
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 05 | May -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1651

JHive: Tool for Integrating Hive for Performance Analysis

Dipti Shikha Singh1, Garima Singh2

1 Student, M.Tech, Computer Science Department, Babu Banarasi Das University, Lucknow, U.P, India
 2 Assistant Professor, M.Tech, Computer Science Department, Babu Banarasi Das University, Lucknow, U.P, India

---***---

Abstract - Social, personal or professional use of internet
gives rise to Big Data with an incredible speed. The Big data
analysis has emerged as an important activity, there is still a
debate about the tools and management frameworks that
work on top of MapReduce. This document sheds light on
many of these documents that help us with the idea of
translators that help SQL-to-MapReduce translations for
managing Big Data. Also, we discuss the right approach to get
valuable information from large data stack using Hive.
Although HiveQL provides similar features as SQL, complex
SQL queries are difficult to map as HiveQL while they often
results in longer execution time. A tool JHive is designed to
solve this problem using query rewrite based MapReduce that,
while the correction is saved, improves performance with
respect to execution time.

Key Words: Big Data, Hive, SQL-to-MapReduce
translators, TPC-H, Query rewriting, etc.

1. INTRODUCTION

The enormous amount of data from various sources,
including companies, health systems, social websites, etc.,
cannot be processed by traditional databases. This large
amount of raw data is known as Big Data. This amount of
data includes high-volume, high-speed and range data
exponentially increasing and are measured in exabytes
(1018) and zettabytes (1021). Therefore, Apache Software
Foundation led a framework called Hadoop for Big Data
Management and processing challenges to solve.

These features help manage and understand data
centers and use this data to extract valuable information.
Hadoop is an open source framework that focuses on the
processing potential of Big Data in a distributed
environment. It contains two modules one of them is
MapReduce that is a model of parallel programming which is
to process large amounts of structured, semi-structured and
unstructured data in large groups of standard hardware,
while another is Hadoop Distributed File System (HDFS),
which forms part of the framework used in Hadoop to store
and to generate sets of processed data. Ecosystem contains
various Hadoop sub projects as Scope, Pig and Hive to help.
 Hive is a tool for data warehousing, infrastructure
building, data querying and analysis. Hive provides an SQL-
like interface to query data stored in multiple databases and
file systems that integrate with Hadoop. The traditional SQL
queries must be implemented in the Java MapReduce API to
perform SQL queries over distributed data and applications.

Hive provides the abstraction necessary to integrate SQL
(HiveQL) queries to the underlying Java API without the
need to implement queries in the Java low-level API. Since
most of the work application uses data warehousing query
language based on SQL, Hive supports simple portability
from SQL to Hadoop-based application. Although originally
developed by Facebook, now Apache Hive is used and
further developed by other companies such as Netflix,
Financial Industry Regulatory Authority and Amazon Web
Services.
 Hive supports the analysis of large amounts of data
stored in Hadoop HDFS and supported file systems such as
Amazon S3 file system. SQL language represents a type
HiveQL with read schema and queries translucently
converting MapReduce Jobs, Apache Tez and sparks. To
speed up the queries, it provides indexes, including bitmap
indexes. The properties are:
• Stops the schema in a database and processes the data in
HDFS.
• It is designed for OLAP.
• Provides SQL-like language for HiveQL or HQL query.
• It is known to be fast, scalable and extensible.
• Different types of storage memories, such as plaintext,
rcfile, HBase, and others.
• Save metadata in an RDBMS to significantly reduce the time
required during query execution to perform semantic audits.
• Operation with compressed data stored in the Hadoop
ecosystem.
• Manipulate user defined (UDF) functions for data, strings,
and other data mining tools.

Major components of the Hive architecture are:

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 05 | May -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1652

Metastore: Stores metadata for each of the tables, such as
the control and the location. It also includes metadata
partition, which will help drivers to follow the progress in
multiple sets of data distributed across the cluster. The data
is stored in a traditional RDBMS format. Metadata helps the
driver maintain a data track and is very crucial. Therefore, a
server backup regularly replicates data that can be lost in
case of data loss.
Driver: It acts as a controller that receives HiveQL records.
Initiated conducting the assessment meetings and creating
lifecycle monitoring and implementation progress. Stores
the required metadata generated during the execution of a
set HiveQL. The controller also acts as a collection point or to
obtain a data query result after the operation.
Compiler: Performs query compilation HiveQL, which
converts the query into an execution plan. This plan includes
the tasks and steps required by which Hadoop MapReduce
are performed to get the output as translated by the query.
The compiler converts the query to abstract syntax tree
(AST). The compatibility and the compiler errors after
checking, converts AST to a directed acyclic graph (DAG).
DAG share operator levels and MapReduce tasks based on
input query and data.
Optimizer: Make several changes to the implementation
plan for optimized DAG. Various changes can be added
together as the conversion of a pipeline of joins to a single-
junction, for better performance. You can also share tasks as
a transformation to data before a reduction operation
application to provide better performance and scalability.
However, the transformation logic used for optimization
may be used, modified or channeled using another
optimizer.
Executor: After compiling and optimizing, Executor
performs the tasks according to the DAG. Interact with the
Tracker of Hadoop to schedule tasks to run. It is responsible
for the tasks of channeling to ensure a dependent task is
executed only when all prerequisites are executed.
CLI, UI and Thrift Server: Command line interface and UI
(User Interface) allow an external user to interact with Hive
by submitting requests, instructions, and status monitoring
process. The Thrift server allows customers to interact with
external Hive in the same way that the JDBC / ODBC server.
 These languages and translators have significantly
improved the productivity of writing MapReduce programs.
However, in practice, it is observed that self-generated
MapReduce programs for many queries are often extremely
inefficient compared to hand-optimized programs for
experienced programmers. These SQL-to-MapReduce
inefficient translations bring two critical problems. First, the
MapReduce Jobs run unacceptably long in the production
environment. Secondly, for a cluster of large production
programs generated by SQL-to-MapReduce translations
would create a lot of unnecessary work that is a serious
waste of resources in the cluster. This motivates us to
investigate bottlenecks in translators as hive and to develop
highly-optimized MapReduce programs for complex SQL
queries to produce a more efficient SQL translator.

2. LITERATURE SURVEY

Exploring my topic of managing big data with Hive various
steps for processing large data and problems centered in the
administration. Articles talk about how to achieve an
impressive amount of data developed using technology to
get new insights. These documents deal with the challenges
created by Big Data and explore the features of the database.
Hive Hadoop is a distributed system based on open source
SQL-like problems to deal with, by providing a similar SQL
on top of Hadoop framework abstraction.
 Tansel Dokeroglu, Serkan Ozal, Murat Ali Bayir,
Muhammet Serkan Cinar and Ahmet Cosar in Improving the
performance of Hadoop Hive by sharing scan and
computation tasks [4] discusses the optimization framework
for multiple queries, SharedHive to improve the overall
performance of Hadoop Hive, using MapReduce. In order to
improve the performance of Hadoop Hive environments it is
suggested that SharedHive queries as batch processes and
improves the overall run time before it merges the optimized
Hive queries. SharedHive converts a set of correlated HiveQL
conversions to a new set of insert queries within a shorter
implementation time. To benefit from common scan/ join
tasks of input queries and reduce the number (i.e, the total
amount) of redundant tasks SharedHive melds queries into a
new set of insert queries and generates each query as a
stand-alone HDFS file. This approach has shown
experimentally that you can achieve significant performance
improvements by reducing the number of MapReduce tasks
and total file read / write data.
 Fawzy Ramadan Sayed, Mohamed Khafagy in
QRMapper: Optimized Tool for Advanced SQL Mapper on
Hive [6] discusses advanced system to introduce MapReduce
SQL translator named QRMapper. The QRMapper system has
five main stages; SQL Query parser; fetch Sub Query, Sub
Query Optimizer, execute Sub Query, and Final Query
transformation. The system was implemented with Sub
Query Optimizer, Sub Query transformation by Query
Rewriting. Then the final query transform applied to the
input query result after the secondary query returns. The
QRMapper system can perform complex queries with
UNION, INTERSECT, MINUS, sub-query in HAVING, sub-
query clause in the WHERE clause. This document verifies
the correctness of the proposed system by using several
experiments to perform various TPC-H queries.
 Alireza Khoshkbarforoushha, Rajiv Ranjan in
Resource and Performance Distribution Prediction for Large
Scale Analytics Queries [7] describes the use of Mixture
density networks (MDN) for CPU and prediction run-time
distribution Large-scale analytic queries with Hive queries.
Recent studies have investigated the efficacy estimates based
on income distribution of workload versus the prediction of
single point for a set of management problems workload as
scheduling consultations, access control, etc.; Where one
simply assume that the probability distribution function
(pdf) of the target value is now available. This article aims to
address this problem for an inseparable part of the large

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 05 | May -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1653

workload data analysis, Hive queries. In this work, they
combine knowledge of execution of hive queries and MDN to
predict the spectrum resource and performance as
probability density techniques using TPC-H, which show that
not only accurate predictions of pdf are produced but only in
half of the experiments exceeds the prior state of art single
point technique.
 Wu-Chun Chung, Hung-Pin Lin Shih-Chang Chen,
Mon-Fong Jiang, Yeh-Ching Chung in “JackHare: a framework
for SQL to NoSQL translation using MapReduce” [2] discuss a
translator of consultations with the Hadoop Distributed File
System. However, it may be difficult to update the data
frequently in this file system. Therefore, there is a need for a
flexible data storage such as HBase not only to place the data
on a scalable memory, but also to manipulate the variable
data transparently. However, the HBase interface is not
friendly enough for most users. A GUI made by the client
application and SQL database connection to HBase facilitates
a learning curve. In this article, there is a framework
JackHare with SQL query compiler, JDBC driver, and a
systematic method to use the MapReduce framework for
processing unstructured data in HBase. After importing the
JDBC driver on a GUI SQL client, we can use HBase as the
underlying data store to run the ANSI SQL queries.
Experimental results show that this approach can work well
with scalability and efficiency.
 Junbo Zhang, Dong Xiang, Tianrui Li and Yi Pan in
“M2M: A Simple Matlab-to-MapReduce Translator for Cloud
Computing” [3] is a translator is a possible solution to
traditional programmers to easily implement an application
in the cloud systems by translating sequential codes to
MapReduce code. Recently, some translators of SQL-to-
MapReduce dive into SQL-like queries that translate codes
for MapReduce and have good performance in cloud
systems. MATLAB is a high-level and interactive
environment for numerical calculation, visualization and
programming, which is very popular in technology. Proposed
and developed a simple translator Matlab-to-MapReduce for
cloud computing, called M2M, for basic numerical
calculations. M2M can translate a Matlab code in seconds
using up to 100 commands to the MapReduce code. In
addition, M2M can also detect the dependency between
complex commands, which is always confusing for manual
coding. They implemented evaluation M2M with Matlab in a
cluster commands. Several common commands are used in
this experiment. The results show that M2M is comparable in
performance to manually encoded programs.
 Fawzya Ramadan Sayed and Mohamed Helmy
Khafagy in this paper “SQL TO Flink Translator” [5], a SQL
Flink translator is proposed as a new system to define and
add SQL Query language to Flink, this translation improves
SQL without modification within the framework and offers
the possibility to executing SQL Query on Flink by generating
Flink algorithm. SQL TO Flink translator has the ability to
run SQL query when other systems support
underperforming queries and also has the best performance
when tested on TPC benchmark.

 In the paper [2], JackHare proposed to process a
comprehensive solution including compiler SQL query, the
JDBC driver and a systematic method MapReduce using
unstructured database NoSQL data. JackHare was developed
based on Hadoop and HBase to store data that originally
resided in the relational database and developed the
corresponding MapReduce methods based on the logic of the
SQL queries. In the paper [3], a simple method to translate
Matlab code to MapReduce code and develop a simple
translator called Matlab-to-MapReduce M2M. Experiments
show that M2M is comparable to the performance of
manually encoded programs. M2M provides not only data,
but also task parallelism. In addition, M2M programmers can
help to easily implement Matlab system applications in the
cloud without programming with MapReduce and Hadoop
programmers help to significantly reduce the programming
time. The above document [4] presents the architecture of
SharedHive, which is using a new MQO (Multiple Query
Optimization), which is in the top of the driver component
Hive a modified version of Hadoop Hive. Attempts have
shown that you can achieve significant performance
improvements by reducing the number of MapReduce tasks
and the overall size of the read / write files. The document
[6] addresses the rewriting of queries and optimization
QRMapper instead of QMapper. It also shows comparisons
among other applications translators working in large
amounts of data and in any case there is a marked increase
in efficiency in all experimental results. In [7] a set of black-
box models designed to predict the distribution of CPU and
runtime workloads Hive query. The models are based on a
set of specific functions of SQL and MapReduce and statistics
trained in the execution plan with HiveQL as data input. The
approach is evaluated at the reference point support
decision of TPC-H technique, which indicates that accurate
PDF prediction approximates predictive distribution using
appropriate error metrics. In the paper [5] SQL To flink
translator SQL is a query language, which is based on the
analysis of large-scale data sets a tool built on Apache Flink
is to support SQL queries. Users send a SQL query to Flink
translator to provide the appropriate code to these queries,
which can run on Flink. This translator provides a high
degree of flexibility to work with no intervention in Flink
algorithm that improves the performance of SQL Query
Language in large data.

3. PROBLEM STATEMENT

As working on Big Data in administration, the Hive approach
is used as an interface to analyze and manage tables stored
in HDFS. The focus is on finding Hive commands, syntax, and
semantics in managing Big Data that is usually large. In
addition, many of these Big Data solutions include products
that are relatively new and are still developing rapidly.
These products have not matured to a point where they are
used in a variety of applications and are far from being fully
tested. Therefore, hive which I'm trying to explore
experimentally shows that you can achieve the reduction of

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 05 | May -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1654

the number of tasks, MapReduce, and overall files read /
written in terms of the problems achieving significant
performance improvements and trying to provide a solution
to the challenges offered during my research.
 One disadvantage of the MapReduce model is that
users have to convert their work into refined maps and
reduce code. Apache Hive solves this problem by using it as
SQL-to-Hadoop MapReduce for translators. There are some
published documents to analyze different techniques and
frameworks addressing data and to improve the
performance of Hadoop Hive. But my task requires
optimization for the transformation of the Hive queries. To
improve the performance of Hadoop Hive spent in the issued
query, I suggest JHive, which will process the HiveQL queries
as a batch and improve the overall run time of correlated
join queries before the optimizer passes Hive queries. The
developed model is presented as a new component
architecture for Hadoop Hive. Similar work has been done in
[4] by incorporating a number of MapReduce tasks and
overall sizes of read / write records of several optimization
issues (MQO) for performance enhancements.
 In recent years, a significant amount of research and
commercial activity has focused on the integration of
MapReduce technologies and structured databases. Mainly
there are two approaches, either MapReduce adding
functions to a database or adding parallel database
technology to MapReduce. [1], [2], [3], [4], [5] and [6] work
in the second option, while in [7] the first option works.
 My research has similar approach [1] [2] [3] [4] [5]
[6] to integrate the framework Hive with using JH optimizer
and work results HiveQL queries somehow improve the
performance and offers expected results by SQL Surveys and

comparison with conventional products, and likewise.

4. PROPOSED ARCHITECTURE

JHive architecture, which is a modified version of Hadoop
Hive with a new component, JH Optimizer is used in the top
of the driver component Hive (see Fig. 2). The inputs to the
controller contains, compilers, optimizers, and executors are
pre-processed by the aggregate component JH Optimizer
analyzing incoming requests and generating a set of HiveQL
merged queries. System catalog and the structure of the
relational database (relationships, attributes, partitions, etc.)
stored and managed by Metastore. Once a HiveQL command
is sent, it is retained by the controller, which controls the
execution of tasks to answer the request. Compiler analyzes
the query string and converts the parsing tree into a logical
plan. The optimizer performs multiple passes over the
logical plan and rewrites. The physical plan generator
creates a physical plan from the logical plan.
 The HiveQL sets are sent through the command line
interface (CLI), the user interface, or an interface savings.
Typically, the query is directed to the driver component in
traditional Hive architecture. In JHive, the JH optimization
component (following the client interface) receives incoming

requests before the driver component. The amount of
incoming requests will be examined, their common
intermediate tables and common joins are detected, and
come together to get a new set of HiveQL queries to answer
all incoming queries.
 The new JH Optimizer component passes the new
set of insert queries to the compiler component of Hive
driver that produces a logical plan using information from
the Metastore and optimizes this plan using a single rule
based optimizer. The runtime receives a directed acyclic
graph (DAG) associated with MapReduce and HDFS tasks,
and then runs correspondingly to the dependencies of tasks.
The new component JH Optimizer does not require a
significant change in the system architecture of Hadoop Hive
and can easily be integrated into Hive.

Fig.2 Components of the JHive architecture

4.1 METHODOLOGY

 Phase 1: Query is given by user, rewritten and

received from proposed system drivers
 Phase 2: Query is optimized by the optimizer and

equivalent query is produced that returns the same
result in shorter time

 Phase 3: Query is executed.

 The TPC-H queries are described with the SQL
language. Hive provides a similar query language called
HiveQL. It does not support all features in SQL yet. However,
most TPC-H queries can be rewritten in HiveQL without
changing the semantics. In particular, some of them require
small modifications (e.g. selected from multiple tables are
rewritten using joins); some of them need moderate changes
(e.g. sub-queries are rewritten to individual queries) and the
remaining require relative large changes (e.g. UDFs
rewritten with individual queries). In this section, we will
explain how TPC-H queries are rewritten in Hive QL. We will
go through a TPC-H query as example and describe the
rewritten queries in Hive QL.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 05 | May -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1655

4.1.1 Shipping priority query (Q3): Hive QL does not
support selecting from multiple tables. So in this query,
selecting from multiple tables is rewritten to joins and
"where" clauses become "on" clauses in the joins. This
change is very common across all the queries. The original
TPC-H SQL query is:
 select …
 from
 customer,
 orders,
 lineitem
 where
 c_mktsegment = 'BUILDING'
 and c_custkey = o_custkey
 and l_orderkey = o_orderkey
 and o_orderdate < '1995-03-22'
 and l_shipdate > '1995-03-22'
 group by
 l_orderkey,o_orderdate,o_shippriority
 order by
 revenue desc,o_orderdate
 limit 10;

The rewritten Hive query looks like:
 Insert overwrite table q3_shipping_priority
 select …
 from
 customer c join orders o
 on c.c_mktsegment = 'BUILDING'
 and c.c_custkey = o.o_custkey
 join
 lineitem l on l.l_orderkey = o.o_orderkey
 where
 o_orderdate < '1995-03-15'
 and l_shipdate > '1995-03-15'
 group by
 l_orderkey, o_orderdate, o_shippriority
 order by
 revenue desc, o_orderdate
 limit 10;

4.1.2 Query Run Snapshot:

For original SQL query:

 For rewritten query:

5. COMPARISIONS

In comparison between the features of Hive, JHive and
RDBMS few examples of key features that differ from
RDBMS.Table 1 shows a comparison of the features of the
data management systems with proposed JHive.

FEATURE RELATIONAL
DATABASE/S
QL

HIVE/HIVEQL JHIVE/
HIVEQL

Data
loading

takes longer to
load data

very fast initial
load

very
fast initial
load

Query
execution

query time
performance
faster

query time
performance
comparatively
slower

query time
performan
ce
comparativ
ely faster

Multi-
table
inserts

Not supported Supported Supported

Supported
paradigms

OLTP Large scale
analysis (Large
scale OLAP)

Large scale
analysis
(Large
scale
OLAP)

Maximum
data size
allowed

10’s of
Terabytes

100’s
Petabytes very
easily

100’s
Petabytes
very easily

Scalability not that much
scalable that
too it is very
costly scale up

easily scalable
at low cost

easily
scalable at
low cost

Table2. Comparison between Hive, JHive and a relational
database

In comparison between the similar TPC-H database feature
of SharedHive where they use the same database and
benchmark yet differ in the query sets being used while

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 05 | May -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1656

experimentation.Table 3 shows a comparison of the
execution time reduced with comparision to Hive of the
translators proposed.

Table3. Comparison between SharedHive and QRMapper

In comparison between the SQL semantics of Hive,
QRMapper and SharedHive where they use the different
query sets while experimentation.Table 4 shows a
comparison of the features of the translators proposed in
different papers.

SQL SEMANTICS HIVE SHIVE JHIVE

SELECT,INSERT and
LOAD from query

T T T

GROUP BY, ORDER BY T T T

Sub query in WHERE
clause

F T T

LEFT,RIGHT,FULL,CROSS
JOIN

T T T

Table4. Comparison for acceptable SQL semantics
between translators.

6. EXPERIMENTAL EVALUATION
6.1 DATASETS AND QUERIES:
We use dataset and queries from TPC-H Benchmark. This
benchmark illustrates decision support systems that
provides large volumes of data, execute complex queries
and give answers to critical business questions [10].
Dataset is split to a different size for running TPC-H
queries on this dataset.

6.2 ENVIRONMENT SETUP:
We perform the experiments on Linux 6 64-bit OS on
workstation 8.x virtual machine. RAM is 4GB and 64GB disk
space for one Master node and Worker node. Hive 0.12.0 and
Hadoop 2.6.0 are installed and 2GB TPCH datasets are
generated as workload.

 Queries from TPC-H are used to explore different
semantics that can be used for mathematical calculations.
These complex queries can help us explore different aspects
of any database and calculate the performance for different
software applications. Here using Hive we have shown a
performance improvement in it by reducing the execution
time of such complex queries up to 17.6% on average for the
corresponding 22 SQL queries. Here we have used query re-
writing using insert queries and this technique shows
reduction in all queries.

6.3 EXECUTION TIME AND REDUCTION %

Table5. TPCH Queries Performance Reduction%

YEAR TRANS
LATOR

ALGORITHM PARAMETERS

2014 Shared
Hive

Map-Reduce
algorithm and
Merged Query
algorithm using
correlated queries on
Hive

Execution time
reduced by:

13.2% (on
average)

2017 JHive Map-Reduce
algorithm and Query
Rewriting using Hive

Execution time
reduced by:
17.62% (on
average)

Query Select Query Rewritten query Reduction%

Q1 11.06s 9.45s 14.56%

Q2 12.23s 7.1s 41.95%

Q3 7.97s 7.54s 5.4%

Q4 7.28s 7.19s 1.24%

Q5 9.3s 8.76s 5.81%

Q6 4.28s 3.89s 9.11%

Q7 10.06s 8.58s 14.71%

Q8 14.8s 13.89s 6.13%

Q9 13.2s 7.58s 42.58%

Q10 7.61s 7.51s 1.31%

Q11 16.5s 8.46s 48.73%

Q12 10.38s 9.76s 5.97%

Q13 10.34s 9.82s 5.12%

Q14 7.05s 6.13s 13.05%

Q15 21.3s 13.05s 38.73%

Q16 17.26s 14.78s 14.37%

Q17 13.6s 10.41s 23.46%

Q18 16.82s 10.88s 35.32%

Q19 5.2s 4.57s 12.12%

Q20 25.71s 21.18s 17.62%

Q21 23.63s 18.77s 20.57%

Q22 20.18s 18.27s 9.46%

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 05 | May -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1657

6.4 OVERALL PERFORMANCE

Fig 3. Performance of full TPCH Queries

On the X-axis we have comparision between 22 TPCH select
and rewritten quries respectively. While on Y-axis we have
execution time in seconds that clearly shows the reduction in
execution time in rewritten queries visible in orange colour
bars comparative to select queries visible in blue colour bars.
The reduction is achived to be 17.62% as on average
execution time.

7. CONCLUSION

In the future, we will try to explore more possible
optimization techniques to further improve the
performance. Thus, we can plan to work on different
optimization models and tools for the Hadoop MapReduce
execution framework using Hive. We can also work on cost-
aware models and approach for optimizing the MapReduce
job scheduler in terms of workloads for different types of
applications. Finally, we plan to integrate all these new
optimizations with the optimizations proposed in this paper
to achieve more performance improvement.

REFERENCES

[1] Tim Kaldewey, Eugene J. Shekita, Sandeep Tata,
“Clydesdale: Structured Data Processing on MapReduce”,
Proceedings of 15th International Conference on Extenting
Database Technology Pages 15-25, Berlin, Germany-March
27-30, 2012, ISBN: 978-1-4503-0790-1.

[2] Wu-Chun Chung, Hung-Pin Lin Shih-Chang Chen, Mon-
Fong Jiang, Yeh-Ching Chung, “JackHare: A framework for
SQL to NoSQL translation using MapReduce” Autom Softw
Eng DOI 10.1007/s10515-013-0135-x Springer
Science+Business Media New York 2013.

[3]Junbo Zhang, Dong Xiang, Tianrui Li and Yi Pan et al.
“M2M: A Simple Matlab-to-MapReduce Translator for Cloud

Computing” Tsinghua science and technology, pp 1- 9
Volume 18, Number 1, February 2013, ISSN 1007-0214
01/12.

[4]Tansel Dokeroglu, Serkan Ozal, Murat Ali Bayir,
Muhammet Serkan Cinar and Ahmet Cosar “Improving the
performance of Hadoop Hive by sharing scan and
computation tasks” Journal of Cloud Computing: Advances,
Systems and Applications 2014, DOI: 10.1186/s13677-014-
0012-6,licensee Springer 2014, Published: 29 July 2014.

[5] Fawzya Ramadan Sayed and Mohamed Helmy Khafagy,
“SQL TO Flink Translator”, IJCSI International Journal of
Computer Science Issues, Volume 12, Issue 1, No 1, January
2015, ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784.

[6] Fawzy Ramadan Sayed, Mohamed Khafagy “QRMapper:
Optimized Tool for Advanced SQL Mapper on Hive”
International Journal of Computer Science and Information
Security (IJCSIS), Vol. 14, No. 5, May 2016, ISSN 1947-5500.

[7] Alireza Khoshkbarforoushha, Rajiv Ranjan, “Resource
and Performance Distribution Prediction for Large Scale
Analytics Queries“ACM New York, NY, USA, published on 12-
3-2016, ISBN: 978-1-4503-4080-9.

[8] Dipti Shikha Singh, Garima Singh, “Big Data- a Review”
International Research Journal of Engineering and
Technology, Volume: 04 Issue: 04 | Apr -2017, ISSN (online):
2395 -0056.

[9] Edward Capriolo, Dean Wampler, and Jason Rutherglen,
“Programming Hive”, Published by O’Reilly Media, Inc.,
2012-09-17, ISBN: 978-1-449-31933-5.

[10] Tom White, “Hadoop: The Definitive Guide”, Published
by O’Reilly, 2012-01-27, ISBN: 978-1-449-31152-0.

[11] Hadoop Web Page:hadoop.apache.org/

[12] TPC-H benchmark specification, URL:
http://www.tpc.org/

