
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 04 | Apr -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 2203

Performance Prediction of Applications using Software Engineering

1 J. Usha Sreevani, School of Information Technology, VIT University, Tamilnadu, India.

2 A. Charishma, School of Information Technology, VIT University,Tamilnadu, India.

Abstract:-Enterprise systems are business-critical

applications, and strongly influence a company’s productivity.

On the other hand, software development techniques like

waterfall, iterative and incremental approach etc are the heart

of the development process that drive to the success of the

system developed. These techniques can be applied in various

contexts and for applications and systems too. In contrast to

their importance, their performance behavior and possible

bottlenecks are often unknown. This lack of information can be

explained by the complexity of the systems itself, as well as by

the complexity and specialization of the existing performance

prediction tools. These facts make performance prediction

expensive, resulting very often in a “we fix it when we see it”

mentality, with taking the risk of system unavailability and

inefficient assignment of hardware resources. To overcome the

costs that are incurred when tools are used, genetic algorithm

based approach has been proposed, but that in turn has its own

disadvantages. In order to address the challenges identified

above, we developed a performance prediction process to model

and simulate the performance behavior and especially identify

performance bottlenecks for applications. In this paper, we

present the process and architecture of our approach.

Keywords: ERP,EPPIC,Performance Prediction,Software

Engineering.

1.INTRODUCTION:

The performance of a software system is very often ignored

when designing the system. This can be attributed to the

invisibility of most parts of a software system and also of its

weak points. Bad performance of for example an enterprise

resource planning (ERP) system is not immediately visible

and tangible, compared to a many kilometers traffic jam

caused by a bridge that is too small. Nevertheless

correcting the performance problems afterwards can be

just as costly and difficult, as stated by Brebner et al.

(2009). Moreover, the complexity of modern software

systems makes it hard to understand how the system will

perform under a changed load, or even after changes on

the soft- or hardware. Existing tools are either tailored

for a very special type of application, or they come with a

variety of protocols and adapters and hundreds of

configuration properties, resulting in the need of expert

knowledge to operate them. Not knowing the

performance behavior of an enterprise system though is

a big risk. As enterprise systems are the backbones of

many business processes, performance problems can not

only block the scalability of these processes, but even

bring down a department’s or company’s whole

operational work. In order to address these challenges,

we develop a process and architecture of an integrated

performance prediction tool for distributed enterprise

applications, especially for enterprise service oriented

architectures (SOA, (Dustdar, Gall and Hauswirth,

2003)). We called the tool EPPIC (Evolutionary

Performance Prediction in the Cloud). As an exemplary

implementation for an SOA we demonstrate the EPPIC

process on an ERP system as an SOA service provider,

i.e., a way of accessing the ERP system that becomes

more and more crucial (Schneider, 2008).

Existing System:

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 04 | Apr -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 2204

1.INTRODUCTION:

The performance prediction process consists of three steps –

measurement, modelling, and simulation. EPPIC builds upon

existing measured performance data, so that we will keep the

measurement section small and focus on the aspects of

modelling and simulation. Performance models are

fundamental to predict the scalability of software and

hardware systems, either by analytical methods or simulation

(Menascé and Almeida, 1998). Following this advice, we

develop performance models for each component in the

analyzed software system. As we want to support different

types of components and different patterns of input data, we

use an evolutionary algorithm approach to model the

component’s performance behavior. The evolutionary

algorithm is used to perform a multi- objective optimization

(Zitzler and Thiele, 1999) on the given performance data,

resulting in an approximation of the performance behavior

represented by a continuous mathematical formula. The

performance models are used for simulating the behavior of

the analyzed system. For simulation we use Layered Queueing

Networks (LQN) as defined by Franks et al. (2009).

Process Step 1: Performance Measurement

In this architecture we focus mainly on the performance

modelling and simulation. It is assumed that measured

performance data of the system components exist, or is

obtained by the use of an external tool. In our evaluations we

used the tool PEER (Performance Evaluation Cockpit for ERP

Systems) developed by Jehle (2010), as this tool provides a

suitable way to gather performance data of a software system

without having a visible performance impact on the tested

system. Again here we cannot escape the usage of a tool.

Process Step 2: Performance Modelling

For every service of the SOA, a performance model is created.

The performance model is an

approximation of the component’s response time, based on

various input parameters like the request type and size and

the number of parallel requests. The performance

models are used as input for the simulation, and

represent the response time behavior of a service. The

evolutionary algorithm used for performance modelling

consists of a population of individuals competing for a

limited resource, in this case simply the number of

allowed individuals. After random model initialization,

the individuals compete by comparing their fitness value,

in this case the negative geometrical distance of the

model to the measured performance data. The individual

with the better fitness passes its model to the loser,

where it is, to a given chance, mutated (Goldberg, 1989),

and crossover (Goldberg, 1989) is performed to a given

chance by the exchange of a random part of the winner’s

model by a random part of the loser’s model. The

mutation of the passed model allows the model to

converge towards a maximum in the search space, which

means a model approximating well the measured

performance data. As this maximum might be a local

maximum crossover allows jumping in the search space,

which enables the algorithm to leave a local maximum

and to jump to a global one. The advantage of an

evolutionary algorithm for modelling is that it can be

efficiently executed on any set of measured performance

data, independent of its structure and size (Gwozdzand

Szlachcic, 2009). This allows the creation of performance

models even for services with few measured data

available (i.e. cost-intensive and/or externally provided

services), while the exactness of the model can be

strongly increased by the consideration of any kind of

available input data. Furthermore the evolutionary

algorithm provides first results very fast (dependent on

the underlying hardware resources, as described in the

following chapter), while it can continue optimizing the

model continuously.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 04 | Apr -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 2205

Process Step 3: Performance Simulation for simulating the

performance behavior of the system, Layered Queuing

Networks (LQN) are used . LQN offer flexibility in modelling

software entities using the task as its main concept. A task can

be either a hardware resource or a software entity. Each task

has its own (infinite) queue to store incoming requests until

they can be processed. Both, software entities and hardware,

can be single- or (infinite) multi-servers depending on the

number of requests that can be processed concurrently.

Limitations:

1. Using genetic algorithm makes you wait days for a solution.

2.The existing solution is not much suitable for parallel

systems.

3.Fine tuning all the parameters for the GA, like mutation rate,

elitism percentage, crossover parameters, fitness

normalization/selection parameters, etc, is often just trial and

error.

4.The way you communicate your desires to the system is

through the fitness function. But GAs will take it literally, with

no common sense. You have to be very careful when

designing your fitness function.

5.no guarantee of finding global maxima.

Detailed study:

The more we know a system,the more precise the model of a

system we may develop,the easier and more successful the

performance prediction may be. Performance measurement

may be conducted on an existing parallel system to identify

current performance bottlenecks,correct them and identify

and prevent potential future performance problems. A

majority difficulty faced by highly dynamic analysis is

efficiently and reliably forming inferences from performance

measurements. Gathering data enough to conclusively to

verify a performance function in the presence of noise and

error can be too expensive to provide a viable basis for

performance prediction. The runtime of parallel applications

is dependent on many factors. It is important to understand

the range of factors that can mainly affect performance ,

and to predict the performance of a potential execution.

As there are many applications that are running at the

same time , the performance has to be predicted for

many. Hence it will pose a greater difficulty in predicting

the performance of the applications. In this paper our

approach for predicting the performance of various

applications as a whole is described.

2.PROPOSED SYSTEM

In the BSP model,the system is described in three

elements:the data modules,the interconnecting network

and the synchronizing facility. This model is to bridge a

gap between theoretical work and practical

considerations. Under this model,the applications are

considered as a sequence of computation steps separated

by global synchronization. In each computation

step,there is certain time unit during which the

application receives L/g requests,where g is the

communication bandwidth. Given the computation and

communication requirements for an algorithm ,this

model gives an upper bound on the parameters (L and g)

that allow optimal execution of the algorithm. This

algorithm is applicable in a variety of techniques and

several algorithms can be directly implemented using

this model. If L and g are considered for each application

separately , the working of the algorithm with these

given parameters fetches us the required output that is

our performance measurement not accurately but

approximately which is far better ,efficient ,easier and

less costly means of predicting the performance of

applications. Though at the application level this

algorithm does not fit in the bulk synchronous

framework.

As an alternative method we can also use this approach.

Firstly , measured performance data of system

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 04 | Apr -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 2206

components is obtained from using an external tool. Hence

each application has its own data. Data needs to be

added/updated for new applications. This is the approximate

response times of different applications with different data

including parallel requests from the application requester. We

devise an algorithm to test the applications if they run

according to these estimated response times. Moreover when

a failure occurs in accessing the application , it is informed

through the algorithm itself. By this way, much of the

performance prediction can be done escaping heavy costs.

There is another model that extends this BSP model. This is

the Log P model which in-turn has four parameters. This

model aims at capturing the bottlenecks in parallel systems. It

considers communication costs and system parameters. Here

sending a small message takes o cycles on the sending

processor and L cycles for the communication latency, and o

cycles on the receiving processor. Hence the total time needed

for a small message is 2o+L cycles. If sending a small message

of m bytes requires sending of m/w messages between the

nodes,where w is the underlying short message size,then the

total time required to send a m bytes message is o+([m/w]-1)

x max{g,o} + L + o cycles. Thus the communication

performance of a parallel system can be predicted by this

mechanism which is more realistic unlike the previous BSP

model. Beyond predicting accurately ,the performance of

applications, this model is useful in evaluating parallel

systems.

3. CONCLUSION:

The increased accessing of ERP systems as SOA services will

allow software performance engineers to merge the

approaches for predicting the performance of ERP and

SOA applications. When ERP provided in a Cloud gain

more attention in research and practice, the approaches

will be very similar. The above mentioned algorithms

need to be properly devised in order to obtain good

results.

REFERENCES:

[1].Performance prediction Becker, S., Koziolek, H. and

Reussner, R. (2007) Model-based performance

prediction with the palladio component model, ACM, pp.

54-65.Bögelsack, A., Jehle, H., Wittges, H., Schmidl, J. and

Krcmar, H. (2008).

[2]. An Approach to Simulate Enterprise Resource

Planning Systems, 6th International Workshop on

Modelling, Simulation,Verification and Validation of

Enterprise Information Systems, MSVVEIS-2008, In

conjunction with ICEIS 2008(Eds, Ultes-Nitsche, U.,

Moldt, D. and Augusto, J. C.) INSTICC PRESS,Barcelona,

Spain, pp. 160-169. Brebner, P., O'Brien, L. and Gray, J.

(2009)

 [3].Performance Modeling Evolving Enterprise Service

Oriented Architectures, Joint Working IEEE/IFIP

Conference on Software Architecture 2009 &European

Conference on Software Architecture 2009 Cambridge.

Brebner, P. C. (2008).

[4]. Performance modeling for service oriented

architectures, Companion of the 30th international

conference on Software engineering ACM, Leipzig,

Germany, pp. 953-954.Dustdar, S., Gall, H. and Hauswirth,

M. (2003) Software-Architecture für Verteilte Systems.

