of commitment, at run time.
This structure execution is wanted to limit the attempts the
designer needs to take; since, it subsequently gets, both the
bona fide address and the proposed request and that also,
with unimportant changes on a very basic level to be done by
the product build. Saltzer and Schroeder [7] propose a
security structure against the ambushes like SQL Injection.
They proposed a structure using diverse stages. One of them
was the shield defaults, on which the positive ruining is poor
or takes after, imparts that a traditionalist course of action
must be locked in around debate why articles should be open,
rather than why they should not. In an expansive framework
two or three articles will be inadequately considered, so a
default of nonappearance of assent is more secure. A chart or
utilize botch up in a section that gives unequivocal agree has
a tendency to bomb by declining approval, a shielded
condition, since it will be instantly seen. Then again, a setup
or utilize botch in a structure that unequivocally rejects get to
has a tendency to flop by permitting get to, a disappointment
which may go unnoticed in customary utilization. This
control applies both to the outward appearance of the
affirmation structure and to its hid execution.

Yusufovna [10] has displayed a use of data burrowing
approaches for IDS. Intrusion revelation can named as of
perceiving exercises that attempt to chance the security,
constancy and openness of the benefits of a system. IDS
model is displayed and furthermore its confinement in
choosing security encroachment are presented in this paper.

Halfond and Orso [11] had presented a development for
disclosure and abhorrence of SQLIA. This method made relied
on upon the approach that normal to recognize the noxious
request before their execution inside the database. To thus

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 3 | Mar -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 436

manufacture a model of the true blue or right inquiries, the
static part of the methodology used the program
examination. This could be delivered by the application itself.
The strategy used the runtime watching for examination of
capably made request and to check them against the static
shape show. Halfond and Orso [12] had proposed a technique
for countering SQL implantation. The system truly joined the
traditionalist static examination and runtime checking for
disclosure and stoppage of unlawful request before they are
executed on the database. The framework gathers a direct
model of the valid inquiries that could be made by the
application in its static parts. The framework evaluated the
logically created request for consistence with statically build
show in its dynamic part. W. G. J. Halfond et. al. [13], proposed
another, very motorized method for ensuring existing Web
applications against SQL implantation. This strategy has both
processed and prudent positive conditions over most existing
structures. From the found out point of view, the
methodology is locked in around the initially thought to be
certain demolishing and the likelihood of dialect structure
significant evaluation. From the sensible perspective, the
methodology is in the meantime right and helpful and has
inconsequential strategy necessities.

3. RELATED WORK
3.1 Types of SQL Injection Attacks
In this fragment, we show and discuss the different sorts of
SQL Injection Attacks. The unmistakable sorts of strikes are
overall not performed in disengagement; a powerful bit of
them are used together or progressively, dependent upon
the specific targets of the attacker. Note furthermore that
there are unlimited assortments of each ambush sort.
3.1.1 Tautologies
Tautology-based assaults are among the least difficult and
best known sorts of SQLIAs. The general objective of a
tautology based assault is to infuse SQL tokens that make the
inquiries restrictive proclamation dependably assess to true
[2]. This procedure infuses proclamations that are constantly
genuine so that the inquiries dependably return comes
endless supply of WHERE condition [15].

Injected query: select name from user_details where
username = "abc" and watchword = or1 = 1.

3.1.2 Union Queries
SQL permits two inquiries to be joined and returned as one
outcome set. For instance, SELECT col1,col2,col3 FROM
table1 UNION SELECT col4,col5,col6 FROM table2 will return
one outcome set comprising of the aftereffects of both
inquiries Using this system, an aggressor can trap the
application into returning information from a table not quite
the same as the one that was planned by the designer.
Infused question is connected with the first SQL inquiry
utilizing the catchphrase UNION as a part of request to get
data identified with different tables from the application [2].

Original query: select acc-number from user_details where
u_id = 500

Injected query: select acc-number from user_details where
u_id = ‘500’ union select pin from acc_details where

u_id=’500’ [15]
3.1.3 Piggybacked

In this attack, an intruder tries to infuse extra questions
alongside the first inquiry, which are said to "piggy-back"
onto the first question. Thus, the database gets numerous
SQL questions for execution extra inquiry is added to the
first inquiry. This should be possible by utilizing a question
delimiter, for example, ";", which erases the table determined
[15].

Injected Query: select name from user_details where
username = ‘abc’; droptable acc –

3.1.4 Timing attack
In this type of attack, the attacker surmises the data
character by character, contingent upon the yield type of
genuine/false. In time based assaults, assailant presents a
postponement by infusing an extra SLEEP (n) call into the
question and after that watching if the site page was really
by n seconds [15].
3.1.5 Blind SQL injection attacks
Attacker ordinarily tests for SQL infusion vulnerabilities by
sending the info that would bring about the server to
produce an invalid SQL question. In the event that the server
then returns a mistake message to the customer, the
aggressor will endeavor to figure out segments of the first
SQL inquiry utilizing data picked up from these blunder
messages [15].
3.2 Aho–Corasick algorithm
In software engineering, the Aho–Corasick calculation is a
string looking calculation created by Alfred V. Aho and
Margaret J. Corasick. It is a sort of lexicon matching
calculation that finds components of a limited arrangement
of strings (the "word reference") inside information content.
It coordinates all strings at the same time. The
unpredictability of the calculation is straight in the length of
the strings in addition to the length of the looked content in
addition to the quantity of yield matches. Take note of that
since all matches are found, there can be a quadratic number
of matches if each substring matches (e.g. word reference =
an, aa, aaa, aaaa and input string is aaaa).
Casually, the calculation develops a limited state machine
that takes after a trie with extra connections between the
different inside hubs. These additional interior connections
permit quick moves between fizzled string matches (e.g. a
look for feline in a trie that does not contain feline, but rather
contains truck, and in this manner would come up short at
the hub prefixed by ca), to different branches of the trie that
share a typical prefix (e.g., in the past case, a branch for trait
may be the best sidelong move). This permits the machine to
move between string matches without the requirement for
backtracking.
At the point when the string word reference is known ahead
of time (e.g. a PC infection database), the development of the
machine can be performed once disconnected and the
assembled robot put away for later utilize. For this situation,
its run time is straight in the length of the contribution in
addition to the quantity of coordinated passages. The Aho–
Corasick string matching calculation framed the premise of
the first Unix order fgrep.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 3 | Mar -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 437

Example:
In this illustration, we will consider a lexicon comprising of
the accompanying words: {a,ab,bab,bc,bca,c,caa}.
The diagram beneath is the Aho–Corasick information
structure built from the predetermined lexicon, with every
line in the table speaking to a hub in the trie, with the section
way showing the (one of a kind) arrangement of characters
from the root to the hub.
The information structure has one hub for each prefix of
each string in the word reference. So if (bca) is in the word
reference, then there will be hubs for (bca), (bc), (b), and ().
In the event that a hub is in the word reference then it is a
blue hub. Else it is a dim hub.

A visualization of the trie for the dictionary on the right.
Suffix links are in blue; dictionary suffix links in green. Nodes
corresponding to dictionary entries are highlighted in blue.
There is a dark coordinated "tyke" bend from every hub to a
hub whose name is found by attaching one character. So
there is a dark curve from (bc) to (bca).
There is a blue coordinated "postfix" bend from every hub to
the hub that is the longest conceivable strict addition of it in
the chart. For instance, for hub (caa), its strict additions are
(aa) and (an) and (). The longest of these that exists in the
diagram is (a). So there is a blue circular segment from (caa)
to (a). The blue curves can be processed in straight time by
more than once crossing the blue bends of a hub's parent
until the navigating hub has a youngster matching the
character of the objective hub.

There is a green "lexicon addition" curve from every hub to
the following hub in the word reference that can be come to
by taking after blue bends. For instance, there is a green
circular segment from (bca) to (an) on the grounds that (an)
is the main hub in the word reference (i.e. a blue hub) that is
achieved when taking after the blue circular segments to (ca)
and afterward on to (a). The green circular segments can be
registered in direct time by over and over navigating blue
bends until a filled in hub is found, and memorizing this data.
At every progression, the present hub is stretched out by
discovering its kid, and if that doesn't exist, discovering its
postfix's youngster, and if that doesn't work, discovering its
addition's postfix's tyke, et cetera, at long last consummation
in the root hub if nothing's observed some time recently.
At the point when the calculation achieves a hub, it yields all
the word reference passages that end at the present
character position in the info content. This is finished by
printing each hub came to by taking after the lexicon
addition joins, beginning from that hub, and proceeding until
it achieves a hub with no word reference postfix connect.
What's more, the hub itself is printed, in the event that it is a
word reference passage.
Execution on information string abccab yields the
accompanying strides:

3.3 Proposed System
In web security issues, SQLIA has the top generally need.
Fundamentally, we can organize the area and balancing
activity strategies into two general classes. In the first place
approach is endeavoring to recognize SQLIA through

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 3 | Mar -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 438

checking Anomalous SQL Query structure using string
matching, design matching and address taking care of. In the
second approach uses data conditions among data things
which are more unwilling to change for recognizing
vindictive database works out. In both the classes,
substantial bits of the experts proposed various
arrangements with consolidating data mining and
interference area frameworks. Hal warm et al [21]
developed a methodology that uses a model–based approach
to manage distinguish unlawful questions before they are
executed on the database. William et al [20] proposed a
structure WASP to check SQL Injection Attacks by a
procedure called positive dirtying. Srivastava et al [22]
offered a weighted gathering burrowing approach for
recognizing data base assaults. The dedication of this paper
is to propose a procedure for perceiving and envisioning
SQLIA using both static stage and element stage. The
peculiarity SQL Queries are disclosure in static stage. In the
dynamic stage, if any of the request is perceived as anomaly
question then new example will be produced using the SQL
Query and it will be added to the Static Pattern List (SPL).

Figure 1: Architecture of SQLIA Detection

CONCLUSIONS
In this paper, we showed a novel system against SQLIAs; we
concentrated a plan for affirmation and killing action of SQL
Injection Attack (SQLIA) utilizing Aho–Corasick design
matching calculation. The investigated plan is assessed by
utilizing case of most likely comprehended strike designs.
The technique is totally automated and recognizes SQLIAs
using a model-based approach that solidifies static and
component examination. This application can be used with
various databases.

REFERENCES
[1] M. A. Prabakar, M. KarthiKeyan, K. Marimuthu, “An

Efficient Technique for Preventing SQL Injection Attack
Using Pattern Matching Algorithm”, IEEE Int. Conf. on
Emerging Trends in Computing, Communication and
Nanotechnology, 2013.

[2] William G.J. Halfond and Panagiotis Manolios, “WASP:
Protecting Web Applications Using Positive Tainting and
Syntax-Aware Evaluation”, IEEE TRANSACTIONS ON
SOFTWARE ENGINEERING, VOL. 34, NO. 1,
JANUARY/FEBRUARY 2008

[3] E. Bertino, A. Kamra, E. Terzi, and A. Vakali, “Intrusion
detection in RBAC-administered databases”, in the
Proceedings of the 21st Annual Computer Security
Applications Conference, 2005.

[4] E. Bertino, A. Kamra, and J. Early, “Profiling Database
Application to Detect SQL Injection Attacks”, In the
Proceedings of 2007 IEEE International Performance,
Computing, and Communications Conference, 2007.

[5] E. Fredkin, “TRIE Memory”, Communications of the ACM,
1960.

[6] G. T. Buehrer, B. W. Weide, and P. A. G. Sivilotti, “Using
Parse Tree Validation to Prevent SQL Injection Attacks”,
Computer Science and Engineering,The Ohio State
University Columbus, 2005.

[7] J. H. Saltzer, M. D. Schroeder, “The Protection of
Information in Computer Systems”, In Proceedings of
the IEEE, 2005.

[8] Kamra, E. Bertino, and G. Lebanon, “Mechanisms for
Database Intrusion Detection and Response”, in the
Proceedings of the 2nd SIGMOD PhD Workshop on
Innovative Database Research, 2008.

[9] S. Axelsson, “Intrusion detection systems: A survey and
taxonomy”, Technical Report, Chalmers University,
2000.

[10] S. F. Yusufovna, “Integrating Intrusion Detection System
and Data Mining”, IEEE Ubiquitous Multimedia
Computing, 2008.

[11] W. G. J. Halfond and A. Orso, “AMNESIA: Analysis and
Monitoring for NEutralizing SQL Injection Attacks”,
College of Computing, Georgia Institute of Technology,
2005.

[12] W. G. J. Halfond and A. Orso, “Combining Static Analysis
and Runtime Monitoring to Counter SQL Injection
Attacks”, College of Computing, Georgia Institute of
Technology, 2005.

[13] W. G. J. Halfond, A. Orso, and P. Manolios, “Using Positive
Tainting and Syntax-Aware Evaluation to Counter SQL
Injection Attacks”, Proceedings of the 14th ACM
SIGSOFT international symposium on Foundations of
software engineering, 2006.

[14] V. Aho and Margaret J. Corasick, “Efficient string
matching: An aid to bibliographic search”,
Communications of the ACM, 1975.

[15] Mahima Srivastava, “Algorithm to Prevent Back End
Database against SQL njection Attacks”, 2014
International Conference on Computing for Sustainable
Global Development (INDIACom).

