
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 04 | Apr -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1774

CONCURRENT VERSION SYSTEM FOR CONFIGURING THE PROJECT

K V SAI KRISHNA, MADHUMATHI R, DEEPA N

1 Sai Krishna, Student, School of Information Technology, VIT University, Tamilnadu, India
1 Madhumathi, Student, School of Information Technology, VIT University, Tamilnadu, India

1 Deepa N, Assistant Professor, School of Information Technology, VIT University, Tamilnadu, India

---***---
Abstract - Concurrent Versions System (CVS) is a tool or

program that lets a code developer to store and retrieve

different versions of source code. It also lets a team of

developers share different versions of files in a common

repository of files. This kind of program is sometimes known

as a version control system. CVS lets groups of people work

simultaneously on groups of files.

Key Words: Repository, Version, Concurrent version
systems, Configuration, Directories, etc …

1. INTRODUCTION

Software product undergoes many process, steps and

strategies to deliver the right outcome to the customer. The

main burden of the keeping the software updated starts in

the change management process. The customer

requirements changes over time, so new versions of the

software is developed as the customer wants to modify the

features of the existing product. The task of tracking and

controlling changes in the software after delivery is called

software configuration management. SCM practices include

revision control and version control. The main task of

version control system is to track or record all the changes to

a file or set of files over time so that you can recall specific

version later.

CVS works by holding a central `repository' of the

most recent version of the files. We can at any time create a

personal copy of these files by `checking out' the files from

the repository into one of our local directories. If at a later

date newer versions of the files are put in the repository, we

can `update' our copy. We can edit our copy of the files

freely. If new versions of the files have been put in the

repository, then making an update merges the changes in the

central copy into our copy. When we are satisfied with the

changes we have made in our local copy of the files, we can

`commit' them into the central repository. When we are

finally done with our personal copy of the files, we can

`release' them and then remove them.

Concurrent version system was developed in the

UNIX operating system environment and is available in both

open source and commercial versions. CVS is a popular tool

for developers working on Linux and other UNIX-based

systems.

1.1 Basic Units of CVS

Following points contribute the basic units of cvs:

1. Repository: The master copy or server where
CVS stores a project's full revision history. Each
project has exactly one repository

2. Working copy: The copy in which you actually
make changes to a project.

3. Check out: To request a working copy from the
repository.

4. Commit: To send changes from your working
copy into the central repository. Also known as
check-in.

5. Log message: A comment that we attach to a
revision when we commit it, describing the
changes.

6. Release: Signs out with CVS servers.
7. Conflict: Situation when one or more developers

may try to commit the changes to be the same
region of same file.

8. Update: To bring the other change from
repositories into your present working copy and
also to show if you’re working copy can have
any uncommitted changes.

1.2 Activities on CVS:

Following are the activities on the cvs:

 Importing Assets
 Creating a Repository

 Viewing changes

 Checking out a working copy
 Working with previous versions
 Committing changes

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 04 | Apr -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1775

2. CVS Commands

General Syntax:

Cvs cvs-options subcommand subcommand-options

Subcommand option is nothing but the function that you are
asking the cvs to do. To see the syntax of a given command.

Cvs -H subcommand

Cvs --help says you how to get list of files what the different
subcommands are.

Checking of Files Out:

When you are working with CVS there are two copies of files
that you wanted to be very concerned:

1. Local copies, which are visible to you.

 2. The repository, which is visible to everyone.

Before starting you wanted to check out the local copy of
repository files. Here comes an example of it:

cvs checkout: Updating mymodule1
$ cvs checkout mymodule1
U mymodule1/file1

$ ls
total 1
1 mymodule1/

 "mymodule1" is a module in repository. Checking out
the modules places a local copy in the present directory.
Changes are made to the files here, then put back them to the
repository.

Modules are directories underneath $CVSROOT. In other
words:

$ ls $CVSROOT
total 2
1 CVSROOT/ 1 mymodule/

CVSROOT contains administrative and configuration files
used by CVS.

Editing Files:

Editing files is an easy task - once you found a local copies,
just edit it. None of your changes will be seen or shown to
other users until you have committed them.

Starting over is easy one even if you messed up the local
copy of the file. We can delete the file and get the fresh copy
from the repository using the command cvs update.

Refreshing Local Copies:

 In case you're working with a team, remember that your
team members are also making changes. Periodically, you'll
want to update your working copies. This is done with
the cvs update command.

$ cvs update -P –d
cvs update: Updating .
U myfile
Above, we can see that someone has modified the
myfile, and the copy in the current directory was out of
date; cvs updates file1 to the current version. The
updating is optional. -P "prunes" directories which are
empty, and -d tells cvs to include any new directories
which aren't in your local workspace. Once you have a
local copy, cvs checkout and cvs update -d are more
or less equivalent functions.

Update also takes arguments, if you are updating a or
specific or files specific directory with a directory. If
arguments are not given, cvs recursively updates the
directory tree rooted at the current directory.

Seeing Changes:

To see if someone else has changed a particular file, use cvs
status.

$ cvs status file1
==
=======================
File: file1 Status: Up-to-date

 Repository revision: 1.2
/home/srevilak/c/mymodule/file1,v
 Working revision: 1.2 Thu Apr 10 14:49:15
2017

 Sticky Date: (none)
 Sticky Tag: (none)
 Sticky Options: (none)

"Up-to-date" means that the file is on date or current.

To have a glance look we can go for this commands:

$ cvs -n update

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 04 | Apr -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1776

The -n option says about cvs "don't change the disk". Where
local files doesn’t match the repository copy, you'll have to
see that the name of the file and a status..

Committing Changes:

Okay, we have done some work and we are satisfied with the
output. To incorporate our changes into the repository, use
the command cvs commit.

 $ cvs commit filename

CVS invokes CVSEDITOR so, you can make few comments.
Once done you quit from the editor, the changes which you
have made will be put back into the repository.

Adding Files and Directories:

Directories and files are added with the command called cvs
add.

To add the binary file

cvs add -kb newfile
cvs commit newfile

To add the file

create the file, edit it
cvs add newfile
cvs commit newfile

To add a directory:

mkdirnewdir
cvs add newdir

-kb indicates cvs that file is a binary file.

Merging Revisions:

Hypothetical Situations: you take a copy of Myfile.java home,
and you have worked on it. Meanwhile, other developers
may commit changes to the file. The dilemma – you would
like to mix what you have done, but your copies of files are
now out dated. You are always not wanted to undo the work
that others have already done. Here's a way to deal with this
kind of situations.

1. Run cvs update to refresh your repository copy.
2. Find out what revision your copy of the file is based

on. That will be the revision number in
the Id or $Revision$ tags. If you can't determine
the revision, this approach won't work, and you'll
need to do a manual merge.

3. Run cvs log MyFile.java to get the revision number
of the copy that you just checked out of the
repository.

For the sake of demonstration, let’s say the copy
of MyFile.java that you were working on at your workstation
is revision 1.6, and the current repository version is 1.10.

Copy the MyFile.java that you have worked on, at
workstation to your checkout directory. We now have the
following arrangements:

 You are missing few differences from 1.7 - 1.10.
(Note: this is the reason you do not want to commit
a file yet. Doing so can remove anything done
between 1.7 and 1.10).

 The original file in your checkout area is revision
1.6 + changes.

 The version of repository is 1.10, which you have
just checked out. As far as cvs is concerned, your
local copy will be up to date.

To pick up some modifications made from 1.7 - 1.10, you
have to merge:

cvs update -j 1.7 -j 1.10 MyFile.java

In cvs-speak, this is nothing but "taking the changes from
revision of 1.7 through the revision 1.10, and then you can
apply them to the local copy of the file." Assuming that there
wasn’t merging conflicts, checking the results:

cvs diff -w MyFile.java

Make sure it compiles, then commit.

If things aren’t well, you will be needed to examine the
results and you have to resolve if any conflicts arise that
happens as result of the merging.

Resolving Conflicts:

$ cvs commit foo.java
cvs commit: Up-to-date check failed for `foo.java'
cvs [commit aborted]: correct above errors first!

Above, you have made changes to foo.java file, but someone
has already committed a new version to repository. Before
you commit the file, you'll have to update your working copy.

If you and other developers were working on different files,
cvs is gives best about merging them together. That might be
seen that the last set of modifications lines were in 75-100,

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 04 | Apr -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1777

the changes you have made are in lines of 12-36. In this case,
the file is patched and your work is still unaffected.

If two of you have changed the same area of the files it is
possible to have conflicts:

$ cvs update foo.java
RCS file: /home/srevilak/c/mymodule/foo.java,v
retrieving revision 1.1
retrieving revision 1.2
Merging differences between 1.1 and 1.2 into foo.java
rcsmerge: warning: conflicts during merge
cvs update: conflicts found in foo.java
C foo.java

To fix the merge, two things have to be done.

1. A pre-merge copy of the file has made.
2. $ ls -a .#*
3. 1 .#foo.java.1.1

2. Cvs inserted a conflict marker in your working copy.
3. <<<<<<< foo.java
4. static final int MYCONST = 3;
5. =======
6. static final int MYCONST = 2;

>>>>>>> 1.2

The conflicts lie between rows of less than and greater than
signs. Now you should do is to decide what version will be
right and then remove the conflict markers, and commit file.

Table -1: Finding difference between versions

cvs diff filename

Shows differences between
your local copy and the
repository version
that filename was based on.

cvs diff -r 1.3 filename

Shows differences between
your local copy of the
current version of
filename and the version 1.3
of filename.

cvs diff -r 1.3 -r 1.4 filename
Shows differences between
versions 1.3 and 1.4.

cvs log filename
Show the commit log
for filename.

cvs annotate filename

Shows each line of filename,
the name of the person who
added it and prefixed with
the version number where
the line was added. Useful
for checking who made a
particular set of changes.

Backing out a Bad Commit:

Let us suppose think that you committed the file, but this
made a result of breaking something badly. This is how to
undo commit:

1. Take the version number before the commit. Now
this will be lower than your current version. Let the
old version be 1.4.

2. Take version number after the commit. You can also
use an Id tag in the file. And the new version is
1.5.

Now:

cvs update -j 1.5 -j 1.4 filename
cvs commit filename

The above mentioned is an example of merge. You have
requested cvs to take the difference between 1.5 and
1.4version and then apply to your current working copy.

Deleting Files:

To delete files, use the command cvs delete:

rm filename # remove working copy first
cvs delete filename
cvs commit

"lazy" system is used for deletion; delete only changes the
way that are stored in the repository. It is still possible to
check out revisions that existed before the file was deleted or
to undelete few files. The file will no longer be when you do
updates or checkouts.

Cause of this, we cannot delete a directory entirely. One can
use the -P flag with cvs checkout and cvs update to prevent
the empty directories from the being retrieved files.

Manual states: “the usual way for getting reserved checkouts
with CVS is called cvs admin -l command."

Fig -1: System Architecture of CVS

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 04 | Apr -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1778

3. CONCLUSIONS

Conflicts arises when one or more developers trying commit
the changes to the same region which belongs to the same
file. CVS is not having situation of "locking" file for the
occurred changes. If you wanted to start editing of a file, you
just start editing it simply. There is another option which is
optional edit-notification which says you that when someone
on other side trying to editing the same file. This mechanism
does not prevents you from the editing of files, but it gives
you an opportunity for finding out who else are editing the
file and talk with them so that you can figure out whether
you are interacting on each other’s file.
 CVS do have concept of locking, even though it’s not
default.

REFERENCES

[1] Barrett, Arthur . "Anonymous or Developer checkout

with TortoiseCVS".

[2] Charles D. Cranor, Theo de Raadt "Opening The Source
Repository With Anonymous CVS, USENIX 1999”
(1999).

[3] Karl Franz Fogel, Moshe Bar. Open Source Development
with CVS.

[4] Version Management with CVS – manual for CVS
1.12.13, by Per Cederqvist et al.

[5] Bjoern-Elmar Macek, “Profile mining in CVS logs and
face-to-face contacts for recommending software
developers”, 2011 IEEE third international conference
on privacy.

http://drupal.org/node/22293
http://drupal.org/node/22293
http://www.openbsd.org/papers/anoncvs-paper.pdf
http://www.openbsd.org/papers/anoncvs-paper.pdf
https://en.wikipedia.org/wiki/Moshe_Bar_(investor)
http://cvsbook.red-bean.com/
http://cvsbook.red-bean.com/
http://ftp.gnu.org/non-gnu/cvs/source/feature/1.12.13/cederqvist-1.12.13.pdf

