
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 04 | Apr -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 3220

Development of a Middleware Layer for CouchDB NoSQL System for

Providing Transactional Properties

Rashmi K1, Sushmitha S2, Dr. Kavitha K S3, Dr. Kavitha C4

1PG Student, Department of CSE ,Global Academy of Technology , Bengaluru, Karnataka, India

2Assistant Professor, Department of CSE ,Global Academy of Technology, Bengaluru, Karnataka, India

3Professor, Department of CSE ,Global Academy of Technology, Bengaluru, Karnataka, India

4Professor & HOD, Department of CSE ,Global Academy of Technology, Bengaluru, Karnataka, India

---***---

Abstract - NoSQL will not follow standard principles of
normalization, the de-normalized data results in weaker
consistency and atomicity. NoSQL systems have increasingly
been used in large scale applications that need high
availability and efficiency but with weaker consistency.
Various approaches have been proposed to address
transaction management in NoSQL databases. However,
because of the diverse flavors and kinds of NoSQL databases,
there has been no accepted standard approach of managing
transactions in NoSQL databases. This paper proposes a model
which will provide NoSQL system a transaction management
layer. The strategy is to supplement current NoSQL
architecture with an extra layer that manages transactions.
The proposed model is validated through a prototype system
using CouchDB. Preliminary experiments show that it ensures
stronger consistency.

Key Words: NoSQL databases, transactions, consistency
and atomicity.

1. INTRODUCTION

Many NoSQL stores compromise consistency in favor of
availability, partition tolerance, and speed. Barriers to the
greater adoption of NoSQL stores include the use of low-level
query languages, lack of standardized interface. Most NoSQL
stores lack true ACID transactions.

The idea of Enormous Information has prompted a
presentation of another set of databases utilized as a part of
the distributed computing condition, that veer off from the
qualities of standard databases. The outline of these new
databases grasps new components and procedures that
bolster parallel handling and replication of information.
Information are disseminated over various hubs and every
hub is in charge of handling questions coordinated to its
subset of information. Every subset of information overseen
by a hub is called shard. This strategy of information
stockpiling and preparing utilizing numerous hubs enhance
execution and accessibility [1]. The design of these new
frameworks, otherwise called NoSQL (Not Just SQL)
databases, is intended to scale over numerous frameworks.

The essential target of NoSQL frameworks is to guarantee
high proficiency, accessibility and versatility in storing and
processing huge Information. NoSQL frameworks don't
guarantee more grounded consistency what's more,
uprightness of information. They in this manner don't
execute ACID(Atomicity, Consistency, Isolation, Durability)
transaction. Be that as it may, it is essential to give more
grounded consistency and uprightness of information while
keeping up suitable levels of efficiency, availability and
scalability.

In this paper we propose another model that takes into
account value-based guideline of standard database
frameworks. The goal is to give consistency and to keep up
the ACID properties while thinking about the accessibility
and proficiency of NoSQL databases. The proposed model
separate transaction processing from underlying data
storage and to ensure transparency and abstraction. So as to
execute simultaneousness, the proposed approach exploits
snapshot isolation technique [3].

The potential contributions of the proposed model are
summarized as follows.
• The design of a new transaction model for NoSQL
systems that maintains ACID properties of transactions in
order to ensure stronger consistency.
•Development of an architecture that separates the
transactional logic from underlying data thus ensuring
transparency and abstraction.
•Development of a prototype system using real
NoSQL system, CouchDB.

1.1 NoSQL database systems issues

The following are the issues in NoSQL database system.
 No support for normalization which leads to lack of

consistency and atomicity.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 04 | Apr -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 3221

 No support for join operation, It lacks the power
and flexibility of designing useful queries.

 ACID transactions are not supported in NoSQL
databases..

 NoSQL database will not provide schema
information.

1.2 Related Work

Different methodologies have been proposed to address
transaction management in NoSQL databases. There has
been no accepted manageable transaction in NoSQL
database.

Deuteronomy [4] is an approach towards transaction
processing in NoSQL databases. Deuteronomy isolates the
transaction component (TC) from the data component(DC).
The TC oversees exchanges and exchanges can traverse
different DCs. Rather than the approach proposed in this
paper, Deuteronomy makes utilization of locking system to
oversee simultaneousness and guarantee consistency.
Locking is valuable however it negatively affects the
performance of transaction.

G-Store [5], acquaints a key gathering convention with
gathering keys for applications that need multi-row
transaction. Group inside G-store are dynamic and have a life
expectancy. In this manner group will be erased after their
life expectancy. Exchanges are constrained to inside a
gathering and G-Store can't give exchanges over group.

Megastore [2], utilizes substance bunches arrangement like
G-store. Be that as it may, in Megastore, amass development
is static and an substance has a place with a solitary
gathering for the duration of the life expectancy of that
substance. All things considered, ACID exchanges can just
occur inside indicated group.

COPS (Cluster of Order Preserving Servers)[6], introduces
two variables called dependencies and versions to preserve
order across keys. It is implemented using a distributed key
value NoSQL database. CloudTPS, like Deuteronomy, make
use of two layers architecture which includes LTM(Local
Transaction Manager) and the cloud storage. Transactions
are replicated across LTMs to preserve consistency in the
presence of failures.

2. PROPOSED SYSTEM

Fig -1: Proposed System Architecture

The architecture splits into following modules as shown in

Fig -1.

2.1 Data Access Layer:

Data access layer is the one which exposes all the possible
operations on the data base to the outside world. It will
contain the DAO classes, DAO interfaces, POJOs, and Utils as
the internal components. All the other modules of this
project will be communicating with the DAO layer for their
data access needs.

2.2 Account Operations:

Account operations module provides the following
functionalities to the end users of our project.

 Register a new seller/ buyer account
 Login to an existing account
 Logout from the session
 Edit the existing Profile
 Change Password for security issues
 Forgot Password and receive the current password

over an email
 Delete an existing Account

Account operations module will be re-using the DAO layer to
provide the above functionalities.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 04 | Apr -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 3222

2.3 Connection to Couch DB and Databases:

Here, the end user can create a connection to the couch DB
by specifying the host name and the port number of the
installed instance. The end user can also connect to a remote
couch db that is present in a different geographic location by
just entering its host’s IP address and the port number. The
default port number will be 5984. However, the user can
modify this during the couch DB installation. The user can
create a new data base or view the list of all existing
databases he/she have created using this module. The user
can also grant the permission on the database to the other
users of the transaction layer. By granting the permission,
the user is allowing the other participant to perform any of
the transaction operations on the database he/she have
created. In addition to that, the user can delete the database
or the user can also remove the permission he/she had
granted to the other users.

2.4 Operations:

Here, the end user can perform various data operations. The
possible data operations include the write access, read
access, update, or the delete access. Before the user can
perform any of these mentioned data operations, they will
have to select the database against which the data
operations must be performed. The data operations
performed on this module will not be logging anything
unlike the Transaction module.

2.5 Transactions:

Here, the end user can initiate a new transaction and
perform various data operations on as discussed in the
previous division. Before the end user can perform the
transaction, he/she will have to select the database against
which the transaction has to be executed. The database the
user is going to select will be either the one, he/she created
him/herself or the one which the other users have granted
the access to it. Each and every single operation in the
transaction session will be logged in the local mysql table
and will be available to view in the GUI. The end user can
either rollback or commit the transaction after all the data
operations he/she have performed.

2.5 Transaction protocol:

1. As soon as client initialize the transaction request,
the transaction layer generates the ID for that
transaction and sends the Id and related information
to CouchDB.

2. CouchDB by receiving id and related information,
CouchDB comes to know what all the data entities
the NoSQL transaction going to access, then it will
send the id and data entities related information to
transaction log.

3. The transaction log saves the transaction details and
responds with start time.

4. The CouchDB releases the data entities to
transaction layer where actual transaction take
place.

5. Once NoSQL transaction is complete, transaction
layer sends update, that is if user had updated or
deleted data then CouchDB needs to reflect data in
data store to ensure data consistency.

6. Transaction log checks whether other transaction
has updated after start time of this transaction, if so
the transaction log aborts the transaction and
response to client through transaction layer. If not
continues and sends commit timestamp to CouchDB.

7. Then CouchDB saves data in data store and responds
to transaction layer with commit timestamp that is
commit is successful.

8. If user requested for rollback, transaction layer
contacts transaction log to know the list of
operations performed, then reverse operation is
performed, say if user deleted data means reverse
operation is add data.

The transaction log maintains user details who committed or
rollback the transaction. The proposed system allow user to
create their own database and datamodel of their interest.
The data will be saved in database in encrypted format, which
provides security to data.

3. CONCLUSION

We proposed a new model for NoSQL database systems. It
provides NoSQL databases with standard ACID transactions
support that ensures consistency of data. The project
described the design of the proposed model and the
architecture within which it is implemented. As a proof of
concept the proposed approach is implemented using real
Couch DB database system.

4. FUTURE WORK

Generalize the transaction layer to operate across multiple
nosql systems so that the adoption of this layer is easy.
Integrate the transaction protocol with the NOSQL system
provided as a service on the cloud.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 04 | Apr -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 3223

REFERENCES

[1] D. DeWitt and J. Gray, “Parallel Database Systems: The
 Future of High Performance Database Systems,”
 Commun. ACM, vol. 35(6), Jun. 1992.

[2] J. Baker, C. Bond, J. Corbett, and J. Furman, “Megastore:
 Providing Scalable, Highly Available Storage for
 Interactive Services.,” Proc. of the Conference on
 Innovative Data system Research (CIDR 2011), 2011.

[3] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and
 P. O’Neil, “A Critique of ANSI SQL Isolation Levels”, 2007.

[4] J. J. Levandoski, “Deuteronomy_: Transaction Support for
 Cloud Data,” Conf. on Innov. Data Systems Research
 (CIDR), California, USA.vol. 48, 2011.

[5] S. Das and A. El Abbadi, “G-Store_: A Scalable Data Store
 for Transactional Multi key Access in the Cloud,” In: Proc.
 of the 1st ACM symposium on Cloud computing.
 Indianapolis, USA, ACM, 2010.

[6] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G.
 Andersen, “Don't Settle for Eventual_: Scalable Causal
 Consistency for Wide-Area Storage with COPS. In: Proc.
 of the 23rd ACM Symposium on Operating Systems
 Principles. Cascais, Portugal. 2011.

