
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 03 | Mar -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1378

HPC Cloud Burst Using Docker

Khandave Devendra , Kumbhakarn Swati, Kulkarni Shruti, Janbandhu Shreejeet

Pune Institute of Computer Technology,
Department of Computer Technology,

Pune University
Pune,India

--- --------------------------------

Abstract - Cloud Bursting is an application model in which
an application runs in a private cloud or data center and
burst into a public cloud when the demand for computing
capacity spikes. High Performance Computing (HPC)
application require system with environments for maximum
use of limited resources to facilitate efficient computations.
However, these systems are faced with a large trade-off
between efficient resource allocation and minimum
execution times for the applications executing on them. Also,
deploying applications in newer environments is exciting. To
alleviate this challenge,container-based systems are
recently being deployed to reduce trade-offs. Here we
investigate container-based technology as an efficient
virtualization technology for running High performance
scientific applications. We select docker a a container based
technology. Docker is a tool designed to make it easier to
create,deploy,and run applications by using containers.
Containers allow a developer to package up an application
by using containers. Containers allow a developer to
package up an application with all of the parts it needs.In
this project, we are trying to deploy the
container(docker)consisting web applications from private
to public cloud securely under the situation when overload
occurs.

KeyWords Docker, Distributed System, Security,
Storage,Virtualization

1.INTRODUCTION

 In these recent years, virtualization technologies have

been adopted to support efficient scientific computations

and high performance applications. Correspondingly,

there have been diverse Cloud Management Platforms

(CMP) which provision and manage various computing

resources. At the infrastructural level, platforms like

OpenStack are mostly used to provision and manage both

private and public cloud platforms with their processor,

storage, and network resources. These aforementioned

middleware systems developed on the basis of hypervisor

(HPV) virtualization technology however, require the

installation of Guest Operating Systems (Guest OS) for

each virtual machine (VM) created. This approach requires

memory resources and slows down overall execution

times of applications. Containers on the other hand, do not

require Guest OS thus are more light-weight compared to

hypervisor-based virtualization technologies.

 Using Docker container-based systems, we demonstrate
that the light-weight feature of container-based
virtualization compared to hypervisor-based
virtualization reduces the overall execution times of HPC
scientific applications due to approximately zero start-up
time when launching containers. . We also demonstrate
that even though the most utilized resource in the Docker
container-based system is main memory (RAM), Docker
manages memory resources efficiently hence creating a
stable environment for HPC applications. We are trying to
reduce the level of effort and time required to deploy the
applications. Docker containerization environment
coupled with automatic configuration and deployment
modules allow quickly-deployable ,easily reconfigurable
solutions.

2. RELATED WORK

2.1Docker Container VS virtual machine

1. Container has less Overhead- At best, you could run
may be fifty VMs on the top of the single physical host and
you need a powerful server host to get to even that
number. But because container have less overhead you
could run hundred on the single host.

2.Containers are easy to work with-One of the coolest
thing of docker container is the way you can pull and run a
container image in a few.You could also download and set
up a VM image from the internet but that process is not
stream lined.

3.Containers are more standardized-There are multiple
VM platfroms each with its own way of doing things.Being
an expert VMware does not necessarly qualify you to work
with KVM but with conatiners ,dockers dominance and
open container initiative have help to standardlized the
entire container stack.

4.Containers are more open-Some VM platform such as
KVM are open source but most are commercial product,

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 03 | Mar -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1379

which are only partially ao not at all open. In contrast
platform such as docker are completely open source that
makes containers the better choice if you are worried
about vendor lockin.

2.2 Docker Container

 Docker is a tool easier to create,deploy and run
application by using containers. Containers allow a
developer to package up an application with all the parts it
need, uch a librarie and other dependencies and hip it all
out as a package. By doing so, thanks to the container, the
developer can rest assured that the application will run on
any other Linux machine regardles of any customized
setting that machine might have that could differ from the
machine used for writing and testing the code.

 In a way docker is a bit like virtual machine. But unlike
a virtual machine, rather than creating the whole virtual
operating system, Docker allows applications to use the
same linux kernel as the system that they're running on
and only requires applications be shipped with things not
running it on host computer. This gives a significant
performance boost and reduces size of application. And
importantly docker is a open source. Thi means that
anyone can contribute to Docker and extend it to meet
their own needs if they need additional features that aren't
available out of the box.

 fig 1. Docker Components

Docker daemon-The docker daemon runs on host

machine.The user uses the docker client to interact with
the daemon.

Docker Client-The Docker client, in the form of the
docker binary, is a primary user interface to the docker. It
accepts commands and configuration flags from the user
and communicates with docker daemon. One client can
even communicate with multiple unrelated daemons.Inside
DockerTo understand docker's internal, you need to know
about images, registries and containers.

Docker images-A Docker image is a read-only template
with instructions for creating a docker container. For
example,an image might contain an ubuntu operating
systemwith Apache web server and your web application
installed. You can build or update images from scratch or
download and use images created by others.An image may
be based on,or may extend one or more images. A docker
image is described in text file called a Dockerfile, which has
a simple, well-defined syntax. For more details about
images, Docker images are the build component of Docker.

Docker Container-A Docker container is a runnable
instance of a Docker image. You can run,start,stop,move or
delete a container using Docker API and CLI commands.
When you run a container, you can provide configuration
meta data such as networking information or environment
variables. Each container is an isolated and secure
application platforms, but can be given access to resources
running in a different host or container, as well as
persistent storage or databases.

Docker Registery-A docker registry is a library of images. A
registry can be public or private, and can be on the same
server as the Docker daemon or Docker client, or on a
totally separate server.

2.3 Docker Hub

 Docker Hub is a cloud hosted service that provides

registry capabilities for private and public content.

Collaborate effortlessly with the broader Docker

community or within your team on key content, or

automate your application building workflows. Docker

stores downloaded images on the Docker host. If an image

isn’t already present on the host then it’ll be downloaded

from a registry: by default the Docker hub registery.

 fig 2. Docker Hub Login

Docker Hub uses your free Docker ID to save your account
settings, and as your account namespace.

https://docs.docker.com/docker-id/

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 03 | Mar -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1380

 Fig 3. Pushing Image On Docker Hub

If you don’t yet have a Docker ID, you can You can search
Docker Hub and pull images without an account and
without signing in. However, to push images, leave
comments, or to star a repository, you need to log in using
a Docker ID. Once you have a personal Docker ID, you can
also create or join Docker Hub Organizations and Teams.

3. A MODEL FOR DEPLOYING DISTRIBUTED
APPLICATIONS ON DOCKER

Many types of applications can be configured with

different approaches depending on each virtualised

architecture. For example, VMs as the hypervisor-based

instances have full components provided by hypervisor

layer, i.e hardware, OS, libraries. Hypervisor has to deploy

an entire OS and filesystem in each virtual machines. This

results in the overhead of emulating OS and libraries when

generating a large range and number of Virtual machines.

As the advantage of VMs is isolation, its disadvantage is

overhead when running applications. This feature is also

one of problems that developers have to consider in PaaS

field . of problems that developers have to consider in

PaaS field . Based on the container-based architecture,

Docker is a platform supporting containers that can share

the same OS kernel and related libraries. In further,

Docker containers can share common files because their

images are constructed from layered filesystems . When

running a job, each container is assigned a unique PID, it

can be observed equivalently as a process at the view of

host machine. Through these characteristics of Docker, we

deploy applications that share the same dependencies,

essential libraries under the host machine.This method is

available for solving scalable problems andportable

computations because we can reduce remarkably

theoverhead, when comparing to VMs.. Normally, VMs

provide a com-lete environment which supports multiple

users as well as applications. VMs emulate the hardware

and full OS along with individual libraries. Hence, we have

the same way to configure distributed application on VMs

and host system. We need to install and configure

applications, libraries inside each virtual machine to

execute as a cluster. In contrast to Vms, we exploit the

sharing ability of Docker with host OS kernel to deploy

applications. Each Docker container does not need to set

up a whole OS or image with related libraries, they can

share the same binaries and libraries during executing.

 Dockers architecture uses client-server model with three

main components including: Docker image, Docker

registry and Docker container. A container is created from

a Docker image and it then creates a read-write layer on

top of image using union file system (UnionFS). Union file

system allows Docker image divide into many layers.

When containers run, UnionFS creates a writable layer on

the top and we use this layer to update into a new image.

Typically, the libraries and environment variables under

host are mounted to this new image, meanwhile, running

containers. There is only our application on Docker

container, the required libraries can share with host OS.

Our applications run on Docker container with these

advantages that make system more lightweight and faster.

This is a model which we propose to deploy distributed

applications on Docker container.

4. SYSTEM OVERVIEW

 System overview describes the flow of system.Here

initially web application are created and then it image

created. Later that image can be uploaded on docker hub

so it can be easily transferred from on sytem to another

system.

 fig 4. System Overview

https://docs.docker.com/docker-hub/orgs/

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 03 | Mar -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1381

On cloud initally docker is installed.then we created the

images of web apps and run it on the docker conatiner. We

set the threashold value. Later we check the memory

status of the container I.e cpu usage,memory usage If the

status exceeds the threshold the we need to up the next

container.We create the checklist1 which list the set of

running container with less memory usage. when

container exceeds its memory usage it ups the new

container from checklist1 and transfer the application to

new application .While transferring the application or

process to new container it is necessary to check whether

the application is properly transferred to new container

and running properly or not.

 When multiple containers are running and if particular

container ends with its task then we need to down the

container by stopping it.Hence we maintain the memory

and detect the overload using docker container. We also

maintained load balancing by moving the applications

from one container to other..

5. IMPLEMENTATION

As we have studied and proposed various techniques to

address the overloading of storage we now turn our

attention to detail implementation to start up with our

implementation. Private cloud is been accessed where

dockerAAA acts as a host. Initially we installed the docker

on cloud. Following image shows the installation of

docker :

As we know that docker may consist of multiple

containers, we moved the ubuntu image into the docker

container. While moving the image various techniques

were addressed but SCP mechanism was efficient for

transferring the image files to the container. Later we

installed and moved the applications in it and run the

applications. The applications which were deployed in the

container were saved using the commit mechanism used

in the docker.

Now we need to transfer the container from private cloud

to another machine in such a way that it will not need any

configuration to run the applications on that machine. So,

initially we pushed the ubuntu image which includes

complete configuration and web-apps on docker hub.

After uploading the image on docker hub we need to pull it

over local machine which successfully transfer the image

from cloud to local host.

As we have already discussed docker may contain multiple

containers and each container may contain multiple

applications. We can see the status of each running

container i.e. memory used, up time etc. For that docker

stats mechanism was used.

UP THE CONTAINER IN CASE OF OVERLOAD

 Next task is to up the new container in case of detection

of overload. To UP the container means to load the

applications into new container for maintaining

overloadFirst we will check the memory status of running

containers. Depending on the memory usage we will select

the container who is consuming less memory. On detecting

overload it will up the container from available list of

containers and the application will run on new container.If

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 03 | Mar -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1382

previously overloaded container becomes free,then the

running process will be transferred to previous container

 DOWN THE CONTAINER:

When overload occurs we up the container and move to

new container. But when we transfer the load to another

container the previous overloaded container is closed is

termed as down the container. To down the container we

need to maintain the list of free docker. Also we need to

check the container which was initially overloaded and

now it is free to use. But to down the container does not

mean to stop the running processes belonging to specific

container. When we down the container, container should

be stopped but the process should be running. If we down

the container and processes gets stop then task will

remain incomplete.Hence we are transferring the running

process to another free container to maintain overload.

5. CONCLUSIONS

 Hence,in this project we have achieved high performance

computing by using the concept of docker. We also

maintained load balancing by moving the applications

from one container to other. From our results, container-

based systems are more efficient in reducing the overall

execution times for HPC applications and have better

memory management for multiple containers running in

parallel. We conclude that Container-based systems are

more suitable for HPC applications. In the future, we will

try to move the container from private cloud to public

cloud in case overload on private cloud.

REFERENCES

[1] Abhishek Gupta, Laxmikant V. Kale,Filippo Gioachin,
Chun Hui Suen, Bu-Sung Lee, “The Who, What, Why, and
How of High Performance Computing in the Cloud”,978-0-
7695-5095-4/13 $31.00 © 2013 IEEE DOI
10.1109/CloudCom.2013.47.

[2] Theodora Adufu, Jieun Choi, Yoonhee Kim , “Is
Container-Based Technology a Winner for High
Performance Scientific Applications?”, NRF-
2013R1A1A300786,Copyright 2015 IEICE.

[3] Arwa S. Fadel,Ayman G. Fayoumi, “CLOUD RESOURCE
PROVISIONING AND BURSTING APPROACHES”,978-0-
7695-5005-3/13 $26.00 © 2013 IEEE DOI
10.1109/SNPD.2013.2

[4] Ayush Dusia,Michela Taufer,”Network Quality of
Service in Docker Containers”,978-1-4673-6598-7/15
$31.00 © 2015 IEEE DOIn 10.1109/CLUSTER.2015.96

[5] Tekin Bicer,David Chiu,Gagan Agrawal, “A Framework
for Data-Intensive Computing with Cloud Bursting” , IEEE
International Conference on Cluster Computing.

