

# Shear Wall as Lateral Load Resisting System

Ramachandra Hegde<sup>1</sup>, Vaijanath Chougule<sup>2</sup>

<sup>1</sup> Post-Graduate Student, Dept. of Civil Engineering, KLS Gogte Institute of Technology, Belagavi, India <sup>2</sup>, Assistant Professor, Dept. of Civil Engineering, KLS Gogte Institute of Technology, Belagavi, India \*\*\*

Abstract- Seismic Design of Reinforced concrete structure till at the moment is a matter of great anxiety; defeat of large human and economic resource is only due to earthquakes. For this cause it is needed to understand the behavior of structure subjected to dynamic loading. Better arrangement of RC shear wall building in new and earlier period earthquakes is observed and it encourages its use in high rise buildings. The work deals with the design of shear wall, behavior and stiffness of frame with shear wall using E-tab software. For this reason structures are modeled and analyzed using codes IS 1893:2002, IS 456:2000. The buildings are modeled with floor area of (25m x 15m ) with 5 bays of 5m span along X Direction and 3 bays of 5m span along Y Direction. Floor to Floor height is taken as 3.5m. A Comparative has been done by placing shear walls at different locations in the building subjected to seismic load. Shear wall are placed at the pheriphry, inner core and at the intermediate position. Different parameters such as Base shear, story drift, story shear, story stiffness and natural period are observed for bare frame, frame with masonry walls and frame with masonry and shear walls to compare the structural behavior of Shear wall systems.

Keywords: Shear walls, Stiffness, E-tabs, Story shear, Natural period.

## **1. INTRODUCTION**

The walls which resist the lateral loads such as wind or earthquake in a building are known as shear wall. Lateral strength and stiffness of the structure can be improved by shear wall and thereby providing good inter storey drifts control and energy dissipation capacity. Basic criterions that the structure should satisfy are stiffness, strength and ductility and these objectives can be pleased by the shear walls. The stiffness of the framed structure with shear walls is more compared to bare frame structure and therefore deformations under earthquake load gets reduced. The needed strength can be achieved by proper detailing of longitudinal and transverse reinforcement, to avoid damage

Reinforced concrete (RC) shear walls are typically provided between column lines, stair wells, and lift wells. Shear wall offer lateral load resistance by transferring the wind or earthquake loads to the foundation. Beside that they provide lateral stiffness to the structure and carry gravity loads. Seismic performance of a building can be drastically improved by well designed system of shear walls.

Shear wall is similar to column taking axial load but of very small thickness with respective to standard column

size. It has been noted that the building provided with shear walls can easily bear stresses and stiffness can be enhanced against the lateral displacement of vertical structural members. The structural location of shear wall should be such that it allows maximum load to pass through it in lateral direction for reducing shear failure to other structural members.

#### 2. STRUCTURAL PROPERTIES OF RC BUILDING:

- Stories : G+19
- Story height: 3.5m
- Beam dimension : 230x850 (1<sup>st</sup> 5 stories)
  - : 230x800 (2<sup>nd</sup> 5 stories)
    - : 230x700 (3<sup>rd</sup> 5 stories)
    - : 230x450 (4<sup>th</sup> 5 stories)
- Column dimension :  $650 \times 650 (1^{st} 5 \text{ stories})$ : 550x550 (2<sup>nd</sup> 5 stories) : 500x500 (3<sup>rd</sup> 5 stories)
  - : 450x450 (4<sup>th</sup> 5 stories)
- Shear wall thickness : 230mm
- Grade of concrete : M30
- Grade of steel : Fe-500
- Zone considered V
- Importance factor:1 •
- **Response reduction factor-5**
- Dead load on the structure-1kN/m<sup>2</sup>
- Live load on the structure- 3kN/m<sup>2</sup>

## 2.1: Location of shear walls:

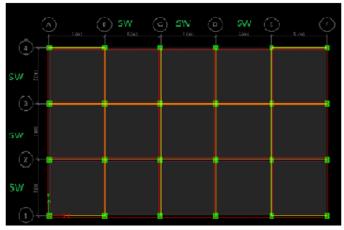



Fig 1.1:Shear wall with 1<sup>st</sup> configuration



International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

IRJET Volume: 04 Issue: 05 | May -2017

www.irjet.net

p-ISSN: 2395-0072



Fig 1.2:Shear wall with 2<sup>nd</sup> configuration

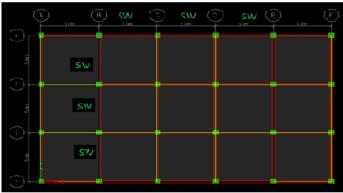



Fig 1.3:Shear wall with 3<sup>rd</sup> configuration

#### 2.2 : Observations in Various Parameters:

|       |       | l <sup>st</sup> model | 2 <sup>nd</sup> model | 3 <sup>rd</sup> model | 4 <sup>th</sup> model | 5 <sup>th</sup> model |
|-------|-------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
|       |       | Bare                  |                       |                       |                       |                       |
| Story | Load  | frame                 | with MW               | SW1                   | SW2                   | SW3                   |
| 20    | SPECX | 288.47                | 655.64                | 611.33                | 627.03                | 611.80                |
| 19    | SPECX | 508.19                | 1326.01               | 1313.90               | 1341.35               | 1314.81               |
| 18    | SPECX | 641.06                | 1975.03               | 1994.54               | 2028.21               | 1995.87               |
| 17    | SPECX | 726.41                | 2597.38               | 2647.59               | 2682.96               | 2649.34               |
| 16    | SPECX | 798.95                | 3191.32               | 3270.29               | 3303.72               | 3272.49               |
| 15    | SPECX | 871.82                | 3764.59               | 3867.06               | 3897.16               | 3869.31               |
| 14    | SPECX | 949.88                | 4314.77               | 4437.07               | 4461.34               | 4439.45               |
| 13    | SPECX | 1023.68               | 4835.88               | 4974.49               | 4990.89               | 4977.05               |
| 12    | SPECX | 1090.70               | 5326.73               | 5478.70               | 5485.59               | 5481.47               |
| 11    | SPECX | 1150.06               | 5786.12               | 5949.28               | 5945.39               | 5952.22               |
| 10    | SPECX | 1202.31               | 6217.53               | 6389.41               | 6374.58               | 6394.03               |
| 9     | SPECX | 1251.73               | 6619.52               | 6799.08               | 6772.40               | 6805.24               |
| 8     | SPECX | 1298.37               | 6986.06               | 7172.89               | 7133.75               | 7180.38               |
| 7     | SPECX | 1346.81               | 7315.12               | 7509.07               | 7457.01               | 7517.67               |
| 6     | SPECX | 1402.91               | 7604.83               | 7805.57               | 7740.32               | 7815.05               |
| 5     | SPECX | 1469.84               | 7858.40               | 8066.72               | 7986.54               | 8075.93               |
| 4     | SPECX | 1545.18               | 8074.02               | 8287.86               | 8192.63               | 8296.70               |
| 3     | SPECX | 1614.70               | 8242.17               | 8459.48               | 8350.03               | 8467.91               |
| 2     | SPECX | 1664.39               | 8357.66               | 8576.86               | 8455.20               | 8584.92               |
| 1     | SPECX | 1685.35               | 8414.85               | 8635.40               | 8505.89               | 8643.22               |

Table 1.0: Story shear in KN

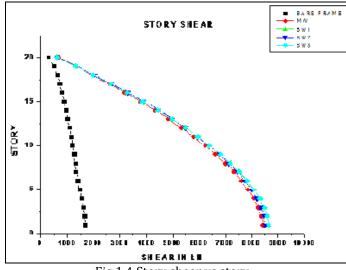
|       |       | l <sup>st</sup> model | 2 <sup>nd</sup> model | 3 <sup>rd</sup> model | 4 <sup>th</sup> model | 5 <sup>th</sup> model |
|-------|-------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
|       |       | Bare                  |                       |                       |                       |                       |
| Story | Load  | frame                 | with MW               | SW1                   | SW2                   | SW3                   |
| 20    | SPECX | 34.38                 | 288.82                | 2764.85               | 1616.48               | 2763.94               |
| 19    | SPECX | 29.95                 | 229.62                | 413.69                | 370.95                | 414.15                |
| 18    | SPECX | 12.50                 | 193.16                | 378.01                | 349.21                | 377.98                |
| 17    | SPECX | 3.05                  | 157.93                | 329.85                | 303.34                | 329.50                |
| 16    | SPECX | 0.10                  | 93.92                 | 235.81                | 208.61                | 237.20                |
| 15    | SPECX | 2.07                  | 89.49                 | 210.68                | 197.73                | 208.48                |
| 14    | SPECX | 1.58                  | 98.18                 | 224.74                | 208.55                | 224.40                |
| 13    | SPECX | 2.42                  | 90.90                 | 207.53                | 191.50                | 204.87                |
| 12    | SPECX | 2.55                  | 85.49                 | 191.13                | 177.19                | 190.19                |
| 11    | SPECX | 2.45                  | 70.12                 | 160.22                | 145.75                | 151.50                |
| 10    | SPECX | 1.13                  | 69.38                 | 151.54                | 141.30                | 150.78                |
| 9     | SPECX | 1.11                  | 78.28                 | 168.40                | 156.52                | 167.73                |
| 8     | SPECX | 0.69                  | 78.39                 | 167.98                | 156.74                | 167.49                |
| 7     | SPECX | 2.84                  | 78.54                 | 170.28                | 159.84                | 169.84                |
| 6     | SPECX | 4.01                  | 69.25                 | 146.09                | 144.83                | 150.20                |
| 5     | SPECX | 3.82                  | 72.68                 | 164.65                | 157.41                | 163.05                |
| 4     | SPECX | 2.53                  | 88.10                 | 198.87                | 189.44                | 198.23                |
| 3     | SPECX | 9.02                  | 95.90                 | 215.22                | 206.44                | 213.41                |
| 2     | SPECX | 13.06                 | 104.13                | 230.75                | 224.19                | 229.34                |
| 1     | SPECX | 14.97                 | 109.34                | 241.91                | 234.69                | 239.90                |

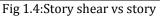
Table 1.1: Story stiffness in kN/mm

|       |       | l <sup>st</sup> model | 2 <sup>nd</sup> model | 3 <sup>rd</sup> model | 4 <sup>th</sup> model | 5 <sup>th</sup> model |
|-------|-------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| Story | Load  | Bare frame            | with MW               | SW1                   | SW2                   | SW3                   |
| 20    | SPECX | 53.6                  | 7.407                 | 3.513                 | 3.794                 | 3.536                 |
| 19    | SPECX | 51.6                  | 7.356                 | 3.48                  | 3.74                  | 3.503                 |
| 18    | SPECX | 48.7                  | 7.263                 | 3.427                 | 3.666                 | 3.45                  |
| 17    | SPECX | 44.9                  | 7.125                 | 3.354                 | 3.574                 | 3.377                 |
| 16    | SPECX | 40.7                  | 6.945                 | 3.262                 | 3.462                 | 3.285                 |
| 15    | SPECX | 37.2                  | 6.725                 | 3.152                 | 3.331                 | 3.174                 |
| 14    | SPECX | 34.7                  | 6.467                 | 3.025                 | 3.183                 | 3.046                 |
| 13    | SPECX | 32                    | 6.171                 | 2.88                  | 3.017                 | 2.901                 |
| 12    | SPECX | 29.2                  | 5.838                 | 2.72                  | 2.835                 | 2.739                 |
| 11    | SPECX | 26.2                  | 5.47                  | 2.544                 | 2.638                 | 2.562                 |
| 10    | SPECX | 23.3                  | 5.071                 | 2.354                 | 2.428                 | 2.371                 |
| 9     | SPECX | 20.8                  | 4.647                 | 2.153                 | 2.206                 | 2.168                 |
| 8     | SPECX | 18.3                  | 4.194                 | 1.94                  | 1.973                 | 1.953                 |
| 7     | SPECX | 15.7                  | 3.716                 | 1.716                 | 1.73                  | 1.727                 |
| 6     | SPECX | 13                    | 3.215                 | 1.483                 | 1.48                  | 1.492                 |
| 5     | SPECX | 10.3                  | 2.693                 | 1.241                 | 1.224                 | 1.249                 |
| 4     | SPECX | 8.1                   | 2.171                 | 0.998                 | 0.969                 | 1.003                 |
| 3     | SPECX | 5.8                   | 1.632                 | 0.749                 | 0.712                 | 0.753                 |
| 2     | SPECX | 3.6                   | 1.083                 | 0.497                 | 0.459                 | 0.499                 |
| 1     | SPECX | 1.4                   | 0.523                 | 0.242                 | 0.216                 | 0.243                 |

Table 1.2: Story displacement in mm

ISO 9001:2008 Certified Journal





International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

**ET** Volume: 04 Issue: 05 | May -2017

www.irjet.net

e-ISSN: 2395 -0056 p-ISSN: 2395-0072





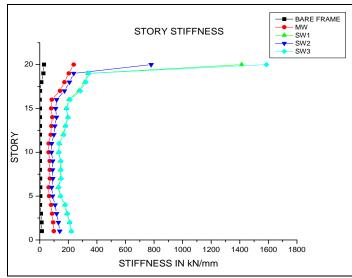



Fig 1.5:Story stiffness vs story

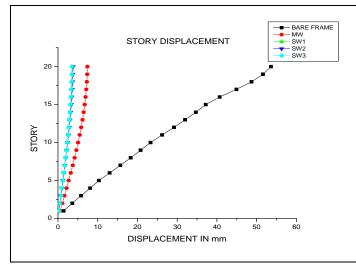



Fig 1.6:Story displacement vs story

|       |       | 1 <sup>st</sup> model | 2 <sup>nd</sup> model | 3 <sup>rd</sup> model | 4 <sup>th</sup> model | 5 <sup>th</sup> model |
|-------|-------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
|       |       | Bare                  |                       |                       |                       |                       |
| Story | Load  | frame                 | with MW               | SW1                   | SW2                   | SW3                   |
| 20    | SPECY | 278.97                | 657.37                | 629.23                | 637.16                | 625.30                |
| 19    | SPECY | 486.41                | 1328.99               | 1346.04               | 1357.76               | 1339.42               |
| 18    | SPECY | 606.90                | 1978.67               | 2034.51               | 2045.81               | 2027.13               |
| 17    | SPECY | 681.83                | 2601.21               | 2690.20               | 2698.54               | 2683.18               |
| 16    | SPECY | 746.22                | 3194.97               | 3311.54               | 3315.96               | 3305.36               |
| 15    | SPECY | 811.18                | 3767.82               | 3903.37               | 3905.44               | 3898.21               |
| 14    | SPECY | 880.24                | 4317.40               | 4465.08               | 4465.20               | 4461.90               |
| 13    | SPECY | 944.89                | 4837.71               | 4991.53               | 4990.18               | 4991.16               |
| 12    | SPECY | 1003.97               | 5327.52               | 5483.17               | 5480.61               | 5485.86               |
| 11    | SPECY | 1057.52               | 5785.69               | 5940.33               | 5936.31               | 5946.00               |
| 10    | SPECY | 1105.74               | 6215.78               | 6366.32               | 6360.77               | 6376.62               |
| 9     | SPECY | 1151.65               | 6616.46               | 6761.33               | 6752.72               | 6776.45               |
| 8     | SPECY | 1194.83               | 6981.74               | 7120.66               | 7107.23               | 7140.52               |
| 7     | SPECY | 1239.99               | 7309.57               | 7443.32               | 7423.18               | 7467.33               |
| 6     | SPECY | 1293.60               | 7598.07               | 7727.57               | 7698.89               | 7755.11               |
| 5     | SPECY | 1359.25               | 7850.44               | 7977.39               | 7937.11               | 8007.34               |
| 4     | SPECY | 1434.11               | 8065.02               | 8188.45               | 8135.40               | 8220.68               |
| 3     | SPECY | 1503.48               | 8232.33               | 8352.14               | 8286.14               | 8386.06               |
| 2     | SPECY | 1552.89               | 8347.20               | 8464.25               | 8386.28               | 8498.99               |
| 1     | SPECY | 1573.47               | 8403.94               | 8520.22               | 8433.64               | 8555.14               |

Table 1.3: Story shear in KN

|       |       | 1 <sup>st</sup> model | 2 <sup>nd</sup> model | 3 <sup>rd</sup> model | 4 <sup>th</sup> model | 5 <sup>th</sup> model |
|-------|-------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| Store | Teel  | Bare                  |                       | SW1                   | SW2                   | SW3                   |
| Story | Load  | frame                 | with MW               | 3W1                   | 5W2                   | 3113                  |
| 20    | SPECY | 29.81                 | 237.50                | 1412.74               | 779.81                | 1586.25               |
| 19    | SPECY | 25.57                 | 203.07                | 337.44                | 237.59                | 343.07                |
| 18    | SPECY | 11.11                 | 172.94                | 315.18                | 207.75                | 323.10                |
| 17    | SPECY | 2.29                  | 141.76                | 274.82                | 173.09                | 284.56                |
| 16    | SPECY | 0.15                  | 83.96                 | 203.46                | 117.90                | 212.58                |
| 15    | SPECY | 1.46                  | 80.24                 | 185.97                | 111.34                | 188.10                |
| 14    | SPECY | 1.47                  | 88.16                 | 196.97                | 117.05                | 197.85                |
| 13    | SPECY | 1.74                  | 81.76                 | 177.64                | 106.00                | 181.93                |
| 12    | SPECY | 1.73                  | 76.99                 | 163.38                | 98.68                 | 168.59                |
| 11    | SPECY | 1.66                  | 62.97                 | 138.50                | 83.06                 | 134.81                |
| 10    | SPECY | 0.89                  | 62.16                 | 131.90                | 82.54                 | 133.83                |
| 9     | SPECY | 1.01                  | 70.13                 | 144.97                | 90.63                 | 147.82                |
| 8     | SPECY | 0.71                  | 70.37                 | 143.84                | 89.88                 | 148.42                |
| 7     | SPECY | 2.91                  | 70.73                 | 145.51                | 91.45                 | 150.12                |
| 6     | SPECY | 4.16                  | 62.31                 | 127.98                | 83.51                 | 133.64                |
| 5     | SPECY | 4.00                  | 65.15                 | 144.60                | 89.93                 | 146.20                |
| 4     | SPECY | 2.39                  | 79.32                 | 174.85                | 107.81                | 177.64                |
| 3     | SPECY | 8.31                  | 86.23                 | 189.58                | 117.97                | 193.55                |
| 2     | SPECY | 13.11                 | 93.92                 | 207.97                | 130.64                | 210.29                |
| 1     | SPECY | 14.70                 | 99.27                 | 220.33                | 140.11                | 221.07                |

Table 1.4: Story stiffness in kN/mm



International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

ET Volume: 04 Issue: 05 | May -2017

www.irjet.net

p-ISSN: 2395-0030

|       |       | lst model | 2nd model | 3rd model | 4th model | 5th model |
|-------|-------|-----------|-----------|-----------|-----------|-----------|
|       |       | Bare      |           |           |           |           |
| Story | Load  | frame     | with MW   | SW1       | SW2       | SW3       |
| 20    | SPECY | 58.2      | 8.254     | 4.097     | 6.654     | 4.011     |
| 19    | SPECY | 55.8      | 8.194     | 4.035     | 6.547     | 3.955     |
| 18    | SPECY | 52.4      | 8.086     | 3.951     | 6.41      | 3.878     |
| 17    | SPECY | 48.3      | 7.929     | 3.847     | 6.24      | 3.78      |
| 16    | SPECY | 43.7      | 7.726     | 3.722     | 6.036     | 3.661     |
| 15    | SPECY | 39.9      | 7.477     | 3.577     | 5.799     | 3.523     |
| 14    | SPECY | 37.1      | 7.187     | 3.415     | 5.532     | 3.368     |
| 13    | SPECY | 34.1      | 6.855     | 3.236     | 5.235     | 3.194     |
| 12    | SPECY | 30.9      | 6.482     | 3.04      | 4.909     | 3.004     |
| 11    | SPECY | 27.7      | 6.071     | 2.829     | 4.557     | 2.799     |
| 10    | SPECY | 24.5      | 5.625     | 2.604     | 4.181     | 2.58      |
| 9     | SPECY | 21.9      | 5.152     | 2.369     | 3.787     | 2.35      |
| 8     | SPECY | 19.2      | 4.647     | 2.123     | 3.374     | 2.108     |
| 7     | SPECY | 16.4      | 4.115     | 1.868     | 2.945     | 1.857     |
| 6     | SPECY | 13.5      | 3.559     | 1.604     | 2.505     | 1.597     |
| 5     | SPECY | 10.6      | 2.979     | 1.335     | 2.056     | 1.331     |
| 4     | SPECY | 8.3       | 2.399     | 1.067     | 1.612     | 1.065     |
| 3     | SPECY | 6         | 1.803     | 0.796     | 1.171     | 0.795     |
| 2     | SPECY | 3.6       | 1.195     | 0.524     | 0.742     | 0.524     |
| 1     | SPECY | 1.4       | 0.576     | 0.254     | 0.338     | 0.254     |

Table 1.5: Story displacement in mm

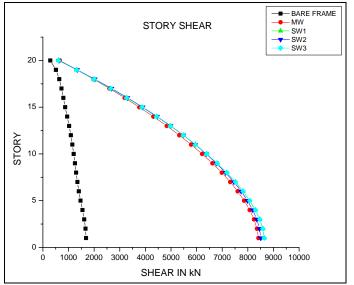
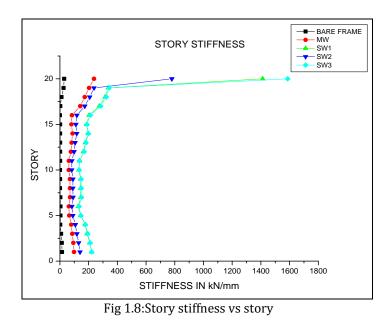




Fig 1.7:Story shear vs story



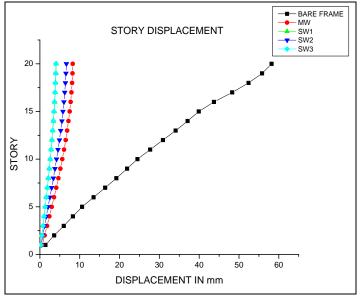



Fig 1.9:Story displacement vs story

# 2.3 Results and Discussion:

We have seen that if the resistance to the lateral force is more, then the displacement of the structure as well as drift is less. Most of the forces are resisted by shear walls. So in our analysis the better position of shear wall is at the outer periphery. From the above tables we can see that the displacement as well as stiffness of 1<sup>st</sup> configuration is better compared to other configurations in X (SPECX) direction. But in case of SPECY inner core performs better compared to other position of shear walls. The results were compared to bare frame and expressed in terms of percentage. When the analysis was carried out for 20 storied structures, story shear of (Model 2)(Masonry wall structure) is 56% greater than bare frame.(Model 3) is around 52.8%,(Model 4) is 54% and (Model 5) is 52% more than bare frame in X direction.

Similarly when the stiffness calculations were made we observed that (Model 2) is 88 %, (Model 3) is 98 %, (Model 4) is 97% and (Model 5) is 97.5% greater than bare frame structure. So when the stiffness parameter is considered we can see that the shear walls at the outer periphery performs well than the other configuration. Another important parameter to be discussed is story displacement. Story displacement of (Model 2) (MW) is 86% less than bare frame. (Model 3) is 93.3 %, (Model 4) is 92.9% and (Model 5) is 93.4% less than bare frame. In this case we can see that the displacement of Shear walls at the outer periphery is less compared to other positions. So the best configuration is that position of shear wall which has less displacement and has high stiffness. So the best position of shear wall is at the outer periphery i.e. (SW1). Similarly when the analysis was carried out in Y direction (Model 2) is 57.68% more than bare frame. (Model 3) is 55.8 %,( Model 4) is 56.35% and (Model 5) is 55.52% more than (Model 1). When it comes to stiffness of the structure masonry wall structure was 87% stiffer than bare frame structure, (Model 3) was 98%, (Model 4) was 96% and (Model 5) was 98.2% stiffer than bare frame. When story displacement was considered masonry wall structure was 86% less displaced compared to bare frame structure, (Model 3) was 93%, (Model 4) was 88% and (Model 5) was 93% less displaced compared to bare frame structure. Best position of shear wall here by observing the results was at the inner core.

## 2.4 Conclusion:

- To carry out the analysis 20 storied structures was modeled and results obtained by equivalent and response method were observed.
- The performance of the structure with shear wall performed very well compared to the structure with bare frame and masonry wall system.
- Introducing shear wall around 90% of stiffness is being increased and displacement is reduced by 95% when compared to bare frame and masonry wall structures.
- As the shear walls takes maximum amount of lateral forces the very important thing is the placing of shear walls. Models with different configuration are displayed above.
- From the analysis we come to know that the shear walls at the outer periphery performed very well compared to others as it takes high stiffness and less displacement. This is because the length of shear walls at the X direction is more compared to Y
- Similarly if the analysis is carried out at Y direction, Shear walls at the inner core performed very well because the length of shear wall in that direction is more.

#### 2.5 References:

[1] Book: By Dr.Vinod Hosur,"Earthquake Resistance Design of Building Structures", Wiley India Pvt.ltd.

[2] Mishra. R.S, Kushwaha.V and Kumar.S (2015)"A Comparative Study of Different Configurations of Shear Walls", IRJET Vol 2 ISSUE; 07.

[3] Medhekar.M.S and S.K.Jain (1993)"Seismic Behavior, Design and Detailing of RC Shear Wall" Part I Behavior and Strength.

[4] S.Medhekar.M.S and S.K.Jain (1993)"Seismic Behavior, Design and Detailing of RC Shear Wall 'Part II Design and Detailing

[5] Chandurkar.P.P and Dr Pajgade.P.S (2013) "Seismic Analysis of RCC Building with and Without Shear Wall"IJMER pp-1805-1810.

[6] Book: By Bryan Stafford Smith and Alex Coull, "Tall Building Structural Analysis and Design", Wiley India Pvt.ltd.

[7] Indian Standard Recommendations for Earthquake Resistance Design of Structures, IS: 1893-2002, Bureau of Indian Standards, New Delhi.

[8] Indian Standard Code of Practice of Plain and Reinforces Concrete, IS: 456-2000, Fourth Revision, BIS, New Delhi.

[9] IS 13920 (1993) Indian Standard Code of Practice. Code of Practice for Ductile Detailing of Reinforced Concrete Structures Subjected to Seismic Forces Bureau of Indian Standards, New Delhi

# BIOGRAPHIES



Ramachandra Hegde Post-Graduate Student, Department of Civil Engineering KLS Gogte Institute of Technology, Belagavi,India-590008



**Prof. Vaijanath.Chougule** Assistant Professor, Department of Civil Engineering, KLS Gogte Institute of Technology, Belagavi, India- 590008