FOURIER SERIES INVOLVING H-FUNCTION OF TWO VARIABLES

Mehphooj Beg ${ }^{1}$, Dr. S. S. Shrivastava ${ }^{2}$
VITS, Satna (M. P.), Institute for Excellence in Higher Education
Bhopal (M. P.)

\qquad
Abstract
The object of this paper is to establish some new Fourier series involving H-function of two variables.

1. Introduction:

Recently Mittal and Gupta [1, p. 117] has given the following notation of the H -function of two variables as:

$$
\begin{align*}
& =\frac{-1}{4 \pi^{2}} \int_{L_{1}} \int_{L_{2}} \phi_{1}(\xi, \eta) \theta_{2}(\xi) \theta_{3}(\eta) x^{\xi} y^{\eta} d \xi d \eta \tag{1}
\end{align*}
$$

where

$$
\begin{aligned}
& \phi_{1}(\xi, \eta)=\frac{\prod_{j=1}^{n_{1}} \Gamma\left(1-a_{j}+\alpha_{j} \xi+A_{j} \eta\right)}{\Pi_{j=n_{1}+1}^{p_{1}} \Gamma\left(a_{j}-\alpha_{j} \xi-A_{j} \eta\right) \prod_{j=1}^{q_{1}} \Gamma\left(1-b_{j}+\beta_{j} \xi+B_{j} \eta\right)^{\prime}}, \\
& \theta_{2}(\xi)=\frac{\Pi_{j=1}^{m_{2}} \Gamma\left(d_{j}-\delta_{j} \xi\right) \Pi_{j=1}^{\mathrm{n}_{2}} \Gamma\left(1-c_{\mathrm{c}}+\gamma_{\mathrm{j}} \xi\right)}{\Pi_{\mathrm{j}=\mathrm{m}_{2}+1}^{\mathrm{q}_{2}} \Gamma\left(1-\mathrm{d}_{\mathrm{j}}+\delta_{j} \xi \prod_{\mathrm{j}=\mathrm{n}_{2}+1} \Gamma\left(\mathrm{c}_{\mathrm{j}}-\gamma_{j} \xi\right)\right.} \\
& \theta_{2}(\xi)=\frac{\Pi_{j=1}^{m_{3}} \Gamma\left(f_{j}-F_{j} \eta\right) \Pi_{j=1}^{n_{3}} \Gamma\left(1-e_{j}+E_{j} \eta\right)}{\Pi_{j=m_{3}+1}^{q_{3}} \Gamma\left(1-f_{j}+F_{j} \eta\right) \Pi_{j=n_{3}}^{p_{3}}{ }_{3}\left(e_{j}-E_{j} \eta\right)}
\end{aligned}
$$

x and y are not equal to zero, and an empty product is interpreted as unity p_{i}, q_{i}, n_{i} and m_{j} are non negative integers such that p_{i} $\geq n_{i} \geq 0, q_{i} \geq 0, q_{j} \geq m_{j} \geq 0,(i=1,2,3 ; j=2,3)$. Also, all the A's, $\alpha^{\prime} s, B^{\prime} s, \beta^{\prime} s, \gamma^{\prime} s, \delta^{\prime} s$, E's, and $F^{\prime} s$ are assumed to the positive quantities for standardization purpose.

The contour L_{1} is in the ξ-plane and runs from - i i 0 to $+i \infty$, with loops, if necessary, to ensure that the poles of $\Gamma\left(d_{j}\right.$ $\left.\delta_{j} \xi\right)\left(j=1, \ldots, m_{2}\right)$ lie to the right, and the poles of $\Gamma\left(1-c_{j}+\gamma_{j} \xi\right)\left(j=1, \ldots, n_{2}\right), \Gamma\left(1-a_{j}+\alpha_{j} \xi+A_{j} \eta\right)\left(j=1, \ldots, n_{1}\right)$ to the left of the contour.

The contour L_{2} is in the η-plane and runs from $-\mathrm{i} \infty$ to $+\mathrm{i} \infty$, with loops, if necessary, to ensure that the poles of $\Gamma\left(\mathrm{f}_{\mathrm{j}}-\right.$ $\left.F_{j} \eta\right)\left(j=1, \ldots, m_{3}\right)$ lie to the right, and the poles of $\Gamma\left(1-e_{j}+E_{j} \eta\right)\left(j=1, \ldots, n_{3}\right), \Gamma\left(1-a_{j}+\alpha_{j} \xi+A_{j} \eta\right)\left(j=1, \ldots, n_{1}\right)$ to the left of the contour.

The function, defined by (1), is analytic function of x and y if

$$
\begin{aligned}
& R=\sum_{j=1}^{\mathrm{p}_{1}} \alpha_{\mathrm{j}}+\sum_{\mathrm{j}=1}^{\mathrm{p}_{2}} \gamma_{\mathrm{j}}-\sum_{\mathrm{j=}=1}^{\mathrm{q}_{1}} \beta_{\mathrm{j}}-\sum_{j=1}^{\mathrm{q}_{2}} \delta_{\mathrm{j}}<0, \\
& R=\sum_{\mathrm{j}=1}^{\mathrm{p}_{1}} A_{\mathrm{j}}+\sum_{\mathrm{j}=1}^{\mathrm{p}_{3}} \mathrm{~F}_{\mathrm{j}}-\sum_{\mathrm{j}=1}^{\mathrm{q}_{1}} B_{\mathrm{j}}-\sum_{\mathrm{j}=1=1}^{\mathrm{q}_{3}} F_{\mathrm{j}}<0,
\end{aligned}
$$

The H -function of two variables given by (1) is convergent if
$\mathrm{U}=-\sum_{\mathrm{j}=\mathrm{n}_{1}+1}^{\mathrm{p}_{1}} \alpha_{\mathrm{j}}-\sum_{\mathrm{j}=1}^{\mathrm{q}_{1}} \beta_{\mathrm{j}}+\sum_{\mathrm{j}=1}^{\mathrm{m}_{2}} \delta_{\mathrm{j}}-\sum_{\mathrm{j}=\mathrm{m}_{2}+1}^{\mathrm{q}_{2}} \delta_{\mathrm{j}}+\sum_{\mathrm{j}=1}^{\mathrm{n}_{2}} \gamma_{\mathrm{j}}-\sum_{\mathrm{j}=\mathrm{n}_{2}+1}^{\mathrm{p}_{2}} \gamma_{\mathrm{j}}>0$,
$V=-\sum_{j=n_{1}+1}^{p_{1}} A_{j}-\sum_{j=1}^{q_{1}} B_{j}+\sum_{j=1}^{m_{3}} F_{j}-\sum_{j=m_{3}+1}^{q_{3}} F_{j}+\sum_{j=1}^{n_{3}} E_{j}-\sum_{j=n_{3}+1}^{p_{3}} E_{j}>0$,
and $|\arg x|<1 / 2 U 0,|\arg y|<1 / 2 \mathrm{~V}$ 国回

2. Result Required:

The following results are required in our present investigation:
From Macrobert [2,3]:

$$
\begin{equation*}
\frac{\sqrt{ } \pi \Gamma(2-s)}{2 \Gamma\left(\frac{3}{2}-s\right)}(\sin \theta)^{1-2 s}=\sum_{r=0}^{\infty} \frac{(s)_{r}}{(2-s)_{r}} \sin (2 r+1) \theta, \tag{4}
\end{equation*}
$$

where $0<\theta \leq \pi$, $\operatorname{Res} \leq \frac{1}{2}$.

$$
\begin{equation*}
\frac{\sqrt{ } \pi \Gamma(1-s)}{\Gamma\left(\frac{1}{2}-s\right)}\left(\sin \frac{\theta}{2}\right)^{-2 s}=1+2 \sum_{r=0}^{\infty} \frac{(s)_{r}}{(1-s)_{r}} \operatorname{cosr} \theta, \tag{5}
\end{equation*}
$$

where $0<\theta \leq \pi$.

3. Main Result:

In this paper we will establish the following Fourier series:
provided that $0<\theta \leq \pi$, $|\arg x|<1 / 2 U$, $|\arg y|<1 / 2 V$, where U and V are given in (2) and (3) respectively.

$$
\begin{align*}
& +2 \sum_{r=0}^{\infty} H_{p_{1}, \mathrm{q}_{1} ; \mathrm{p}_{2}+2, \mathrm{q}_{2}+2 ; \mathrm{p}_{3}, \mathrm{q}_{3}}^{0, \mathrm{n}_{1} ; \mathrm{m}_{2}+1, \mathrm{n}_{2}+1 ; \mathrm{m}_{3}, \mathrm{n}_{3}}\left[\left.\begin{array}{l}
\mathrm{x} \\
\mathrm{y}
\end{array}\right|_{\left.\left.\left(\mathrm{b}_{\mathrm{j}}, \beta_{\mathrm{j}} ; \mathrm{B}_{\mathrm{j}}\right)_{1, \mathrm{q}_{1}}:\left(\frac{1}{2}, 1\right),\left(\mathrm{d}_{\mathrm{j}}, \delta_{\mathrm{j}}\right)_{1, \mathrm{q}_{2}},(1,1):\left(\mathrm{f}_{\mathrm{j}}, \mathrm{~F}_{\mathrm{j}}\right)_{1, \mathrm{q}_{3}} ; \mathrm{A}_{\mathrm{j}}\right)_{1, \mathrm{p}_{1}}:(1-\mathrm{r}, 1),\left(\mathrm{c}_{\mathrm{j}}, \gamma_{\mathrm{j}}\right)_{1, \mathrm{p}_{2}},(1+\mathrm{r}, 1):\left(\mathrm{e}_{\mathrm{j}}, \mathrm{E}_{\mathrm{j}}\right)_{1, \mathrm{p}_{3}}\right] \operatorname{cosr} \theta}\right. \tag{7}
\end{align*}
$$

provided that $0<\theta \leq \pi$, $|\arg x|<1 / 2 U 0$, $|\arg y|<1 / 2 \mathrm{~V}$? where U and V are given in (2) and (3) respectively.

Proof:

To prove (6), expressing the H-function on the left-hand side as Mellin-Barnes type integral (1), we have

$$
\sum_{r=0}^{\infty} \frac{(-1)}{4 \pi^{2}} \int_{\mathrm{L}_{1}} \int_{\mathrm{L}_{2}} \phi_{1}(\xi, \eta) \theta_{2}(\xi) \theta_{3}(\eta) \frac{\Gamma\left(\frac{3}{2}-s\right) \Gamma(r+s)}{\Gamma(s) \Gamma(2+r-s)} \mathrm{x}^{\xi} y^{\eta} \sin (2 r+1) \theta \mathrm{d} \xi \mathrm{~d} \eta
$$

On changing the order of integration and summation which is easily seen to be justified, the above expression becomes

$$
\begin{aligned}
& \frac{(-1)}{4 \pi^{2}} \int_{\mathrm{L}_{1}} \int_{\mathrm{L}_{2}} \phi_{1}(\xi, \eta) \theta_{2}(\xi) \theta_{3}(\eta) \frac{\Gamma\left(\frac{3}{2}-s\right)}{\Gamma(2-s)} \times \\
& \times\left[\sum_{r=0}^{\infty} \frac{(s)_{r}}{(2-s)_{r}} \sin (2 r+1) \theta\right] \mathrm{x}^{\xi} \mathrm{y}^{\eta} \mathrm{d} \xi \mathrm{~d} \eta .
\end{aligned}
$$

and on using the relation (4), it takes the form

$$
\frac{\sqrt{ } \pi}{2} \sin \theta \cdot \frac{(-1)}{4 \pi^{2}} \int_{\mathrm{L}_{1}} \int_{\mathrm{L}_{2}} \phi_{1}(\xi, \eta) \theta_{2}(\xi) \theta_{3}(\eta)\left(\mathrm{x} / \sin ^{2} \theta\right)^{\xi} \mathrm{y}^{\eta} \mathrm{d} \xi \mathrm{~d} \eta .
$$

which is just the expression on the right side of (6). (6) is the Fourier sine series for the H -function of two variables. The Fourier cosine series (7) is proved in an analogous by using (5).

4. Special Cases:

On specializing the parameters in main results, we get following Fourier series in terms of H -function of one variable, which is a result given by Nigam [4, p. 53 (1.1) and (1.2)]:

$$
\begin{align*}
& =\frac{\sqrt{ } \pi}{2} \sin \theta \cdot \mathrm{H}_{\mathrm{p}, \mathrm{q}}^{\mathrm{m}, \mathrm{n}}\left[\mathrm{x} /\left.\sin ^{2} \theta\right|_{\left(\mathrm{b}_{\mathrm{j}}, \mathrm{p}_{\mathrm{j}}\right)_{1, \mathrm{q}}} ^{\left(\mathrm{a}_{\mathrm{a}}, \alpha_{\mathrm{j}}\right)_{1, \mathrm{p}}}\right] \tag{8}
\end{align*}
$$

provided that $0<\theta \leq \pi,|\operatorname{argx}|<1 / 2 \pi A$, where A is given by $\sum_{j=1}^{n} \alpha_{j}-\sum_{j=n+1}^{p} \alpha_{j}+\sum_{j=1}^{m} \beta_{j}-\sum_{j=m+1}^{q} \beta_{j} \equiv A>0$.

$$
\begin{align*}
& =\sqrt{ } \pi \mathrm{H}_{\mathrm{p}, \mathrm{q}}^{\mathrm{m}, \mathrm{n}}\left[\mathrm{x} /\left.\sin ^{2} \frac{{ }^{\frac{\theta}{2}}}{2}\right|_{\left(\mathrm{b}_{\mathrm{j}}, \beta_{\mathrm{j}}\right)_{1, \mathrm{q}}} ^{\left(\mathrm{a}_{\mathrm{j}} \alpha_{\mathrm{j}}\right)} \mathrm{m}_{\mathrm{p}}\right], \tag{9}
\end{align*}
$$

provided that $0<\theta \leq \pi$, $|\operatorname{argx}|<1 / 2 \pi A$, where A is given by $\sum_{\mathrm{j}=1}^{\mathrm{n}} \alpha_{\mathrm{j}}-\sum_{\mathrm{j}=\mathrm{n}+1}^{\mathrm{p}} \alpha_{\mathrm{j}}+\sum_{\mathrm{j}=1}^{\mathrm{m}} \beta_{\mathrm{j}}-\sum_{\mathrm{j}=\mathrm{m}+1}^{\mathrm{q}} \beta_{\mathrm{j}} \equiv \mathrm{A}>0$.

References

1. Mittal, P. K. and Gupta Gupta, K. C.: An integral involving generalized function of two variables, Proc. Indian Acad. Sci., 75 A, p. 117-123.
2. Macrobert, T. M.: Fourier series for E-function, Math. Zeitsclie, 75, 79-82 (1961).
3. Macrobert, T. M.: Infinite series for E-function, Math. Zeitsclie, 71, 143-154 (1959).
4. Nigam, H. N.: Fourier series for Fox's H-Functions, İstanbul University Science Faculty The Journal of Mathematics, Physics and Astronomy Vol. 34 (1969), 53-58.
