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Abstract - Image compression is an application or 
techniques that facilitate to reducing the size of graphics file, 
without compromising on its quality and also reducing the 
distortion in digital image processing. Data compression is 
defined as the process of encoding data that reduces the 
overall size of data without degrade the value of data. This 
reduction is possible when the original dataset contains some 
type of redundancy, where redundant data increased the 
storing space in storage devices. Digital image compression is 
an application that studies methods for reducing the total 
number of bits required to represent an image. This can be 
achieved by eliminating the various types of redundancy that 
exist in the pixels values which takes extra spaces to stored the 
images. The objective of this paper is increased the image 
quality performance of evaluate a set of wavelets for image 
compression. Wavelet transformation is  one of the best 
compression technique that improved compression ratio and 
image quality. Here in this paper we examined the fast wavelet 
transformation with wavelet family that is Haar wavelet 
transforms and reconstruct the image by using 2D haar 
tansformation. The Discrete Wavelet Transform (DWT) 
analyzes the signals at different frequency bands with 
different resolutions by decomposing the signal into an 
approximation and detail information. The study compares 
Advanced FWT approach in terms of PSNR, Compression 
Ratios and elapsed time for different Images. Complete 
analysis is performed at first, second and third level of 
decomposition using Haar Wavelet. The implementation of the 
proposed algorithm based on Fast Wavelet Transform. The 
implementation is done under the Image Processing Toolbox 
in the MATLAB.   

Key Words: Discrete Wavelet Transform, Fast Wavelet 

Transform, Approximation and Detail Coefficients, Haar 

wavelets.   

1.INTRODUCTION  
 
The objective of image compression is to reduce 

redundancy of the image, data in order to be able to 

store or transmit data in an efficient form as an original 

data. Image compression is categorised in two 

methods, lossy or lossless. Lossless compression is 

sometimes preferred for artificial images such as 

technical drawings, icons or comics where data values 

are more important, compressed data and original data 

must be same. This is because lossy methods 

introduced compression artifacts, especially when used 

at low bit rates. Lossless compression methods may 

also be preferred for high value content data, such as 

medical imagery, or image scans made for archival 

purposes. In Lossy methods where minor loss of 

fidelity is acceptable to achieve a substantial reduction 

in bit rate for good quality of images. Run-length 

encoding and Huffman encoding are the methods for 

lossless image compression. Transform coding, where 

a Fourier related transforms such as DCT or the 

wavelet transform are applied that followed by 

quantization and entropy coding can be cited as a 

method for lossy image compression. In numerical 

analysis and functional analysis, a discrete wavelet 

transform (DWT) refers to wavelet transforms for 

which the wavelets are discretely sampled. A lot of 

work has been done in the area of wavelet 

transformation based lossy image compression. 

However, very little work has been done in lossless 

image compression using wavelets to improve image 

quality and data integrity. So the proposed 

methodology of this paper is to achieve high 

compression ratio with low mean square error in 

images using 2D-Haar Wavelet Transform by applying 

different compression thresholds for the wavelet 

coefficients. That is, different compression ratios are 

applied to the wavelet coefficients belonging in the 

different regions of interest, in which belonging in the 

different regions of interest, in which either each 

wavelet domain band of the transformed image. Fast 

wavelet transform (FWT) is a mathematical algorithm 

designed to turn a sequence of coefficient based on an 

orthogonal basis of small finite waves, or wavelets.   
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The DWT of a signal   is calculated by passing it 

through a series of filters. First the samples are passed 

through a low pass filter with impulse  

response  resulting in a convolution of the two 

samples: 

 

 

 

The signal also decomposed simultaneously using 

a high-pass filter  . The outputs giving  the detail 

coefficients (from the high-pass filter h) and 

approximation coefficients (from the low-pass g). It is 

important that the two filters are related to each other 

and they are known as a quadrature mirror filter 

(QMF).       

However , since half the frequencies of the signals has 

been removed, half  samples can be discarded 

according to Nyquist’s rule. After then, The filter output 

of the low pass  is subsampled by 2 and further 

processed by passing it again through a new low pass 

filter  and high pass filter  with half the cut-off 

frequency of the previous one, i.e. 

                  [ ]=  

 

                 [ ]=  

 

This decomposition has half the time resolution since 

only half of each filter output characterised the signal. 

However, each output has half the frequency band of 

the input, so the frequency resolution has been 

doubled. 

With the sub sampling (disambiguation needed) 

operator . 

 

 

The above summation can be written more concisely. 

    

 =  

               =  

However computing a complete its 

operation  with subsequent down sampling 

would waste computation time. 

This decomposition is repeated to further increase the 

frequency resolution and the approximation 

coefficients decomposed with high pass and low pass 

filters and then down-sampled. This processed is 

represented as a binary tree with nodes representing a 

sub-space with a different time-frequency localisations. 

The tree is known as a filter bank. 

 

At each level of filter bank the signal is decomposed 

into low and high frequencies. Due to the 

decomposition process the input signal must be a 

multiple of  where  is the number of levels used in 

filter bank. 

2. Fast wavelet transform 

a mathematical algorithm that designed to turn 

a waveform or signals in the time domain into 

a sequence of coefficients based on an orthogonal 

basis of small finite waves, or wavelets. The transform 

can be easily extended to the multidimensional signals, 

such as images, where the time domain is replaced 

with the space domain. 

It has theoretical foundation the device of a finitely 

generated, orthogonal multi resolution analysis (MRA). 

In the terms of given there, one selects a sampling 

scale J with sampling rate of 2J per unit. 

Interval, and projects the given signal  f  onto the space 

; in theory by computing the scalar products 

The Fast Wavelet Transform is 

https://en.wikipedia.org/wiki/Low_pass_filter
https://en.wikipedia.org/wiki/Impulse_response
https://en.wikipedia.org/wiki/Impulse_response
https://en.wikipedia.org/wiki/Convolution
https://en.wikipedia.org/wiki/High-pass_filter
https://en.wikipedia.org/wiki/Quadrature_mirror_filter
https://en.wikipedia.org/wiki/Quadrature_mirror_filter
https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Waveform
https://en.wikipedia.org/wiki/Time_domain
https://en.wikipedia.org/wiki/Sequence
https://en.wikipedia.org/wiki/Orthogonal_basis
https://en.wikipedia.org/wiki/Orthogonal_basis
https://en.wikipedia.org/wiki/Wavelets
https://en.wikipedia.org/wiki/Multiresolution_analysis
https://en.wikipedia.org/wiki/Sampling_rate
https://en.wikipedia.org/wiki/Dot_product
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=   

Where  is the scaling function of the chosen wavelet 

transform; in practically by any suitable sampling 

procedure under the condition that the signal is highly 

over sampled, so 

 

is the orthogonal projection or at least some good 

approximation of the original signal in . 

The MRA is characterised by its scaling sequence such 

as: 

  Or as a Z-transform, 

 

And its wavelet sequence is: 

b= ) or  

(some coefficients might be zero). Those allowed to 

compute the wavelet coefficients , at least some 

range as  k=M,...,J-1, without having to approximate the 

integrals in the corresponding scalar products. 

compute those coefficients from the first 

approximation  Instead, one can directly, with the 

help of convolution and decimation operators,. 

Forward DWT  

One computes recursively, starting with the coefficient 

sequence  and counting down from k=J-1 to 

some M<J, 

 

 or   And 

 

or  

 

 

Fig1: block diagram of filter analysis 

 

Fig2: 3 level filter bank 

 

where , for k=J-1,J-2,...,M and 

all . In the Z-transform notation: 

 The down sampling operator  reduces an 

infinite sequence, given by its Z- transform, which 

is simply a Laurent series, to the sequence of the 

coefficients with even 

indices, . 

https://en.wikipedia.org/wiki/Wavelet#Scaling_function
https://en.wikipedia.org/wiki/Orthogonal_projection
https://en.wikipedia.org/wiki/Recursion
https://en.wikipedia.org/wiki/Downsampling
https://en.wikipedia.org/wiki/Z-transform
https://en.wikipedia.org/wiki/Laurent_series
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 The starred Laurent-polynomial  denotes the 

adjoint filter, it has  time-reversed adjoint 

coefficients,  . (The 

adjoint of a real number being the number itself, 

of a complex number being its conjugate, of a real 

matrix the transposed matrix, of a complex matrix 

its hermitian adjoint). 

 Multiplication is form of polynomial multiplication, 

which is equivalent to the convolution of the 

coefficient sequences. 

It follows that 

 

 

This is the orthogonal projection of the original 

signal f or at least of the first 

approximation   onto the subspace , that is, 

with sampling rate of 2k per unit interval. The 

difference to the first approximation is given by: 

+. . . .+ . 

where the difference or detail signals are computed 

from the detail coefficients as: 

 

with  denoting the mother wavelet of the wavelet 

transform. 

Inverse DWT 

Given the coefficient sequence   for some M<J and 

all the difference sequences , k=M,...,J-1, one 

computes recursively, 

 

Or 

 

for k=J-1,J-2,...,M and all . In the Z-transform 

notation: 

The upsampling operator  creates zero-filled 

holes inside a given sequences. That is, every second 

element of the resulting sequence is an element of the 

given sequence, every other second element is zero 

or . This linear operator is, 

in the Hilbert space , the adjoint to the 

downsampling operator  

3. Haar wavelet transform 

Haar wavelet compression is very simple and an 

efficient way to perform both lossless and lossy image 

compression. It relies on averaging the pixels values 

and differencing values in an image matrix to produce a 

matrix which is sparse or nearly sparse. A sparse 

matrix is a matrix in which a large portion of its entries 

values are 0. A sparse matrix can be stored in an  very 

efficient manner leading to the smaller file sizes of 

image.  By using haar wavelet compression we 

concentrate on grayscale images; however, rgb images 

can be handled by compressing each of the color layers 

with separately. The basic method is to start with any 

image A, which can be regarded as an m×n matrix with 

values 0 to 255. In Matlab, this would be a matrix with 

an unsigned 8-bit integer values. We then subdivide to 

image into 8×8 blocks, padding as necessary. This is the 

8×8 blocks that we work with. Haar wavelet basis can 

be used to represent the image by computing a wavelet 

transform. To do this, first compute average the pixels 

together, pair wise, is calculated to get the new lower 

resolution image with pixel values [14, 10, 6, 2]. This 

single number is used to recover the first two pixels of 

our original four-pixel image. Similarly, the first detail  

coefficient is -1, since 14 + (-1) = 13 and 14 - (-1) = 15. 

Thus, the original image is decomposed into a lower 

https://en.wikipedia.org/wiki/Linear_subspace
https://en.wikipedia.org/wiki/Upsampling
https://en.wikipedia.org/wiki/Hilbert_space
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resolution (two-pixel) version and a pair of detail 

coefficients. Repeating this process recursively on the 

averages gives the full decomposition shown in table1. 

Table1: decomposition to lower resolution 

Thus this is the basis of one dimensional haar wavelet 

transforms procedure to compute the detail 

coefficients of an image matrix data. We used the way 

to compute the wavelet transform by recursively 

averaging and differencing coefficients, filter bank. We 

can reconstruct the image to any resolution values by 

recursively adding and subtracting the detail 

coefficients from the lower resolution versions. 

3.1. Compression of image with 2D Haar Wavelet 

Techniques: 

It has been shown in previous section how one 

dimensional image reconstructed with any resolution 

and also it can be treated as sequences of coefficients. 

Alternatively, we can also think of images as a 

piecewise constant functions on the half-open interval 

[0, 1). To do so, there used the concept of a vector 

space. A one-pixel image is just as a function that is 

constant over the entire interval [0, 1). Let  be the 

vector space of all these functions. A two pixel image 

has a two constant pieces over the intervals [0, 1/2) 

and [1/2, 1). We call the space containing all these 

functions . If we continue in this manner, the space  

will include all piecewise-constant functions that 

defined on the interval [0, 1) with constant pieces over 

each of  equal subintervals. Now, We think of every 

one-dimensional image with  pixels as an element, or 

vector, in . Note that because of these vectors are all 

functions are defined on the unit interval, every vector 

in  is also contained in . For example, we always 

describe a piecewise constant functions with two 

intervals as a piecewise-constant function with four 

intervals, with each interval in the first function 

corresponding to a pair of intervals in the second 

intervals. Thus, the spaces  are nested; that is, ⊂ 

⊂ ⊂ …… This nested set of vector spaces  is a 

necessary ingredient for the mathematical theory of 

multiresolution analysis (MRA) [1]. It guarantees that 

every member of  can be represented exactly as a 

member of higher resolution space . The converse, 

however, is not true: not every function G(x) in  can 

be represented exactly in lower resolution space ; in 

general there is some lost detail [2].  Now we define a 

basis for each vector space . The basic functions for 

the spaces  are called scaling functions, are usually 

denoted by the symbol. A simple basis for  is given by 

the set of scaled and translated box functions [3]:   

   where  

 

The wavelets corresponding to the box basis are 

known as the Haar wavelets, given by- 

 where 

Resolution Averages Detail Coefficients 

8 [13,15,11,9,7,5,1,3]  

4 [14,10,6,2] [-1,1,1,-1] 

2 [12,4] [2,2] 

1 [8] [4] 
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Fig3: Structure of wavelet decomposition 

 

Fig4: Two level 2D wavelet decomposition tree. 
 
Thus, the DWT for an image as a 2D signal will be 

obtained from 1D DWT. By using these filters in one 

stage, an image is decomposed into four bands. There 

exist three types of detail images for each resolution: 

horizontal (HL), vertical (LH), and diagonal (HH). The 

operations can be repeated on the low (LL) band using 

the second stage of identical filter bank. Thus, a typical 

2D DWT, used in image compression, generates the 

hierarchical structure shown in Fig. 4.  Now let us see 

how the 2D Haar wavelet transformation is performed. 

The image is comprised of pixels represented by 

numbers [4]. The number of decompositions levels 

determines the quality of compressed image and also 

determines the resolution of the lowest level in wavelet 

domain. If a larger number of decompositions is used, it 

will provide more success in resolving important DWT 

coefficients from less important coefficients and it 

helps to improved the quality of image. 
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Fig5: A 8  image. 

Fig6:1D level-decomposition  
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   Fig7: 1D level reconstructed image 

 

 
 

Fig8:2D level decomposition 
 
 



          International Research Journal of Engineering and Technology (IRJET)      e-ISSN: 2395 -0056 

               Volume: 04 Issue: 05 | May -2017                     www.irjet.net                                                                p-ISSN: 2395-0072 

 

© 2017, IRJET       |       Impact Factor value: 5.181       |       ISO 9001:2008 Certified Journal       |        Page 516 
 

 
 

 Fig9: 2D level reconstructed image 
 

 
 
Fig10: input and output image 
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Fig11: output image  
 

3.2. QUALITY MEASUREMENT 

We define the compression ratio (CR) as in percentage 

of number of bits in original image and compressed 

image.The compression scores in percentages 26.6602, 

after implement to 2D haar wavelets. It is noted here 

that the hard thresholding provides the best CR. The 

soft thresholding gives a better CR in comparison to 

universal thresholding method. The PSNR for gray 

scale image (8 bits/pixel) is defined by-   

PSNR=    

 

Where  is approximation of decompressed image and 

 is original image and M, N are dimensions of the 

image. These results are widely acceptable in most 

cases except in medical application where no loss of 

information is to be guaranteed. However, the PSNR is  

 

Not adequate as a perceptually meaningful measure of 

pictures quality, because the reconstruction errors 

generally do not have the characteristic of signal 

independent additive noise and the seriousness of the 

impairments that cannot be measured by a simple 

power measurement. At present in image compression, 

the most widely used objective distortion measures are 

the MSE and the related PSNR. They can be easly 

computed to represent the deviation of the distorted 

image from the original image in the pixelwise or 

bitwise sense. The subjective perceptual quality 

improvement includes surface smoothness, edge 

sharpness and continuity, proper background noise 

level, and so on. 

 

4. CONCLUSION 
 
Image compression helps to decrease the size of image 

to stored images in appropriate storage space. it helps 
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to reduced the bits redundancy by which image takes 

large space. Compressed image has a low quality after 

compression applied. the wavelet transformation is 

one of the best technique to improved the image 

quality and also reduced distortion and enhanced the 

compression performance. A low complex 2D image 

compression method using Haar wavelets which is the 

family of wavelet transformation, as the basis functions 

along with the quality measurement of the compressed 

images have been presented here . As for the further 

work, the decomposition level are greatly helps to 

increase the quality of image 3D haar wavelet is the 

future work of this techniques which is help to 

compressed the 3D image with best quality also the 

tradeoff between the value of the threshold ε and the 

image quality can be studied  and  also  fixing  the 

correct  threshold value is also of  great interest. 

Furthermore, finding out the exact number of 

transformation level required in case of application 

several image compression at one time, can be studied. 

Also, more thorough comparison of various still image 

quality measurement algorithms may be conducted 

also decide which one is the best approach, is 

considered . Though many published algorithms left a 

few parameters unspecified, here good estimates of 

them and simple procedures for implementation have 

been provided so that it is difficult to conclude any 

decisive advantage of one algorithm over another.   
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