
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 04 | Apr -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 908

Using AMNESIA to secure web applications and database against SQL

injection attack
Disha Sharma1, Komal Kale2, Chandrakala Date3, Prof. Diksha Bhave4

1,2,3 B.E. Students, Department of Computer Engineering, Shivajirao S. Jondhale College of Engineering, Dombivli(E)
4Assistant Professor, Department of Computer Engineering, Shivajirao S. Jondhale College of Engineering,

Dombivli(E)
Mumbai University, Maharashtra, India

---***---

Abstract - In today’s world use of the internet and web
applications has become more and more common in our
routine activities, like reading the news, paying bills, and
shopping on-line. As the availability of these services grows, we
are witnessing a rise within the variety and class of attacks
that target them. The sensitive data of the user may get leaked
from the database resulting in serious losses of liveliness and
intellectual property. The current approach uses AMNESIA,
which detects and prevents SQL injection attacks by combining
static analysis and runtime monitoring.

Key Words: Internet, web applications, AMNESIA, static
analysis, run time monitoring.

1. INTRODUCTION

This SQLIA (Structured query language Injection
Attacks) is type of code injection technique that targets the
databases to steal information from the organizations. The
attacker enters the malicious SQL commands into a SQL
statement via the unconstrained user input parameters to
manipulate the SQL queries logic. This leads to the threat to
all those web applications that access their databases,
through SQL commands establish with external input data.
Through SQL injection the attacker neglects authentication
phase and provides confidential information to the attacker.
Authorized access to confidential information by a crafted
user has unprotected their authority, confidentiality and
integrity. The results could be like the system couldn't
deliver proper services to its customers. During this paper,
we present this method, which will act against all those
malicious content and can actively work on those hotspots
wherever injection may occur [1].

SQL injection vulnerabilities are due to poor input
validation. As the input from the user to a web application
leads to the creation of a database query but it does with
poor validation, thus SQL injection occurs. An attacker uses
this vulnerability of the application as an opportunity by
enclosed malicious SQL commands within the input that are
then executed by the databases. SQLIAs could also be
prevented by plenty of application of defensive coding
techniques. However, these techniques have been less than
effective in addressing the matter as a result of they are in

danger of human errors and expensive to use on large
inheritance code-bases.

2. EXISTING SYSTEMS

When we mention the defense techniques that are being
used, then we have a pair of defensive techniques specifically
defensive coding and Runtime monitoring. Defensive coding
has subclasses like Parameterized query Insertion, Manual
Defensive coding practices, SQL DOM. This defensive coding
technique ensured secure code but is labor intensive and
time-consuming. Manual defensive coding practices are
performed manually and might be finished with the
assistance of OWASP. SQL DOM is helpful in terms of larger
flexibility when developer needs to use the dynamic queries
rather than parameterized one. Runtime checking could also
be a technique used for against the illegitimate SQL
statements for every variety of SQLIA‘s by checking them at
the runtime. However, its disadvantage is that it needs a
robust dynamic observation system.

3. PROPOSED SYSTEM

Our proposed solution is amnesia, which is
technique that works by combining static and dynamic part
for detecting web application vulnerabilities at the runtime.
The concept behind this solution is that the source code
contains enough knowledge to interpret models of the
authorized SQL queries generated by the application. The
static part of our technique uses program analysis to
automatically build a model of the authorized queries which
will be generated by the application. In its dynamic part, it
supervises the dynamically generated queries at runtime
and checks them for conformation with the model that was
generated at the static part. SQL Queries that violate the
model represent potential SQLIAs and are therefore
prevented from execution on the database and noted. The
technique consists of 4 main steps. We have describes the
steps in summarized detail.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 04 | Apr -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 909

 Fig -3.1: Basic flow of AMNESIA

3.1 Identify Hotspots

 This is the first step in AMNESIA technique.

 In this step, it scans the application code to identify
hotspots within them that issue SQL queries to the
underlying database.

3.2 Build SQL-query models

 For each hotspot, it builds a model that represents
all the potential SQL queries that will be generated
at that hotspot.

 A SQL-query model is a non-deterministic finite-
state automaton during which the transition labels
consist of SQL tokens, delimiters, and place holders
for input values.

 To create our SQL-query model for a given hotspot,
we perform a depth first traversal of the non-
deterministic finite-state automaton for the hotspot
and group characters as SQL keywords, operators, or
literal values and build a transition within the SQL-
query model that's annotated with their literal value.

 For instance, a sequence of transitions labeled ’S’, ’E’,
’L’, ’E’, ’C’, and ’T’ would be recognized because the
SQL choose keyword and appropriately classified
into one transition labeled “SELECT”.

 As a result of there are many SQL dialects every with
their own set of keywords and operators, this part of
the technique may be customized to acknowledge
different dialects.

3.3 Instrument Application

 In this step, we assist the application by adding calls
to the monitor that check the queries at runtime.

 At each hotspot, this step injects a call to the monitor
before the call to the database.

 The monitor is invoked with 2 parameters: - the
string that contains the particular query on the point
of be submitted and a unique identifier for the
hotspot.

 Using the distinctive symbol, the runtime monitor is
able to correlate the hotspot with the particular SQL-
query model that was statically generated for that
point and check the query against the proper model.

3.4 Runtime Monitoring

 At runtime, the application executes normally till it
reaches a hotspot.

 At this time, the query string is sent to the runtime
monitor. It parses the query string into a sequence of
tokens with respect to the particular considered SQL
dialect.

 After parsing the query, it checks whether or not the
given query violates the hotspot’s SQL-query model.

 To do this, the runtime monitor checks whether the
model accepts the sequence of tokens within the
query string.

 While matching the query string against the SQL-
query model, a token that corresponds to a numeric
or string constant including the empty string, can
match either constant or literal value.

 If the model does not accept the sequence of tokens,
the monitor identifies the query as an SQLIA.

4. APPLICATIONS

 It does not disclose elaborated error messages to
the user.

 It constrains and purifies input by validating their
type, length, format, range.

 It prevents the hacker to break into the system to
retrieve information or do harm.

 It protects the integrity of websites and web
applications.

5. CONCLUSIONS

 Thus, we have developed a detection and prevention
mechanism to protect the vulnerable website and its
information from being exploited by the SQL Injection
attacks. We have provided the usefulness of AMNESIA
against real-world SQLIAs to protect the websites and its
information. Thus this concludes that our proposed
technique can be very useful and valuable in detecting and
preventing SQLIAs.

Build SQL-query models

Build SQL-query models

Instrument Application

Build SQL-query models

Runtime Monitoring

Build SQL-query models

Identify Hotspots

Build SQL-query models

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 04 | Apr -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 910

6. FUTURESCOPE

In our future work we are going to study different
techniques for building SQL models where the static analysis
cannot be used. Our current approach, we use a very precise
and expensive analysis to build the character-level model
that we then compact and remodel into our SQL-query
model. Our technique is generally interested in SQL
keywords and operators, and the strings representing them
are typically constant strings that are seldom manipulated
within the application. Therefore, we could also be ready to
use a simplified string analysis to extract the SQL-query
models that our monitoring technique needs directly from
an acceptable illustration of the code.

REFERENCES

[1] Shashwat Gupta,Saket S. Ektate,Deepak Yadav.Sachin

Pitrubh,“Security against SQL injection attacks using
AMNESIA,” IJISET - International Journal of Innovative
Science, Engineering & Technology, Vol. 2 Issue 4, April
2015.

[2] Diksha G. Kumar, Madhumita Chatterjee,“Detection
Block Model for SQL Injection Attacks,” I.J. computer
Network and Information Security, 2014.

[3] Mihir Gandhi, Jwalant Baria, “SQL INJECTION Attacks in
Web application,”International Journal of Soft
Computing and Engineering (IJSCE) ISSN: 2231-2307,
Volume-2, Issue-6, January 2013

[4] K.G.S. Venkatesan. Dr. V. Khanna, S.B. Amarnath Reddy,
“Providing Security for social Networks from Inference
Attack”’,International Journal of Computer Science
Engineering & Scientific Technology, March – 2015.

[5] Sayyed Mohammad Sadegh Sajjadi and Bahare Tajalli
Pour,”Study of SQL Injection Attacks and
Countermeasures,” International Journal of Computer
and Communication Engineering,Vol.2, No. 5, September
2013.

[6] Dr.Manju Kaushik,Gazal Ojha,” SQL Injection Attack
Detection and Prevention Methods: A Critical Review,”
International Journal of Innovative Research in Science,
Engineering and Technology ISSN: 2319-8753, Vol. 3,
Issue 4, April 2014.

